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Abstract

Classical 2D-wavelet transforms have suboptimal compression performance due to its
inability to generate sparse representation of discontinuities along lines. This thesis
contains investigations of the shearlet transform which in contrast to classical 2D-wavelet
transforms is directional. The shearlet transform has optimal compression performance
of so called "cartoon-like images" and performs better than wavelet on real images too.
Besides image compression the thesis concerns image classification using the shearlet
transform as a component of the feature extraction procedure. Images are transformed
to symmetric and positive definite (SPD) matrices. The space of SPD matrices is not
a linear space but is on the other hand a Riemannian manifold with the structure that
provides. For the classification task, a kernel support vector classifier is used that uses
the log-Euclidean metric on the space of SPD matrices. The thesis was written at
Syntronic Software Innovations.
Keywords: Shearlet, wavelet, anisotropy, support vector machine, data classification.
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Chapter 1

Introduction

Pattern recognition has become a major branch of data analysis and considers identifi-
cation and recognition of patterns in data. Patterns can be prominent but still difficult
to identify and therefore methods to enhance these structures are desired. One way to
enhance patterns in data is to consider the way data is presented using different types
of data transformations. This could for example be the Fourier transform, which reveals
present frequencies in a signal, and could be considered as an underlying pattern or
structure.

Another common tool for data representation and for signal processing in general, is
the framework of wavelets. The theory of wavelets was developed throughout the 20th
century independently by several mathematicians such as Alfréd Haar, Ingrid Daubechies
and Stéphane Mallat among many others [1]. Wavelets use a time-frequency represen-
tation which is different from the Fourier transform which is only localized in frequency.
Due to their mathematical richness wavelets have been extensively used to both analyze
and compress data since its development.

When considering two-dimensional signals, such as images, we can distinguish be-
tween anisotropic and isotropic features. An anisotropic feauture is a property that is
directionally dependent. An isotropic feauture however is uniform along all directions.
Isotropic and anistropic features are mathematically realized as point singularities and
singularities along a curve respectively. Wavelets deal efficiently with isotropic features
but fail to efficiently represent anisotropic features [2]. In 2005, attempts to derive new
efficient representations lead to several additional frameworks such as the curvelet, con-
tourlet and shearlet. Among these, the shearlet framework that was developed by K.
Guo, G. Kutyniok and D. Labate [3] excelled the most due to its ability of providing
with optimally sparse representations of anisotropic objects.

Since shearlets were introduced there have been numerous applications of the shearlet
to compare its performance against similar frameworks. For example there are denoising
applications [4], image compression [5] and feature extraction [6, 7].

The goal of this thesis is to compare the shearlet with wavelets using image classi-
fication. We investigate the decay property of the shearlet and wavelet coefficients for
different types of images, with and without anisotropic features, to quantify the sparse
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CHAPTER 1. INTRODUCTION

representation properties of the transforms. We also demonstrate how the shearlet trans-
form can be used for filtering of images. The main comparison of shearlets and wavelets
of this thesis concerns image classification of the MNIST dataset of handwritten digits
[8]. It is a standard dataset in machine learning and considered easy. A multitude of
classifiers perform better than 99% accuracy on it. The comparison we carry out is
between feature extraction with shearlet transform and the Gabor wavelet. The latter
is another directional transform, popular by engineers, without the sound theoretical
foundations of the shearlet transform. To learn the methods, standard packages were
not used, neither for shearlets nor for machine learning. The implementation of shear-
lets is by nature fast but the training time for the machine learning algorithm very slow.
Therefore, 300, 500 and at maximum 700 training data samples are used for each class
instead of 6000, and classification performance is far from state of the art for MNIST.
In retrospect, training with, e.g., the R-package kernlab would allow training with the
full 6000 training dataset and a fair comparison with other methods would be possible.
On the other hand, the results show that given the limited amount of training data
700 per digit, the shearlet transform outperforms the Gabor wavelet. Moreover, a large
amounts of algorithms have been tested using MNIST which enables comparison of al-
gorithm performance with a multitude of other algorithms. To compare shearlets with
wavelets we consider two models where one is based on shearlets and the other one on
the Gabor wavelet. The Gabor wavelet is a natural choice due to its similar areas of
application and the result of its transform resembles similar features. Among engineers
the Gabor wavelet is a common tool due to its directionally dependent transform. Both
shearlets and Gabor wavelets have succesfully been used for both edge detection [9, 10]
and feature extraction [7, 11].

In our model we use the shearlet and Gabor wavelet to construct correlation matrices
based upon their transforms of a respective image. This gives each image in the dataset
its corresponding correlation matrix. An important property of correlation matrices is
that a correlation matrix is a symmetric positive definite matrix. The space of symmetric
positive definite matrices of size n× n constitutes a Riemannian manifold [12] and this
fact means in particular that there is a metric structure and thus a way to measure
distance on that manifold. There are several applicable metrics such as the affine-
invariant, stein metric and the log-Euclidean metric [13]. We use the log-Euclidean
metric due to a reduced computational cost and other theoretical benefits [14] that are
outside the scope of this thesis.

The correlation matrices are classified using a classification model known as the sup-
port vector machine (SVM). There are a numerous different methods available for data
classification, some other popular methods are CART, k-means and Naive Bayes [15]. A
SVM is a binary classifier based upon finding a hyperplane that optimally separates two
groups of data. Combining the correlation matrices with the support vector machines,
we use the fact that the matrices are elements on a Riemannian manifold, and therefore
measure distance between each correlation matrix. To measure distance we need a suit-
able metric and we combine the log-Euclidean metric with a Gaussian RBF kernel. A
log-Euclidean based Gaussian RBF kernel have proved to greatly improve classification
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CHAPTER 1. INTRODUCTION

results compared to Gaussian RBF kernels based on other metrics in previous work [16].
The outline of this thesis is the following. In Section 2.2 we briefly rehearse some

of the major results from wavelet theory. From this section we proceed with the theory
regarding shearlets in Section 2.3. In Section 4 we look at support vector machines and
how we combine these with positive definite matrices to classify data. Finally in Section
6 we present the results with conclusions in Section 7.
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Chapter 2

Wavelet and shearlet
transforms

This chapter contains the mathematical preliminaries for the linear transforms used in
the later chapters. It begins at the very definition of the Fourier transform to proceed
with some important concepts from the wavelet theory in Section 2.2. We continue with
the extension to wavelets in two dimensions in 2.2.1. The shearlet theory is presented
in Section 2.3 followed by a practical implementation in Section 2.3.2. The basis of
shearlet theory originates from wavelet theory, which itself is a natural extension from
the Fourier analysis. We therefore begin by giving the reader a broad but concise the-
oretical understanding to these mathematical concepts before introducing the shearlet
framework.

2.1 Notation and preliminaries
We begin by some introductory notations. A function f : Rk → R, k ≥ 1, is said to
belong to Lp(Rk;R) = Lp(Rk), 1 ≤ p <∞, if it satisfies∫

Rk
|f(x)|p dx <∞ .

The Lp(Rk) norm of a function f on Rk is denoted by

||f(x)||Lp(Rk) :=
(∫
Rk
|f(x)|p dx

) 1
p

, 1 ≤ p <∞ .

In this thesis we mainly consider functions in L2(Rk). We define the inner product on
L2(Rk) for all f, g ∈ L2(Rk) as

〈f, g〉L2(Rk) :=
∫
Rk
f(x)g(x) dx .

A space U is said to be complete if the limit of every Cauchy sequence is also in U . If
we equip a space U with a norm ‖ · ‖ such that U is complete with respect to ‖ · ‖ then

4



CHAPTER 2. WAVELET AND SHEARLET TRANSFORMS

U is said to be a Banach space. A Banach space is a complete normed vector space.
Moreover, if a Banach space H is equipped with an inner product then H is a Hilbert
space. The space L2(R) is a Hilbert space, i.e. a complete inner product space. We
remind the reader that if {uk}nk=0 is a complete orthonormal basis for some Hilbert space
H, then {uk}nk=0 is referred to as a Hilbert basis.

The Fourier transform is used throughout this thesis and plays a central role when
we define the shearlet transform.

Definition 2.1.1. The continuous Fourier transform of a function f ∈ Lp(Rk) is defined
as the integral

f̂(ξ) := lim
R→∞

∫
|x|≤R

f(x)e−2πix·ξ dx , ξ ∈ Rk . (2.1)

All Fourier transforms are denoted by a hat f̂ unless otherwise explicitly stated. The
definition for the discrete Fourier transform is completely analogous, and is stated next.

Definition 2.1.2. Let ξ = (ξ1, ..., ξm)T . The m-dimensional discrete Fourier transform
of f(n), n = (n1, ..., nm) is defined as

f̂(ξ) :=
N1−1∑
n1=0

. . .
Nm−1∑
nm=0

f(n1, n2, ..., nm)e−i
2π
N1

n1ξ1−i 2π
N2

n2ξ2...−i 2π
Nm

nmξm .

In this thesis we frequently use the Plancherel theorem.

Theorem 1 (Plancherel theorem). For f, g ∈ L2(Rk), it holds that

〈f, g〉L2(Rk) = 〈f̂ , ĝ〉L2(Rk) .

When working with wavelets and shearlets, we often work with Riesz bases.

Definition 2.1.3. Let (V, ‖·‖) be a Banach space and {un}n∈N be a basis of V . If there
exists positive numbers A and B, A ≤ B, such that for all ψ =

∑
k ckuk the following

inequalities hold:
A‖ψ‖2 ≤

∑
k

|ck|2 ≤ B‖ψ‖2 .

Then {un}n∈N is called a Riesz basis.

Now when we have defined a Riesz basis it is natural to continue with the concept
of frames. Frames play a crucial role in the theory of wavelets and shearlets.

Definition 2.1.4. Let (H, ‖ ·‖, 〈·, ·〉) be a Hilbert space. A set {un}n∈Z ⊂ H constitutes
a frame if there exist positive constants A and B such that for all ψ ∈ H it holds

A||ψ||2 ≤
∑
n∈Z
|〈ψ, un〉|2 ≤ B||ψ||2 .

5



CHAPTER 2. WAVELET AND SHEARLET TRANSFORMS

If A = B = 1 we have a Parseval frame, this can be put in other words as in the
following definition.

Definition 2.1.5. Let (H, ‖ ·‖, 〈·, ·〉) be a Hilbert space. A set {un}n∈Z ⊂ H constitutes
a Parseval frame if

||ψ||2 =
∑
n∈Z
|〈ψ, un〉|2 , ∀ψ ∈ H .

We conclude this preliminary chapter by recalling the concept of compact support.
If Ω is a compact set, then a function f has compact support on Ω if f is zero on the
complement of Ω.

These introduced concepts are widely used in the coming chapters. We proceed with
the theory regarding wavelets.

2.2 Wavelet analysis
The wavelet framework is a natural extension of the Fourier framework. Wavelets have
a wide range of applications, especially in signal processing and are useful for data
representation and data compression. A wavelet is a local oscillation and can be realized
as a short wave with compact support. Wavelets differ mainly from the Fourier transform
due to its localization in both frequency and time, whilst the Fourier transform is only
localized in frequency. Even though the wavelets are localized in frequency and time,
one cannot simultaneously tell the exact frequency response at a certain point in time.
This limitation is related to a very famous postulate in quantum mechanics and analysis
known as Heisenberg’s uncertainty principle.

To put things in context we begin with a formal definition of a wavelet system.

Definition 2.2.1. A discrete wavelet system in L2(R) with mother wavelet ψ ∈ L2, is
the family of functions given by

W(ψ) :=
{
ψj,k = 2

j
2ψ(2j · −k)| j, k ∈ Z

}
. (2.2)

Ideally one desires W(ψ) to constitute an ON-basis of L2(R) but this is not a re-
quirement for a discrete wavelet system, and not possible for most interesting discrete
wavelet families. If ψ ∈ L2(R) makes W(ψ) an ON-basis, then ψ is called an orthonor-
mal wavelet. Thus if ψ ∈ L2(R) is an orthonormal wavelet and W(ψ) is the family of
functions defined by (2.2), then any function f ∈ L2(R) can be expanded as

f =
∑
j,k∈Z

wj,kψj,k . (2.3)

Here {wj, k}j, k∈Z ∈ R are known as the wavelet coefficients. IfW(ψ) does not constitute
an ON-basis, but instead if it constitutes a frame, the coefficients wj, k are replaced by
the inner products 〈f, ψj, k〉.

The wavelet coefficients are of great importance while analyzing a signal. When
transforming a signal using the wavelet transform, a set of coefficients is obtained and
these contain information about the given signal.
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Theorem 2. If f(t) ∈ L2(R), then the wavelet coefficient wj,k is given by

wj,k =
∫
R

f(t)ψj,k(t) dt . (2.4)

A wavelet coefficient wj,k corresponds to the norm of a projection of the signal onto
ψj,k, thus we obtain one coefficient for each pair (j, k). The expression for calculating
the wavelet coefficients in the continuous case is completely analogous to the continuous
Fourier transform.

Note that if ψj,k is replaced by e−2πiωt in (2.4) this is exactly the Fourier transform.
Yet we have not given an explicit expression for any wavelet ψ. Compared to Fourier
analysis, the basis functions ψj, k do not always have explicit expressions. There are
also several restrictions on ψ to be able to classify ψ as a wavelet. When constructing
a wavelet system one usually picks ψ depending on the features of the signal being
analyzed. The reasoning behind this is that the wavelet coefficients are basically a
convolution between the signal and the wavelet (see Equation (2.4)). Therefore, different
wavelets may correlate differently with x giving different results. We proceed by showing
how one can construct ψ.

If ψ ∈ L1(R) ∩ L2(R) one can formulate the following conditions∫
R

ψ(t) dt = 0 ,
∫
R

|ψ(t)|2 dt = 1 ,

which is equivalent to ψ having zero mean and L2-norm equal to one.
The question now is how one can construct a function ψ that satisfies all of the

desired properties such that the transformation can be realized practically. To date,
the general machinery to construct a discrete wavelet transform is using multiresolution
analysis (MRA). This is a method developed in the late 1980s by Stephene Mallat and
Yves Meyer. MRA also forms one of the foundations to the fast wavelet transform.

Definition 2.2.2. A multiresolution analysis of L2(R) is a sequence of closed subspaces
that satisfies the following properties:

1. Vj ⊂ Vj+1 for all integers j,

2. f(t) ∈ Vj ⇔ f(2t) ∈ Vj+1 for all integers j.

3. f(t+ 1) ∈ Vj ⇔ f(t) ∈ Vj for all integers j.

4. The set
⋃
j∈Z Vj is dense in L2(R) and

⋂
j∈Z Vj = {0}.

5. There exists a function φ ∈ V0 such that its integer shifts forms a Riesz basis for
V0, i.e. that {φ(t− k)}k∈Z is a Riesz basis for V0.

A MRA leads to filter banks and we now explain this. Since the integer shifts
of φ forms a Riesz basis for V0, we call φ scaling function and say that φ generates

7



CHAPTER 2. WAVELET AND SHEARLET TRANSFORMS

V0. Similarly if we define φj, k = 2
j
2φ(2jt − k) then the integer shifts of φj, k span Vj .

Moreover, since V0 ⊂ V1 there is a sequence {gn}n ⊂ R that satisfies

φ(t) =
√

2
N−1∑
n=0

gnφ(2t− n) . (2.5)

Note that φ(2t−n) ∈ V1. That
⋃
j∈Z Vj is dense in L2(R) means that for any f ∈ L2(R)

there exists a sequence fk ∈ Vk such that ‖f − fk‖ → 0 as k → ∞. Let fj and fj+1
be approximations of f at scale j and j + 1 respectively, then dj = fj+1 − fj ∈ Vj+1
since fj ∈ Vj ⊂ Vj+1. We introduce the space Wj of functions dj as the details lost of
a function f between the approximations at scale j and j + 1, that is, Wj = Vj+1 	 Vj ,
for 	 denoting the orthogonal difference. The space W0 is the orthogonal complement
to V0 and W0 ⊂ V1. For ⊕ denoting the orthogonal sum we have V1 = W0 ⊕ V0.

We call ψ a wavelet if W0 ⊂ V1 is the space generated by the integer shifts of the
mother wavelet, namely, the space spanned by {ψ(t − k)}k∈Z. Moreover V1 = W0 ⊕ V0
and each f1 ∈ V1 can uniquely be written as f1 = f0 + d0 where f0 ∈ V0 and d0 ∈W0.

With the recently stated results, we define the mother wavelet ψ using φ as

ψ(t) :=
√

2
N−1∑
n=0

(−1)ngN−1−nφ(2t− n) =
√

2
N−1∑
n=0

hnφ(2t− n) , (2.6)

Equation (2.5) and (2.6) are known as the refinement equations. The sequences {gn}N−1
n=0 ⊂

R and {hn}N−1
n=0 ⊂ R are called scaling sequence and wavelet sequence respectively. The

scaling function φ requires to have integral one due to specific approximation properties
[17]. Moreover from (2.5) it follows that

1 =
∫
R

φ(t) dt =
∫
R

√
2
N−1∑
n=0

gnφ(2t− n) dt =
√

2
N−1∑
n=0

gn

∫
R

φ(2t− n) dt .

Note that ∫
R

φ(2t− n) dt =
∫
R

φ(s)1
2 ds = 1

2 ,

since the scaling function integrates to 1 on R. This gives us

1 =
√

2
N−1∑
n=0

gn

∫
R

φ(2t− n) dt = 1√
2

N−1∑
n=0

gn ⇒
N−1∑
n=0

gn =
√

2 .

In a similar way we obtain another constraint on hn since

0 =
∫
R

ψ(t) dt =
∫
R

√
2
N−1∑
n=0

hnφ(2t− n) dt⇒
N−1∑
n=0

hn = 0 .

The coefficients gn are calculated multiplying (2.5) by φ(2t− n) and using the orthogo-
nality conditions to obtain

√
2
∫
R

φ(t)φ(2t− n) dt = gn . (2.7)

8
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When gn is known we also know hn since hn = (−1)ngN−1−n.
Before we proceed with the theory regarding filter banks we illustrate the theory

above with the most basic wavelet.

Example 1 (The Haar wavelet). The Haar wavelet was already developed in the early
1900s by Alfréd Haar long before any general ideas of wavelet theory has been established.
This wavelet is the most simple one and we proceed by deriving the coefficients gn, hn
and the wavelet ψ starting from the scaling function φ. The scaling function is defined
as

φ(t) :=

 1 , 0 ≤ t ≤ 1 ,
0 , else .

To derive ψ we need gn. Using Equation (2.7) we obtain g0 = g1 = 1√
2 and the rest of

the coefficients are equal to zero. This gives us h0 = 1√
2 as well as h1 = −h0 = − 1√

2 .
Combining these results with (2.6) we obtain the Haar mother wavelet

ψ(t) =


1
2 , 0 ≤ t < 1

2 ,

−1
2 ,

1
2 ≤ t < 1 ,

0 , else .

The Haar basis is shown in Figure 2.1 To be able to express a signal f in the wavelet
basis one requires the scaling and wavelet coefficients. The calculation is a recursive
process where through the orthogonality relations and the refinement equations one can
see the equivalence between these calculations and passing the function through a filter
bank. That is, the calculation of coefficients is equivalent to passing a signal f through
a series of filters.

Now that we have established several underlying keystones from wavelet analysis we
are ready to see the practical calculations to obtain the wavelet coefficients. A filter
bank is constructed as a cascade of low-pass and high-pass filters. Assume we have a
signal x of N samples, for simplicity also assume N = 2M for someM ∈ N. The signal x
is then passed through the low-pass filter and high-pass filter respectively. If we denote
any of these filters by f then mathematically this is realized as the convolution

yf (n) = x ∗ f(2n) =
N∑
k=1

x(k)f(2n− k) .

After each filter the filtered signal is downsampled which means that each element with
odd index is removed, this downsampling is denoted by the operator ↓ 2. The process
of filtering and downsampling can be denoted as

y =↓ 2(x ∗ f) = (yf (0), yf (2), ..., yf (N)) .

The coefficients yf are exactly the wavelet coefficients if f is the downsampling high-
pass filter {hn}Nn=1. From the low-pass filter {gn}Nn=1 we obtain similarly the scaling

9
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Figure 2.1: This figure illustrates the scaling function φ and wavelet ψ for the Haar basis.

coefficients. Due to ↓ 2 one has N/2 coefficients from each filter. The wavelet coefficients
are stored while the remaining scaling coefficients - which are equivalent to the filtered
signal - are then passed through another set of filters (one high-pass and one low-pass
filter respectively). This results in another set of N/4 wavelet- and scaling coefficients.
This process is repeated. We notice that this halves the number of samples for each
application of ↓ 2. Hence if N = 2n for some positive integer n we can downsample
exactly log(N)/ log(2) times until we have only one remaining sample. This results
in exactly N coefficients since we obtain N/2 + N/4 + ... + N/2n−1 + 2 = N wavelet
coefficients in total. The entire process can be realized graphically, see Figure 2.2.

10
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x(t) LP

HP

HP

LP

2nd set of coeff

1st set of coeff

HP

LP

3rd set of coeff

...

Figure 2.2: This figure illustrates how the signal is passed through a series of filters. LP and
HP denotes low-pass and high-pass filter respectively. After each high-pass filter we extract
a set of wavelet coefficients, this procedure proceeds for a finite amount of filters depending
on the length of the signal. Note that the signal after each filter is also downsampled but
not illustrated in the figure.

Example 2. To illustrate with an example we take the Haar Wavelet. As derived
earlier this choice of basis results in filter coefficients ( 1√

2 ,
1√
2) and ( 1√

2 ,−
1√
2) for the

low-pass and high-pass filter respectively. Assume for simplicity that we have the signal
x = (−9,−4, 1, 0, 1, 4, 9, 16). To calculate the coordinates of x in the Haar basis we have
to “pass x through” each filter and repeat this process until we have obtained all the
wavelet coefficients. The coefficients from each filter at each stage is then

x→

 LP : 1√
2(−13, 1, 5, 25) → 1

2(−12, 30) → 1√
2(9)

HP : 1√
2(−5, 1,−3,−7) → 1

2(−7,−10) → 1√
2(−21)

.

This means that we have the wavelet coefficients

w =
(
− 5√

2
,

1√
2
, − 3√

2
,− 7√

2
,−14

2 ,−
20
2 ,−

21√
2
,

9√
2

)
.

The calculation can also be realized as the matrix vector product:

w = 1
2



1√
2

1√
2

1√
2

1√
2

1√
2

1√
2

1√
2

1√
2

1√
2

1√
2

1√
2

1√
2 − 1√

2 − 1√
2 − 1√

2 − 1√
2

1 1 −1 −1 0 0 0 0
0 0 0 0 1 1 −1 −1
√

2 −
√

2 0 0 0 0 0 0
0 0

√
2 −

√
2 0 0 0 0

0 0 0 0
√

2 −
√

2 0 0
0 0 0 0 0 0

√
2 −

√
2





−9
−4
1
0
1
4
9
16



=



9√
2

− 21√
2

−7
−10
− 5√

2
1√
2

− 3√
2

− 7√
2



.

The coefficients w contain information about the frequencies characterizing the sig-
nal. However, recall that the obtained results depend strongly on the choice of wavelet
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Figure 2.3: This figure illustrates the scaling function φ and wavelet ψ for the db4 basis.

since the wavelet coefficients can be visualized as a projection of the signal onto the
wavelet itself. The Haar basis is the simplest one and the coefficients that comes along
with it can be visualized as repeated averages and differences times a factor. Its simplic-
ity does not necessary imply that it is inadequate, however, it is not the most practically
applied wavelet.

Example 3 (Daubechies wavelet). Another common family of wavelets is the Daubechies
wavelets based on the work of Ingrid Daubechies. These wavelets are favoured mainly due
to their properties related to vanishing moments. The concept of vanishing moments is
a term related to compression functionality. The Daubechie wavelets can be chosen with
a different amount of vanishing moments, giving different filter coefficients and different
compression qualities. The reader who wants to learn more about this is recommended to
consult [17]. The Daubechie scaling- and wavelet functions do not have explicit expres-
sion thus one has to pursue more advanced methods to obtain the filter coefficients. For
simplicity we illustrate the transformation of a signal x = (x0, x1, x2, x3, x4, x5, x6, x7)
with the Daubechie wavelet called D4 (or db4). The function D4 is illustrated in Figure
2.3. This basis has low-pass coefficients [18]

h = (h0, h1, h2, h3) = 1
4
√

2
(1 +

√
3, 3 +

√
3, 3−

√
3, 1−

√
3) ,
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and high-pass coefficients

g = (g0, g1, g2, g3) = (h3,− h2, h1,− h0) .

The transformation matrix for this signal of 8 samples is

D =



h0 h1 h2 h3 0 0 0 0 0 0
g0 g1 g2 g3 0 0 0 0 0 0
0 0 h0 h1 h2 h3 0 0 0 0
0 0 g0 g1 g2 g3 0 0 0 0
0 0 0 0 h0 h1 h2 h3 0 0
0 0 0 0 g0 g1 g2 g3 0 0
0 0 0 0 0 0 h0 h1 h2 h3

0 0 0 0 0 0 g0 g1 g2 g3


Theoretically signals are assumed to be of infinite length, however the filter-banks

assume signals of finite length. One way to deal with this is to extend the signal by
modifying its length. For example a periodic extension assumes that the signal repeats
itself. There are many other extension techniques. One popular method is to assume a
periodic extension. That is if x is of size 8 and we use the filter given by D, one would
add elements from x, starting from its first value x0, such that it matches the filter size.
For example we extend x by using the first two elements to have a length equal to 10,
thus ∼x = (x0, x1, x2, ..., x6, x7, x0, x1) = (x, x0, x1).

2.2.1 Two-dimensional wavelets

So far we have only covered applications of wavelets for one-dimensional signals. However
two-dimensional signals (or higher), such as images, are well suited for wavelet trans-
formations. Before we leave the wavelet theory and proceed with shearlets we briefly
introduce the idea behind two-dimensional wavelets.

Previously when we introduced the MRA, we encountered the spaces Vj and Wj .
We wil briefly show this result can be extended for a two-dimensional scenario. Let ⊗
denote a tensor product, if {Vj} is a MRA of L2(R) let V 2

j = Vj ⊗ Vj . Then {V 2
j }j is a

MRA of L2(R2).
This holds true because if H = H1⊗H2 and H,H1, H2 are Hilbert spaces and {uj}j ,

{vj}j are basis of H1 and H2, respectively. Then {ui⊗vj}i,j is a basis of H. By a similar
argument this holds for W 2

j . Therefore by using the one-dimensional MRA Vj we obtain
a two-dimensional variant by construcitng V 2

j .
To define two-dimensional wavelets, we let φ and ψ denote the one dimensional

scaling and wavelet function from the MRA {Vj}. Using the one-dimensional functions
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we define
Φ(x, y) = φ(x)φ(y) ,

ΨH(x, y) = φ(x)ψ(y) ,
ΨV (x, y) = ψ(x)φ(y) ,
ΨD(x, y) = ψ(x)ψ(y) ,

where the subscripts H,V and D are indications of “direction” in the two-dimensional
signals, i.e. horizontal, vertical and diagonal. The function Φ is the scaling function,
while the rest are wavelet functions. If κ = {H,V,D} we define

Ψκ
j,n,m(x, y) := 1

2j Ψκ

(
x− 2jn

2j ,
y − 2jm

2j

)
, (2.8)

and similarly for Φj, n,m. Then {ΨH
j, n,m,ΨV

j, n,m,ΨD
j, n,m}j, n,m is a frame for L2(R2).

Wavelet coefficients are obtained using the functions Ψκ giving coefficients for each
direction in κ.

2.2.2 The Gabor wavelet

The final wavelet that we remark on is the Gabor wavelet. The Gabor wavelet is a
non-orthogonal wavelet and is frequently used as a tool for feature extraction due to
its capability of detecting edges in images [19, 20]. A Gabor wavelet is the product of
a gaussian function and a complex exponential. More formally, we can write a one-
dimensional Gabor function g(x) : R→ C, centered around x0 ∈ R, as

ga, ξ(x) = A exp
(
− 1
a2 (x− x0)2

)
exp

(
−iξ(x− x0)

)
, x ∈ R .

where A is a normalization constant such that ga, ξ(x) integrates to 1 onR. Here a, ξ ∈ R
are parameters.

To construct a two-dimensional wavelet we require a two-dimensional function. This
is obtained in a similar manner demonstrated in Section 2.2.1. Thus, using the one-
dimensional function we obtain

ga, ξ1, ξ2(x, y) = ga, ξ1(x)ga, ξ2(y) , x, y ∈ R,. (2.9)

Finally a two-dimensional wavelet is obtained using Equation (2.8) with ga, ξ1, ξ2(x, y) as
a generating function. A plot of the basis can be seen in Figure 2.4.

The function given by (2.9) is also referred to as a filter [12]. A representation of an
image I using the wavelets is obtained by the convolution I ∗ga, ξ1, ξ2 . We can move from
rectilinear coordinates (x, y) to polar coordinates ρ(cos θ, sin θ) where ρ =

√
x2 + y2

and θ is the angle of rotation from the x-axis. Then we can interpret the wavelet as a
directional wavelet where θ specifies its orientation. By choosing ξ and θ properly, we
can construct a filter bank based on the wavelet such that it covers the entire frequency
band. Then from the convolution between an image I and a two-dimensional filter, we
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Figure 2.4: This figure illustrates the real part and imaginary part of two Gabor wavelets.
Note that the imaginary and real part differ in phase.

obtain information of edges in I along a certain direction specified by θ. Edges that are
normal to the direction specified by θ correlate the most, while edges perpendicular to
θ do not not correlate at all.

This wavelet is fundamentally similar to the shearlet that we introduce in the coming
section. In Section 4 when we discuss models for classification, the wavelet plays a major
role in the implementation of our classification models. This marks the end of the wavelet
theory and we proceed with a multiscale framework, namely, shearlets.

2.3 Shearlets
The advantage of using shearlets over wavelets is due to its capability of dealing with
anisotropic features. Anisotropic features are for example edges in an image and these
can be realized mathematically as singularities along a line. Approximations provided
by wavelets are not optimally sparse for images containing edges. However optimally
sparse approximations in the presence of edges can be obtained using shearlets. The set of
cartoon-like images, is the set of functions f that are C2 everywhere apart from piecewise
C2 edges. Basically f = f0 + f1χB is cartoon-like if fi ∈ C2, i = 0, 1 with compact
support on B and ∂B is a closed C2-curve. Denote fN as the shearlet approximation of
a cartoon-like image f by using the N largest shearlet coefficients, the error between f
and fN satisfies the following decay rate [21]:

||f − fN ||2L2(R2) ≤ CN
−2(logN)3 , N ∈ N ,
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for some C > 0. If we do a similar comparison of approximating f by fN using the best
N−term approximation of wavelet coefficients, we have the following decay rate

‖f − fN‖2L2(R2) ≤ CN
−1 , N ∈ N .

When working with wavelet systems one desires to work with orthonormal basis. How-
ever in practice it is nearly impossible to create a wavelet system that constitutes such a
basis. This holds true also for shearlet systems, however it is possile to create a shearlet
system that constitutes a Parseval frame for L2(R2).

2.3.1 Shearlet system

We begin by defining a shearlet system without explicitly defining the function generating
the system. Denote R+ = [0,∞) as the set of all non-negative real numbers. We begin
by defining a continuous shearlet system and proceed with a discrete system.

Definition 2.3.1. Consider a function ψ ∈ L2(R2) and let S = (R+ × R) × R2. We
define a continuous shearlet system, with respect to ψ and S by

SH(ψ; S) :=
{
ψa,s,t = a−

3
4ψ(A−1

a S−1
s (x−t)) = a−

3
4ψ

 1
a − s

a

0 1√
a

 (x− t)

 ∣∣∣ (a, s, t) ∈ S
}
.

(2.10)
Here Aa and Ss denote

Aa =

a 0
0
√
a

 , a ∈ R+ , Ss =

1 s

0 1

 , s ∈ R .

The parameters a and s are dilation and shearing parameter respectively. A discrete
shearlet system is completely analogous to the system given by (2.10) except that the
parameters (a, s, t) range over some discrete lattice Λ ⊂ S ⊂ (Z × Z) × Z2. Suitable
values of a, s and t are discussed later.

If ψ ∈ L2(R2) is a shearlet, we define a discrete shearlet system by

SH(ψ; Λ) :=
{
ψa,s,t = a−

3
4ψ(A−1

a S−1
s (·−t)) = a−

3
4ψ

 1
a − s

a

0 1√
a

 (· − t)

 ∣∣∣ (a, s, t) ∈ Λ
}
.

So far we have said nothing about what the shearlet ψ actually is, except that ψ ∈
L2(R2).

Definition 2.3.2 (Classical shearlet). Let ψ1 ∈ L2(R) be a discrete wavelet in the sense
that its Fourier transform satisfies the discrete Calderón condition∑

j∈Z
|ψ̂1(2−jω)|2 = 1 , for a.e. ω ∈ R ,
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and ψ̂1 ∈ C∞(R), supp(ψ̂1) ⊆ [−1
2 ,−

1
16 ] ∪ [ 1

16 ,
1
2 ]. We also define ψ2 ∈ L2(R) as a

bump function (C∞ and compact support) in the sense that it satisfies ψ̂2 ∈ C∞(R),
supp(ψ̂2) ⊆ [−1, 1] and

1∑
k=−1

|ψ̂2(ω + k)|2 = 1 , for a.e. ω ∈ [−1, 1] .

Then, define ψ ∈ L2(R2) to be the function defined by its Fourier transform

ψ̂(ξ) = ψ̂1(ω1)ψ̂2

(
ω2
ω1

)
, ω =(ω1, ω2)∈R2 .

A function ψ satisfying these conditions is called a classical shearlet.

A discrete shearlet system cannot compose a basis, however it is possible to construct
a discrete shearlet system that constitutes a frame by choosing Λ appropriately. Such
shearlet systems are derived, e.g. by choosing Λ = {(2−j ,−k, S−kA2−jm) : j, k ∈ Z,m ∈
Z2}, see [21]

Theorem 3. Let ψ ∈ L2(R2) be a classical shearlet and Λ = {(2−j ,−k, S−kA2−jm) :
j, k ∈ Z,m ∈ Z2}. Then SH(ψ; Λ) is a Parseval frame for L2(R2).

2.3.2 Implementation of the shearlet transform

There are several ways to implement this transformation, here we focus on the fast
finite shearlet transformation (FFST). The following is only an outline of the work fully
described in [22].

We begin by constructing the shearlets as a composition of functions satisfying several
properties such that the final product satisfies all the requirements above. We define
v : R→ R by

v(x) :=


0 x < 0 ,
35x4 − 84x5 + 70x6 − 20x7 0 ≤ x ≤ 1 ,
1 x > 1 .

The function v is symmetric around (1
2 ,

1
2), and is the same function used to define the

Meyer wavelet. Moreover, we define the function b : R→ R by

b(ω) :=


sin(π2 v(|ω| − 1)) 1 ≤ |ω| ≤ 2 ,
cos(π2 v(1

2 |ω| − 1)) 2 < |ω| ≤ 4 ,
0 otherwise .

The function b is positive, real-valued symmetric with compact support on the interval
[−4,− 1] ∪ [1, 4].
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Figure 2.5: This figure illustrates the functions v, b, ψ̂1 and ψ̂2.

Using v and b we construct a classical shearlet. Define the function ψ1 : R → R of
Definition 2.3.2 via its Fourier transform, given by

ψ̂1(ω) :=
√
b2(2ω) + b2(ω) .

This function has compact support on [−4,− 1
2 ] ∪ [1

2 , 4]. In a similar way we define the
function ψ2 : R→ R of Definition 2.3.2 by

ψ̂2(ω) :=


√
v(1 + ω) ω ≤ 0 ,√
v(1− ω) ω > 0 .

As in Definition 2.3.2, ψ : R×R→ R is given by

ψ̂ = ψ̂1(ω1)ψ̂2

(
ω2
ω1

)
.

We plot the functions v, b,ψ̂1, ψ̂2 in Figure 2.5 and ψ̂ in Figure ... . We consequently
obtain

ψ̂a,s,t(ω) = a−
3
4F

ψ
 1

a − s
a

0 1√
a

 (· − t)

 (ω)

= a−
3
4 e−2πi〈ω, t〉(a−

3
2 )−1ψ̂

 a 0
s
√
a
√
a

ω


= a
3
4 e−2πi〈ω, t〉ψ̂1(aω1)ψ̂2

(
a−

1
2

(
ω2
ω1

+ s

))
.
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Figure 2.6: This figure illustrates the function ψ̂.

Using Plancherel’s theorem, we denote the shearlet transform of f by S H (f) which is
given by

S H (f)(a, s, t) = 〈f, ψa,s,t〉 = 〈f̂ , ψ̂a,s,t〉 =
∫
R2
f̂(ω)ψ̂a,s,t(ω) dω

= a
3
4F−1

(
f̂(ω)ψ̂1(aω1)ψ̂2

(
a−

1
2

(
ω2
ω1

+ s

)))
(t) .

This forms the basis for the following implementation of the fast finite discrete shear-
let transform.

2.3.3 Cone-adapted shearlets

With the current construction there is an issue with the shearlet transform for a certain
type of functions that are dense along a specific axis. This issue is referred to as a
directional bias. The image shown in Figure 2.7 shows the support induced by the
current construction of shearlets and for some parameters (a, s, t).
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Figure 2.7: The tilings induced by the classical shearlets. Note how the support behaves
near the vertical axis. Original image by author1. Note that of course the supports are not
disjoint, the image is simplified to illustrate the support for some values of (a, s, t).

The more concentrated a function is along an axis, the more information of the
function is only perceptible in S H (f)(a, s, t) as s tends to infinity. This problem is
specificly evident when analyzing a function with a Fourier transform concentrated along
the ω2-axis, this causes the shearlet coefficients to be associated with very large s. This
issue is adressed by partitioning the Fourier domain into specific regions which limits
s to finite intervals. Therefore, we proceed by restraining us to band-limited shearlets
only, since this gives compact support in the Fourier domain. We construct a partition
of the Fourier domain as the cones defined by

Ch := {(ω1, ω2) ∈ R2 : |ω1| ≥ 1
2 , |ω2| < |ω1|} ,

Cv := {(ω1, ω2) ∈ R2 : |ω2| ≥ 1
2 , |ω2| > |ω1|} ,

C× := {(ω1, ω2) ∈ R2 : |ω1| ≥ 1
2 , |ω2| ≥ 1

2 , |ω1| = |ω2|} ,
C0 := {(ω1, ω2) ∈ R2 : |ω1| < 1, |ω2| < 1} .

We assign a shearlet to each region. Define the characteristic function χCκ(ω) such that
χCκ(ω) is equal to 1 for ω ∈ Cκ and zero elsewhere, where κ ∈ {v, h,×}. Define the

1Original image by author [23].
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Cone-adapted shearlets as
ψ̂h(ω1, ω2) := ψ̂1(ω1)ψ̂2

(
ω2
ω1

)
χCh(ω) ω ∈ Ch ,

ψ̂v(ω1, ω2) := ψ̂1(ω2)ψ̂2
(
ω1
ω2

)
χCv(ω) ω ∈ Cv ,

ψ̂×(ω1, ω2) := ψ̂1(ω1)ψ̂2
(
ω2
ω1

)
χC×(ω) ω ∈ C× .

For the low-frequency part C0, we define a scaling function ϕ by

ϕ(ω) :=


1 |ω| ≤ 1

2 ,

cos(π2 v(2|ω| − 1)) 1
2 < |ω| < 1 ,

0 else .

With ϕ we construct a full scaling function φ by using ϕ

φ̂(ω1, ω2) :=

 ϕ(ω1) |ω2| ≤ |ω1| ,
ϕ(ω2) |ω1| < |ω2| ,

which explicitly can be written as

φ̂(ω1, ω2) =


1 |ω1| ≤ 1

2 , |ω2| ≤ 1
2 ,

cos(π2 v(2|ω1| − 1)) 1
2 < |ω1| < 1, |ω2| ≤ |ω1| ,

cos(π2 v(2|ω2| − 1)) 1
2 < |ω2| < 1, |ω1| < |ω2| ,

0 else .

(2.11)

The decay of φ̂ is chosen to exactly match the increase of ψ̂1, consequently, φ satisfies
for |ω| ∈ [1

2 , 1]

|ψ̂1(ω)|2 + |ϕ(ω)|2 = sin2
(
π

2 v(2|ω| − 1)
)

+ cos2
(
π

2 v(2|ω| − 1)
)

= 1 .

2.3.4 Finite discrete shearlets

The question is how we can discretize the parameters a and s such that the compact
support of ψ̂ha,s,0 is a subset of the horizontal cone (and analogously for ψ̂va,s,0 and the
vertical cone). Meanwhile we also need to discretize the parameters such that the discrete
system still constitutes a frame. We do not pursue the full derivation of the range of the
discrete parameters. However very briefly, by analyzing the support of ψ̂a,s,0, namely

supp(ψ̂a,s,0) ⊆
{

(ω1, ω2) : 1
2a ≤ |ω1| ≤

4
a
,

∣∣∣∣s+ ω2
ω1

∣∣∣∣ ≤ √a} ,

one can derive the restrictions |a| ≤ 1 and |s| ≤ 1. Then consider an image of size
M × N , the restrictions of a and s gives us the number of considered scales j0 :=
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b1
2 log2 max(M,N)c. Thus, discretizing the dilation, shearing and translation parameters

as
aj := 2−2j = 1/4j j = 0, ..., j0 − 1 ,
sj,k := k2−j |k| ≤ 2j ,
tm :=

(
m1
M

,
m2
N

)
m1 = 0, ...,M − 1, m2 = 0, ..., N − 1 .

Using the discretized parameters we can rewrite our shearlet as

ψj,k,m(x) := ψ
(
A−1
aj ,

1
2
S−1
sj ,k

(x− tm)
)
.

Figure 2.8: The induced shearlets have support in the Fourier domain in a similar pattern
as indicated by the figure above. For a certain pair of parameters we obtain support on the
grey areas. When changing k we move through each trapezoidal region in any of the squares
determined by j. For example k = 0 corresponds to the horizontal and vertical trapezoids,
k = ±2j corresponds to the diagonal trapezoids, and any other line to any integer between
−2j + 1 and 2j − 1.

We have in the Fourier domain

ψ̂j,k,m(ω) = a−
3
4 ψ̂1(4−jω1)ψ̂2

(
2j ω2
ω1

+ k

)
e
−2πi

〈
ω, (m1/M

m2/N
)
〉
.
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In the Fourier domain Ω ⊆ Z2 we use the coordinates (ω1, ω2) ∈ Ω such that ω1 ∈
{−bM2 c, ..., d

M
2 e − 1} and ω2 ∈ {−bN2 c, ..., d

N
2 e − 1}. With this setup we have a cut off

on the boundaries where |k| = 2j . Thus |s| = |2j2−j | = 1 which results in half shearlets
around each side of C×. Therefore, for |k| = 2j , we define

ψ̂h×vj,k,m := ψ̂hj,k,m + ψ̂vj,k,m + ψ̂×j,k,m .

We let φm = φ(· −m). Conclusively this gives us the discrete shearlet transform calcu-
lated as

S H (f)(κ, j, k,m) :=


〈f, φm〉 κ = 0 ,
〈f, ψκj,k,m〉 κ ∈ {h, v}, k ∈ {−2j + 1, ..., 2j − 1} ,
〈f, ψh×vj,k,m〉 κ = ×, |k| = 2j .

Hence, the shearlet transform is practically realized by the following computations:

S H (f) =


ifft2(φ̂(ω1, ω2)f̂(ω1, ω2)) for κ = 0 ,
ifft2(ψ̂h(4−jω1, 4−jkω1 + 2−jω2)f̂(ω1, ω2)) for κ = h, |k| ≤ 2j − 1 ,
ifft2(ψ̂v(4−jω2, 4−jkω2 + 2−jω1)f̂(ω1, ω2)) for κ = v, |k| ≤ 2j − 1 ,
ifft2(ψ̂h×v(4−jω1, 4−jkω1 + 2−jω2)f̂(ω1, ω2)) for κ 6= 0, |k| = 2j .

Over a two-dimensional grid of size 256×256 we plot the basis functions supplied by the
shearlet framework, these can be seen from a two-dimensional view in Figure 2.9 and a
three-dimensional view in Figure 2.10. Recall that j = 0, 1, ..., j0 − 1 and therefore the
calculations in Equation (2.3.4) has to be performed for j = 0, 1, ..., j0−1. Each value of
j gives 2j+2 matrices of shearlet coefficients, which in total is 1 +

∑j0−1
j=0 2j+2 matrices.

In a similar manner, if given the shearlet coefficients and we wish to find the original
image f , we do this by the inverse calculations. That is, by applying ifft2 to the
following expression:

f̂(ω1, ω2) = fft2(c(0, ·))φ̂(ω1, ω2)

+
j0−1∑
j=0

2j−1∑
k=−2j+1

fft2(c(h, j, k, ·))ψ̂h(4−jω1, 4−jkω1 + 2−jω2)

+
j0−1∑
j=0

2j−1∑
k=−2j+1

fft2(c(v, j, k, ·))ψ̂v(4−jω2, 4−jkω2 + 2−jω1)

+
j0−1∑
j=0

∑
k=±2j

fft2(c(h× v, j, k, ·))ψ̂h×v(4−jω1, 4−jkω1 + 2−jω2) .

Then the original image is obtained by inverse transforming f̂ . This concludes the
implementation of the shearlet transform. The discussed method is not the only method
available to date. Another popular approach is based upon the pseudo-polar Fourier
transform. For the interested reader we refer to [24].
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Figure 2.9: This figure illustrates shearlet basis functions in the Fourier domain from a
two-dimensional view for two pairs of values (j, k).

Figure 2.10: The shearlet basis in the time-domain for some parameters (j, k).
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Chapter 3

Sparsity and structure of
shearlet coefficients

In this chapter we analyze the sparsity provided by the shearlet coefficients and illustrate
how the structure of the shearlet transform can be applied to find edges with certain
orientations. First we compare the shearlet coefficients with wavelet coefficients using
a Daubechie-4 basis and looking at the best N -term approximations. Then finally we
look at how the structure of the shearlet coefficients can be utilized to filter out features
with certain sizes and orientations.

3.1 The N-term approximation
We remind the reader of the asymptotic decay we remarked upon in chapter 2.3, namely:
Denote fN as the shearlet approximation of a cartoon-like image f by using the N largest
shearlet coefficients, the error between f and fN satisfies the following decay rate [21]:

||f − fN ||2L2(R2) ≤ CN
−2(logN)3 , N →∞ ,

for some C > 0. If we do a similar comparison of approximating f by fN using the best
N−term approximation of wavelet coefficients, we have the following decay rate

‖f − fN‖2L2(R2) ≤ CN
−1 , N →∞ .

We begin by briefly looking into these error rates. In this chapter we consider five images.
The first one is an image of a leaf shown in 3.1 and the other images are textures shown
in 3.2.
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Figure 3.1: The image with a leaf.

Figure 3.2: This figure contains the four different types of images we consider in this
chapter. Each image represents a texture.

All images used are of size 1024×1024. The image of Figure 3.1 is taken by ourselves.
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The texture images in Figure 3.2 are samples from the Brodatz dataset1.
To analyze how fN relates to f we use two approaches. The first is truncating all

transform coefficients except the N largest cofficients. The second approach considers
sorting the coefficients in a descending order and then preserving p% of the largest
coefficients, thus 100− p% coefficients are set to zero.

We begin by calculating the error rates ‖f−fN‖2 using 10242 of the largest coefficients
for the the image leaf and we obtain the results shown in Figure 3.3. We also tried this
for N = 102, 103 but the results are similar.

Figure 3.3: This figure contains the error rates using the 10242 of the largest coefficients
from each transform.

From the image it looks like the wavelet approximation is outperforming the shearlet
approximation. However note that the images are of size 1024 × 1024 and therefore
we have cw = 10242 wavelet coefficients and cψ = 10242 × 125 shearlet coefficients.
Thus there are 125 times more coefficients from the shearlet transform. We continue by
calculating ‖f − fN‖2 again but this time analyzing the error by using a percentage of
coefficients from each transform. If we plot the error using 1% to 95% of the coefficients
from each transform, we obtain the results shown in Figure 3.4.

1http://sipi.usc.edu/database/
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Figure 3.4: This figure contains the error rate using 1.00% to 95.00% of the coefficients
from each transform. The red line is the shearlet approximation, the blue one the wavelet
approximation. The scale in the x-direction is logarithmic. Note that there is a clear
difference between each image.

It is interesting to visually see the effect of truncating the coefficients, i.e., see
the reprodued images after preserving p% of the largest coefficients. We do this for
p ≈ 1%, 7.3%, 13.6%, 20%. We do not choose larger values of p because after 20% it
is difficult to tell any difference between the reproduced and original image. Applying
this to the leaf image we obtain the results shown in 3.5 and 3.6. Note how the shearlet
approximation captures the real image well at 7.3% compared to the wavelet approxima-
tion, which has removed several important features. Moreover at 20% it is difficult to tell
any difference between the original image and the shearlet approximation, however the
wavelet approximation removed several details from the background of the image. The
edge of the leaf represents to a high degree a cartoon-like feature which is also probably
the reason why the shearlets handle the image to a much greater extent compared to
wavelets.

We also show the result for the images plastic bubbles in Figure 3.7, 3.8, for her-
ringbone weave in Figure 3.9 and 3.10. Most notably we see that the reconstructed
images using the shearlet transform, filters the image and preserves certain edges. If we
compare the truncation results with the wavelet equivalent process we see (as expected)
more isotropic features preserved. In the more anisotropic texture (herringbone weave)
we see that 1% of the largest shearlet coefficients preserve the image well due to its
richness in anisotropic features.
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Figure 3.5: Using the image leaf, this figure shows the result of preserving p% of the largest
wavelet coefficients and reproducing the truncated image. The value of p is indicated by its
respective title.

Figure 3.6: Using the image leaf, this figure shows the result of preserving p% of the largest
shearlet coefficients and reproducing the truncated image. The value of p is indicated by its
respective title.
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Figure 3.7: Using the image plastic bubbles, this figure shows the result of preserving p%
of the largest wavelet coefficients and reproducing the truncated image. The value of p is
indicated by its respective title.

Figure 3.8: Using the image plastic bubbles, this figure shows the result of preserving p%
of the largest shearlet coefficients and reproducing the truncated image. The value of p is
indicated by its respective title.

30



CHAPTER 3. SPARSITY AND STRUCTURE OF SHEARLET COEFFICIENTS

Figure 3.9: Using the image herringbone weave, this figure shows the result of preserving
p% of the largest wavelet coefficients and reproducing the truncated image. The value of p
is indicated by its respective title.

Figure 3.10: Using the image herringbone weave, this figure shows the result of preserving
p% of the largest shearlet coefficients and reproducing the truncated image. The value of p
is indicated by its respective title.
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Finally for sand and wood grain we obtain the results shown in Figures 3.11, 3.12,
3.13 and 3.14. Note that even though the image of sand is a very isotropic image, still
edges are detected when truncating a large amount of the shearlet coefficients. However
the wavelet representation appears to be more like the original image due to the lack of
anisotropic features. For the wood grain images we see again that the shearlet images
represent the original image to a very high degree due to its anisotropic richness.

Figure 3.11: Using the image sand, this figure shows the result of preserving p% of the
largest wavelet coefficients and reproducing the truncated image. The value of p is indicated
by its respective title.
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Figure 3.12: Using the image sand, this figure shows the result of preserving p% of the
largest shearlet coefficients and reproducing the truncated image. The value of p is indicated
by its respective title.

Figure 3.13: Using the image wood grain, this figure shows the result of preserving p%
of the largest wavelet coefficients and reproducing the truncated image. The value of p is
indicated by its respective title.
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Figure 3.14: Using the image wood grain, this figure shows the result of preserving p%
of the largest shearlet coefficients and reproducing the truncated image. The value of p is
indicated by its respective title.

Note that due to the high amount of sharp edges the wood grain image, the original
image is well resembled in Figure 3.14 using only 7% of the largest coefficients.

3.2 Filtering by utilizing the layers of shearlet coef-
ficients

Finally we show how one can utilize the parameters j and k to filter out information
of certain scales and directions. Recall that the parameter j is limited by the size
of the image. For the images of size 1024 × 1024 we consider five values of j. By
inverse transforming coefficients related to certain values of j, we can extract details
of specific sizes. The procedure is simple and is the following: Pick a value of j and
inverse transform only the coefficients related to that value of j. By doing this we filter
out features of different sizes determined by the value of j. For instance for j = 1 or
j = 2 we obtain information about very coarse scales. For j = 4 and j = 5 we obtain
information for very fine scales. Doing this, we show the result for the leaf in Figure 3.15
and here we see that some values of j keeps the edges of the leaf. The fine scale layers
capture the details on the leaf and patterns in the background, which is also expected.

For the image plastic bubbles we show the results in Figure 3.16, here we see that
the edges of the bubbles are more preserved for j = 3. For j = 2 we seem to have located
large spots due to the variations in light in the original image. For the sand image we
have the results in 3.17 which are very similar to the results from the plastic bubbles.
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Figure 3.15: In the top left corner we see the original image. Then by inverse transforming
for different values of j we obtain the images that follows.

Figure 3.16: In the top left corner we see the original image. Then by inverse transforming
for different values of j we obtain the images that follows.

35



CHAPTER 3. SPARSITY AND STRUCTURE OF SHEARLET COEFFICIENTS

Figure 3.17: In the top left corner we see the original image. Then by inverse transforming
for different values of j we obtain the images that follows.

It is also interesting to compare the energy of each image in Figure 3.15, 3.16 and
3.17. The energy of each image is the sum of the squared transform coefficients for each
j. We obtain the results shown in Figure 3.18. Note how the energies varies between
each image. For instance almost all the energy in the leaf image are in the first three
layers, while for plastic bubbles and sand the energy is more concentrated in the middle
layers.

Figure 3.18: The energies of each layer j = 1, ..., 5 for the images leaf, plastic bubbles and
sand.
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With a similar approach we can inverse transform coefficients related to specific
values of k. By doing this, we expect to locate details with specific orientations instead
of sizes. We pursue this for the herringbone weave due to its diagonal structures, we
capture details from two specific directions shown in Figure 3.19.

Figure 3.19: The original image is the herringbone weave image. The left image is a
reconstruction of horizontal details by choosing j and k carefully. In the leftmost image
we set all coefficients for j = 2 to zero. Due to the thickness of the diagonal lines in the
original image, these are not captured in other layers. In the rightmost image we set all
coefficients to zero except for those related to j = 2 and k for the first and third quadrant,
which preserves half of the directional information in that layer.

By considering the coarsest scale we capture the variations in the overall brightness in
an image. Thus the features provided by the shearlet coefficients offer several interesting
applications which is related to localizing certain details, related to both its size and
orientation. For instance in Figure 3.16 we saw how we can locate dark spots in an
image. In Figure 3.6 we located details of certain sizes such as the edge of the leaf or
spots on the wall. In Figure 3.19 we located features with specific orientations.

The framework of shearlets offer several interesting approaches to filter images to
locate specific features. There are of course a numerous of applications of this to filter
images. However perhaps one of the most interesting applications is to apply this in
medical sciences to possibly aid in detection of cancer. This would be an interesting
approach for future work.
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Chapter 4

Support vector machine

This chapter is about a method for data classification, called support vector machine
(SVM) [25]. It is a non-probabilistic binary classifier that ideally splits data into two
classes by a hyperplane. When data is not linearly separable, i.e. when there is no
hyperplane separating the two classes, SVM is extended using a so called kernel trick.
For problems with more than two classes, combinations of binary SVM are used to obtain
a multiclass classifier.

In the later part of this chapter we briefly outline a metric for the non-linear space of
symmetric positive definite marices and descibe how this can be implemented to improve
the classification rate of a model.

4.1 Support vector machine
A well known model for data classification is the support vector machine. The SVM
model is usually introduced as a binary classifier. Multiclass extensions exist and are
based on combining binary classifiers. We start with the binary case. The aim of using a
binary SVM is to be able to tell a difference (if it exists) between two different classes of
data. Sometimes it is difficult to see any difference from two different classes of data. If
a set of data is difficult to separate into individual classes, there exist different methods
that ideally makes it easier to separate. One popular method is the kernel trick which
is described later in this section.

We begin by emphasizing some basic feautures of SVMs. In a SVM model we wish to
find a hyperplane with normal vector w ∈ Rm such that the minimal distance between
each data point xi and the hyperplane is maximized under certain constraints. If w
denotes the normal of the hyperplane, and b denotes the offset of the hyperplane from
the origin, we can write a hyperplane in Rm as the set of points x ∈ Rm that satisfies
w · x = b. If it is possible to separate the data by a hyperplane we can separate the
data by two additional parallel hyperplanes known as margins. These margins are either
categorized as hard margins or soft margins. Soft margins are preferred when it is not
possible to separate all the data, but a majority of it by introducing a cost-function that
penalizes data on wrong side of the margins. Hard margins allow zero classification error
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compared to soft margins. However the zero error property with hard margins does not
come for free. Hard margins can result in an overfitting model, while also being very
sensitive to noise. The margins satisfies w · x − b = ±1. Data located on the margins
are known as support vectors. To illustrate a scenario, an example with arbitrary data
in R2 can be seen in Figure 4.1.

Figure 4.1: This figure illustrates data from two different groups indicated by numbers 1
and 2. In this figure we see a hard-margin SVM and the margins are indicated by dashed
line (only approximate, as an illustrative example). The data marked with circles are called
support vectors.

We continue with introducing the SVM. Consider data x1, ...,xn ∈ Cm with cor-
responding class labels y1, ..., yn ∈ {−1, 1}. Here yn = 1 denotes the class with corre-
sponding label “1”, and yn = −1 the class with corresponding label “-1”. As mentioned
earlier, we wish to find a hyperplane with normal w that divides the two data groups
with a maximal distance. In other words, we want to maximize the distance between
the margins which are separated by a distance 2/‖w‖. This is equivalent to minimizing
‖w‖. Moreover using hard margins we require each xi to be located at the “correct”
side of the hyperplane, hence we minimize ‖w‖ under the constraints yi(w ·xi + b) ≥ 1,
for each i ∈ {1, ..., n}. Solving the minimization problem gives w and b. New data xnew
is classified by sign(w ·xnew− b). The output is equal to ±1 depending on which side of
the hyperplane xnew is located at.
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If one wishes to use a soft margin instead of a hard margin the objective function
‖w‖ is replaced by

1
n

n∑
i=1

max(0, 1− yi(w · xi + b)) + λ‖w‖2 ,

under the constraints yi(w · xi + b) ≥ 1 − max(0, 1 − yi(w · xi + b)). The parameter
λ determines trade-off between having data xi on the correct side of the margin and
increasing margin-magnitude. We summarize the optimization problem below.

Consider n data points and denote ξi = max(0, 1−yi(w ·xi+b)). The primal problem
with a soft margin corresponds to the optimization problem

minimize 1
n

∑n
i=1 ξi + λ‖w‖2 ,

subject to yi(w · xi + b) ≥ 1− ξi , ξi ≥ 0 , i = 1, ..., N .
(4.1)

The objective function and the constraints are convex. This makes the optimization
problem a convex one thus implying that the duality gap between the primal and dual
problem is zero. When the duality gap is zero the primal and dual problem have equal
optimal values. We derive the dual problem below.

We define the Lagrangian using the soft-margin model from (4.1) by multiplying the
objective function with a factor 1

2λ , which gives

L(w, b, ξ, c, r) = 1
2‖w‖

2 + 1
2λn

n∑
i=1

ξi −
n∑
i=1

ci{yi(w · xi + b)− 1 + ξi} −
n∑
i=1

riξi .

The terms riξi arise because we have the constraints ξi ≥ 0. Denote the optimal solution
to (4.1) by p∗. Solving the original primal problem is equivalent to computing

p∗ = min
w, b, ξ

max
c≥0, r≥0

L(w, b, ξ, c, r) .

By strong duality, the optimal primal solution is equal to the optimal dual solution d∗,
therefore

p∗ = d∗ = max
c≥0, r≥0

min
w, b, ξ

L(w, b, ξ, c, r) .

We solve equations corresponding to the partial derivatives of L with respect to w, b
and ξ equal to zero, i.e.

∂L
∂w

= ∂L
∂b

= ∂L
∂ξ

= 0 .

This gives

∂L
∂w

= 0 ⇐⇒ w −
n∑
i=1

ciyixi = 0 ⇐⇒ w =
n∑
i=1

ciyixi .

∂L
∂b

= 0 ⇐⇒
n∑
i=1

ciyi = 0 .
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∂L
∂ξi

= 0⇔ 1
2nλ − ci = ri , i = 1, ..., n .

The last equality also implies ci ≤ 1
2nλ since ri ≥ 0. We continue by substituting the

expressions from the partial derivatives into the Lagrangian. We obtain

L(w, b, ξ, c, r) =1
2

n∑
i,j=1

ciyi(xi · xj)yjcj −
n∑
i=1

ci

[
yi

(( n∑
j=1

cjyjxj

)
· xi + b

)]
+

n∑
i=1

ci

=
n∑
i=1

ci −
1
2

n∑
i=1

n∑
j=1

yici(xi · xj)cjyj .

Therefore we obtain the dual problem for (4.1) as

maximize f(c1, ..., cn) =
∑n
i=1 ci − 1

2
∑n
i=1

∑n
j=1 yici(xi · xj)yjcj ,

subject to
∑n
i=1 ciyi = 0 ,

0 ≤ ci ≤ 1
2nλ , i = 1, ..., n .

(4.2)

Solving the dual problem gives a solution in terms of ci and the primal solution is related
to the dual solution through w =

∑n
i=1 ciyixi. Finally the bias term b is calculated using

the support vectors, that is, using the non-zero weights ci

b = 1
|{i : 0 < ci <

1
2nλ}|

∑
i:0<ci< 1

2nλ

(
yi −

∑
j:0<cj< 1

2nλ

cjyj(xi · xj)
)
. (4.3)

Thus we obtain a classifier given by the mapping

x 7→ sign(w · x− b) .

4.1.1 Kernels

Suppose that data x1, ...,xn ∈ Cm are not linearly separable in Cm. This problem can
be dealt with using some nonlinear function φ to map the data onto some space where
it is linearly separable. This is often referred to as mapping data into a feature space,
and φ represents the feature map. Unfortunately φ often maps data into a very high
dimensional space causing an unacceptable increase in computational cost. The kernel
trick is used to circumvent this problem. It is based on the fact that a kernel function
K : Cm ×Cm → R satisfying the appropriate conditions, see below, implicitly induces
a so called reproducing kernel Hilbert space (H, 〈·, ·〉H, ‖ · ‖H) and a map φ : Cm → H
satisfying K(x, y) = 〈φ(x), φ(y)〉H, for x, y ∈ Cm. For appropriate choices of a kernel K
the induced feature space and map can make transformed data φ(x1), ..., φ(xn) linearly
separable in H. As described below, H and φ are never used but scalar products x · y,
or rather 〈φ(x), φ(y)〉H are replaced by K(x, y). This does not increase computational
cost.
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Mercer’s Theorem states that if K : Cm ×Cm → R satisfies∫∫
g(α)K(α, β)g(β) dα dβ ≥ 0 ,

for all g ∈ L2, i.e. if K is a positive semidefinite kernel, then the space H and the
function φ exist. Popular kernels are kernels based on polynomials and the radial basis
kernel K(x, y) = exp(−γ‖x− y‖2).

To solve the optimization problem when using a kernel we consider the dual problem.
The dual problem with a kernel K is

maximize f(c1, ..., cn) =
∑n
i=1 ci − 1

2
∑n
i=1

∑n
j=1 yiciK(xi,xj)yjcj ,

subject to
∑n
i=1 ciyi = 0 ,

0 ≤ ci ≤ (2nλ)−1 , i = 1, ..., n .

(4.4)

The only difference from the problem without a kernel (4.2) is the scalar product, which
has been replaced with the kernel. The bias term b is calculated using the support
vectors, i.e. the non-zero weights ci in the following way

b = 1
|{i : 0 < ci <

1
2nλ}|

∑
i:0<ci< 1

2nλ

(
yi −

∑
j:0<cj< 1

2nλ

cjyjK(xi,xj)
)
. (4.5)

The optimal hyperplane is a linear combination of the support vectors. This gives us
the final mapping to classify new data, which is

xnew 7→ sign
(

n∑
i=1

ciyiK(xi,xnew) + b

)
. (4.6)

For the interest of the reader we derive the reproducing kernel Hilbert space H and
the feature maps φ for the radial bassis kernel. Interestingly the space H is the infinite
dimensional sequence space `2 and thus completely infeasible for computations without
kernel. By expanding ‖xi−xj‖2 = ‖xi‖2−2xTi xj+‖xj‖2 and then do a Taylor expansion
we get

K(xi,xj) = exp(−γ‖xi − xj‖2)
= exp(−γ‖xi‖2) exp(−γ‖xj‖2) exp(2γxTi xj)

= exp(−γ‖xi‖2) exp(−γ‖xj‖2)
∞∑
k=0

(2γxTi xj)k

k!

= exp(−γ‖xi‖2) exp(−γ‖xj‖2))
∞∑
k=0

(2γ)k

k! (x1
ix

1
j + ...+ xmi x

m
j )k ,

where xim denotes the m-th component of xi. This gives that the image φ(x) of x ∈ Rm
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is explicitly given by

φ(x) = e−γ‖x‖
2



1
√

2γx1

...
√

2γxm√
2γ2x2

1√
2γ2x1x2

...
√

2γ2x1xm√
2γ2x2x1√
2γ2x2

2

...

2γ2x2xm

...
√

2γ2x2
m√

8
6γ

3x3
1

...



,

and the reproducing kernel Hilbert space H is given by

H = `2 = {(x1, x2, ...) : xn ∈ C, n ≥ 1,
∞∑
n=1

x2
n <∞} .

4.2 Multiclass support vector machines
The optimization problem for a multiclass support vector machine (MSVM) is identical
to the binary case except that training is repeated between the classes and testing is
performed differently. Training of a MSVM can be implemented in a number of different
ways. There is no general agreement [26] on how testing and training should be done nor
an argument that any of them is better than the other. In this section three different
MSVM implementations are described, which are, one-against-all, one-against-one and
the directed acyclic graph support vector machines (DAGSVM).

Consider data x1, ...,xn ∈ Cm from k classes with corresponding labels y1, ..., yn ∈
{1, 2, ..., k}. The one-against-all model trains k binary models where each of the k
models are treated once as data with corresponding label +1 while all the data from the
other k−1 classes are treated as data with corresponding label −1. A figure illustrating
this can be seen in Figure (4.2). Classification of data x ∈ Rm is performed by

argmax
r=1, ..., k

n∑
i=1

cri yiK(xi,x) + br .
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Figure 4.2: This figure illustrates a MSVM by using an one-against-all approach with a
total of three different classes. Each number corresponds to a data point from the class
with corresponding number. Only three classes are used for simplicity. Here the mth class
(1 ≤ m ≤ 3) is assigned label −1 while the other classes are assigned class label +1. In this
figure we illustrate how class 1 is compared to class 2 and 3. This process is then repeated
by treating class 2 as a separate data set from 1 and 3, and finally by treating class 3 as a
separate data set from 1 and 2.

A second approach is to consider one-against-one. Again, consider x1, ...,xn ∈ Cm
from k classes with corresponding labels y1, ..., yn ∈ {1, 2, ..., k}. This multiclass exten-
sion trains k(k − 1)/2 classifiers instead of k classifiers compared to the one-against-all
model. Each classifier trains on data from two of the k classes by considering them in
pairs. A visual representation of this can be seen in Figure 4.3.
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Figure 4.3: This figure illustrates the pairwise comparison that is performed with a one-
against-one approach for a MSVM. Each number corresponds to a data point from the
class with corresponding number. Each pair has to be trained only once. Training between
class 1 and 2 is equivalent to train between class 2 and 1. In total we have k(k − 1)/2
comparisons. In this illustrating example with three groups we have exactly 3 comparisons.
The hyperplanes are approximate solutions to the data set and are drawn to illustrate the
one-against-one scenario.

During classification using the one-against-one approach there exists no agreed upon
method, however there are a few proposed ones and one is the “maximum amount of
wins strategy”. One classify data using all the k(k − 1)/2 classifiers and labels x by the
“winning class”, that is, the class x was most frequently assigned to. If there are more
classes than one with an equal and maximum amount of upvotes one assigns x to the
class with lowest index.

The final approach we are to describe is the DAGSVM. The DAGSVM uses the same
approach as the one-to-one classifier but classifies data differently. Data is classified using
a tree-like structure that consists of nodes that corresponds to binary classifiers. With k
classes, data x is intially classified at the root node which corresponds to a classification
between class k and 1. This assigns x either to class k or 1, and x moves therefore either
left or right through the tree from its current node depending on the assignment. For
instance assume x is assigned to k. Then x is classified at the next node corresponding
to classes k and 2. x is assigned to any of the classes and the process is repeated until it
reaches a final label assignment. A graphical illustration of this tree-like structure can
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k v 1

k v 2

k v 3

...

k k − 1

...

(k − 1) v 2

...
...

(k − 1) v 1

3 v 1

...
...

2 1. . . . . . . . .

Figure 4.4: This figure illustrates the tree-like structure using a DAGSVM approach for a
dataset of k classes. At first data is compared between classes 1 and k and one of the two
classes is excluded depending on the result. Then data is classified between all additional
non-excluded classes. When all pairwise tests are complete data is assigned to any of the k
classes. Note that the final assignment is not neccessary true but tells that the tested data
is more similar to the assigned class than any of the other k − 1 classes.

be seen in Figure 4.4.

4.3 Support vector machines for symmetric positive def-
inite matrices

SVM can be generalized to account for data with a non-Euclidean structure. In this
section we present data classification in the space of symmetric positive definite matrices.
For certain types of data the classification accuracy can vastly improve if the model does
not disregard underlying structure. The intuition behind this is the following: Imagine a
set of data from two groups each distributed on a sphere of radius r. It is clear that there
exists scenarios where the data is clearly separable. If distance is measured between the
data by using an Euclidean distance, i.e. the length of a straight line connected between
two points, and neglecting the fact that the data is on the sphere, one could still identify
a clear separation between the two groups of data. However, one could also reformulate
the implementation of the model, such that it accounts for the spherical structure. The
spherical example is a very simple one but illustrative. In a similar way we implement
a SVM with respect to the space of symmetric positive definite (SPD) matrices. This
space is a Riemannian manifold. The theory of Riemannian manifolds is beyond the
scope of this thesis but below we briefly outline the concepts needed to implement a
model to account for the structure of the space of symmetric positive definite matrices.

A real symmetric positive definite (SPD) matrix S of size n×n is a square matrix such
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that for all x ∈ Rn we have xTSx > 0. An extension to complex vectors is completely
analogous but the transpose is replaced with the conjugate transpose. Consider the set
of all n×n SPD matrices, which we denote by S. The set S is an open convex cone which
is a Riemannian manifold [12]. Briefly put, a manifold is a set which locally resembles
Euclidean space. Moreover, a Riemannian manifold can loosely speaking be described as
a manifold such that the inner product on the tangent spaces changes continuously. One
example of a Riemannian manifold is the sphere in R3, i.e. a smooth two-dimensional
surface in a three-dimensional space.

On a Riemannian manifold one can measure quantities such as distances. Thus, given
two matrices P and Q on S, d(P,Q) is the distance between P and Q. One can endow
S with different metrics such as an affine-invariant metric (AIM), but in this thesis we
consider the log-Euclidean metric (LEM). Both metrics are applicable but AIM usually
comes with a high computational cost [14] compared to using a LEM. We begin by
defining the logarithm of a matrix.

If A ∈ S then A is diagonalizable as A = UTDU where U is a matrix whose rows
comprise an ON-basis and are the eigenvectors of A, and D = diag(λ1, ..., λn) where λi
are the eigenvalues of A. That A ∈ S implies that λi > 0 for i = 1, ..., n. The logarithm
of A is by the spectral theorem given by

logA = U−1 diag(log λ1, log λ2, ..., log λn)U .

If P and Q are elements on S then, in the log-Euclidean framework the distance
between P and Q is

d(P,Q) := ‖ logP − logQ‖F , (4.7)

where ‖ · ‖F denotes the Frobenius norm defined by

‖A‖F :=
√

Tr(AA†) , (4.8)

and A† is the conjugate transpose of the matrix A. Recall that Tr(A) is the sum of the
diagonal elements of A.

With the log-Euclidean metric we can obtain a positive definite Gaussian kernel on
S and equip the SVM model with this kernel to classify data on S. A valid kernel on S
is the Log-Euclidean Gaussian kernel defined as

K(P,Q) := exp(−γ‖ logP − logQ‖2F ) , (4.9)

where γ > 0, [16]. Henceforth SPD matrices are classified by solving problem (4.4) using
the kernel specified in (4.9).
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Datasets and algorithms

In this chapter we describe the dataset that was used to test the proposed method
for data classification. We also describe the algorithm used to solve the optimization
problem that followed by using a SVM. In this thesis we focus on the MNIST dataset.
This set is described in Section 5.1. Data is preprocessed using deslanting which is a
type of “image rotation” to reduce within-class-variation. The preprocessing is described
in 5.2. The procedure to classify images is described in Chapter 5.4.

5.1 MNIST
We test the proposed method for image classification using the MNIST dataset [8]. This
dataset consists of images of handwritten digits for the digits 0, 1, ..., 9. It consists of
a training set with 60000 training images and a test set of 10000 images in total. All
images are by the contributors size-normalized and centered. Each image have an equal
size of 28× 28 pixels and each pixel has a corresponding grey level value.

5.2 Preprocessing
The dataset was preprocessed by deslanting each image. The MNIST set comes with a
large amount of images of the same digit but images within the same class are differently
oriented or skewed. To reduce the amount of variation in each class we rotate each digit
such that a least-squares regression line passing through the centroid of the image is
rotated to a vertical position. This method has shown classification improvements for
earlier work with the MNIST dataset [27]. If I(X,Y ) denotes the image with coordinates
X and Y we define

X̄ :=
∑
X,Y XI(X,Y )∑
X,Y I(X,Y ) ,

Ȳ :=
∑
X,Y Y I(X,Y )∑
X,Y I(X,Y ) ,
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and finally

m :=
∑
X,Y XY I(X,Y )− X̄Ȳ

∑
X,Y I(X,Y )∑

X,Y Y
2I(X,Y )− Ȳ 2∑

X,Y I(X,Y )
.

We consider the regression line given by

X ′ = X +m(Y − Ȳ ) .

If we denote the floor and ceiling function respectively by bc and de, we deslant an image
I by the following mapping

Ideslant(X,Y ) = (dX ′e −X ′)I(bX ′c, Y ) + (X ′ − bX ′c)I(dX ′e, Y ) .

Deslanting the image in the described way preserves the position of the centroid and
skewing of the image is performed about the centroid.

Figure 5.1: This figure illustrates the effect of deslanting the images. The top row corre-
sponds to the original images while the bottom row consists of deslanted images. Note how
some of the images are “more aligned” vertically after deslanting.

5.3 Repeated training on support vectors
Finally, we describe an additional method that is pursued as an attempt to improve
classification accuracy. We refer to this method as repeated training on support vectors
(RTSV). Assume we want to train a model using the classes i and j with N data points
per class. Ideally, we wish to train on as much significant data as possible, that is, train
the model on non-redundant data. Data in a trained model that is non-redundant have
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non-zero weights and therefore are significant components to the hyperplane. We also
referred to data with non-zero dual weights as support vectors.

The idea behind this method is to mimic training on a larger dataset with at least
N data points by repeatedly training on smaller datasets. To find optimal weights for
a binary classifier between the pair of classes (i, j) we begin by training a model with
n data points per class where we choose n < N . Of course one can choose n = N
however we choose n < N to reduce the computational cost. If si1 and sj1 denotes the
number of support vectors obtained from the trained model in the initial run, we store
these for later use. We repeat training on classes i and j using n new data points from
each class, assume we obtain si2 and sj2 support vectors from class i and j respectively.
This procedure is repeated until we have found N support vectors from each class, i.e.
assuming it took k runs to find N unique support vectors, we have N =

∑
k sik =

∑
k sjk

from each class. Each support vector must be unique since we do not benefit from
training on duplicates of data.

The final binary classifier is constructed by training on the 2N previous support
vectors and classify data in the usual manner to build a final model.

5.4 Construction of correlation matrices
In this chapter we describe how the classification of the MNIST dataset is performed.

Recall that all images are preprocessed using deslanting. To simplify notation, we
denote a deslanted image by I. Since the models using shearlet or Gabor coefficients are
completely identical, except from the fact that one model uses shearlet coefficients, and
the other one Gabor coefficients, we describe the process from the shearlet point of view.
However again note that the only difference is the corresponding transform coefficients.

Using the deslanted images we proceed by shearlet transforming each image I using
(2.3.4) introduced in Chapter 2.3. This results in 2j+2 matrices of shearlet coefficients,
which we denote by ψj, k. Since the images were small, 28 × 28 pixels, we transformed
for j = 1. Using the shearlet coefficients ψj, k and the image I with coordinates X and
Y , we form the feature matrix

f =
=[X Y I(X,Y ) ψ1,−2j (X,Y ) . . . ψ1, 2j (X,Y ) . . . ψ1,−2j+1(X,Y )]

=



x1 y1 I(x1, y1) ψ1,−2j (x1, y1) . . . ψ1, 2j (x1, y1) . . . ψ1,−2j+1(x1, y1)
x2 y1 I(x2, y1) ψ1,−2j (x2, y1) . . . ψ1, 2j (x2, y1) . . . ψ1,−2j+1(x2, y1)
...

...
...

...
...

...
...

...
x28 y1 I(x28, y1) ψ1,−2j (x28, y1) . . . ψ1, 2j (x28, y1) . . . ψ1,−2j+1(x28, y1)
x1 y2 I(x1, y2) ψ1,−2j (x1, y2) . . . ψ1, 2j (x1, y2) . . . ψ1,−2j+1(x1, y2)
...

...
...

...
...

...
...

...
x28 y28 I(x28, y28) ψ1,−2j (x28, y28) . . . ψ1, 2j (x28, y28) . . . ψ1,−2j+1(x28, y28)


.
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where I and each matrix ψj, k forms a vector by concatenating each row after one another.
For example consider the identity matrix of size 3 × 3. Concatenating each row forms
the vector (1, 0, 0, 0, 1, 0, 0, 0, 1). Moreover, since each image is of size 28 × 28, f is
of size 282 × (3 + 2j+2). Using f we calculate the correlation between each column
in f , this gives a correlation matrix which we denote by F . The matrix F is of size
(3 + 2j+2) × (3 + 2j+2) (note that F is independent of the amount of pixels in I). The
matrix element F (m,n) corresponds to the correlation between feature m and n.

For each image I we obtain a corresponding matrix F . Since F is a correlation
matrix F is symmetric positive definite (SPD) since it is a correlation matrix. Moreover
we know that the set of SPD matrices of size n× n constitutes a Riemannian manifold.
We can therefore measure the distance between each matrix F using the metric defined
in (4.7). Hence using the matrices F we construct a soft-margin SVM. The SVM model
consists of solving the optimization problem (4.4) using the kernel defined in (4.9). A
new image is classified by constructing its corresponding matrix F and the mapping
defined in (4.6).

5.5 Algorithms
All coding were done in MATLAB. The shearlet transform was implemented as described
in [22]. The shearlet transform requires multidimensional Fourier transforms and we
used fft2 and ifft2 available through MATLAB. To solve the optimization problem
(4.4) introduced in Chapter 4 we used fmincon with solver SQP (sequential quadratic
programming).

5.6 Choice of parameters
In our model we have two parameters λ and γ. The parameter λ puts an upper boundary
on the dual weights ci as shown in (4.2). The parameter γ is related to the gaussian kernel
which we previously defined in (4.9). Here we describe how these two were determined.

The parameter lambda was determined by repeatedly classify randomly picked data
as we change λ. Note that the maximum value of the weights ci is 1

2nλ where n is the
total training size. In our simulations we used λ = 1

100n .
To determine the parameter γ we looked at the function f(x) = e−γx

2 since we used
the kernel (4.9). First, we note that 0 ≤ f ≤ 1 for all x ∈ R. The idea is that we want to
map the distance between the matrices as spread out between 0 and 1 as possible. This
implies that we want to choose γ such that the majority of the arguments x to f is as
near the steepest part of f as possible. The steepest part of f is at its inflection point.
Thus we want to choose γ such that the argument to f maps as near the inflection point
as possible. Denote the inflection point by x0. Then x0 is the solution to f ′′(x0) = 0,
i.e.

f ′′(x) = 0⇔ 2γe−γx2(2γx2 − 1) = 0⇒ x0 = 1√
2γ2 .
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Since we wish to map the majority of the data to a point near the inflection point, we
let µ denote the mean distance (using the log-Euclidean metric) between the data points
in a binary classifier, and choose γ = 1

2µ2 .
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Chapter 6

Classification performance

In this section we present the classification results using the shearlet and Gabor based
SVM. We begin by presenting the classification performance between the 90 binary
classifiers that are derived using the MNIST dataset. We proceed with the classification
results using a DAGSVM.

6.1 Performance of binary classifiers
The MNIST dataset consists of 10 classes that corresponds to the integers 0, 1, ..., 9.
Generally speaking, for a dataset of k classes we can construct k(k−1) binary classifiers.
However comparing (i, j) is equivalent to (j, i) since the only difference is the assignment
of label +1 or −1, and therefore we have k(k − 1)/2 unique classifiers for k classes of
data. To measure the performance of each binary classifier (i, j) we do the following:

1. Pick two classes i and j.

2. Randomly pick N = 400 data points without replacement from each class. This
results in 2N total points for training.

3. Find the optimal weights ci where i = 1, ..., 2N and calculate the bias to construct
a model for pair (i, j) using the 2N data points.

4. Randomly pick 500 new data points for testing from class i and class j without
replacement. This gives a total points for testing equal to 1000.

5. Classify the 1000 points using the binary classifier constructed in step 1-3, and
count the amount of incorrect classifications.

6. Repeat the steps above four times for the same pair (i, j) and calculate the mean
incorrect classifications, denote this number by µ(i, j).

We repeat the process above for each pair of classes (i, j) except for i = j using both the
shearlet and Gabor based model. The reasoning behind randomly drawing samples from
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the full sets is to generalize the model and measure the performance by continuously
training the model, and exposing it to new but similar data.

The results obtained are shown in Table 6.1 and 6.3. To compare the two tables we
color the values blue or red depending on the performance between the two. For two
models A and B we say that model A was more accurate than model B if A was at least
0.4% more accurate than B for a specific pair of classes (i, j). If any value is coloured
blue, it means that the result from that specific binary classifier was better than its
contender (shearlet or Gabor). For example if µ(i, j) is blue in Table 6.1, then for the
same pair (i, j) the value µ(i, j) is red in Table 6.3.

Recall that the only difference between classifying (i, j) or (j, i) is the label assign-
ment. Nevertheless we present k(k−1) results instead of k(k−1)/2 results in each table.
The reason behind this is to show that the results are independent of the assignments of
labels since any difference between (i, j) and (j, i) is due to small within-class-variations
in the dataset.

Table 6.1: The mean error rate between the binary classes using deslanting and the shearlet
feature extraction. The total mean error in this table is 1.93%, median 1.33% and standard
deviation 1.53%. We see that the majority of the values are smaller compared to the results
obtained using the Gabor model, which is indicated by the color blue.

Class 0 1 2 3 4 5 6 7 8 9
0 0.30% 1.25% 0.88% 0.60% 1.08% 2.13% 0.80% 1.52% 1.18%
1 0.43% 0.65% 0.23% 0.83% 0.28% 0.63% 0.90% 0.68% 0.73%
2 1.43% 0.45% 4.45% 1.43% 4.35% 4.20% 1.98% 3.28% 2.00%
3 0.50% 0.20% 4.78% 0.63% 6.70% 1.33% 1.33% 4.40% 2.18%
4 0.55% 1.05% 1.13% 0.53% 0.56% 1.28% 3.33% 1.68% 4.03%
5 1.05% 0.40% 4.70% 6.90% 0.65% 1.48% 1.10% 4.08% 2.93%
6 1.83% 0.65% 4.13% 1.23% 1.35% 1.34% 0.48% 2.15% 1.05%
7 0.53% 0.63% 1.68% 0.85% 2.73% 1.15% 0.90% 1.40% 4.65%
8 1.60% 0.48% 3.28% 4.33% 1.28% 3.78% 2.40% 1.45% 3.83%
9 1.50% 0.73% 2.33% 2.30% 3.40% 2.58% 1.13% 4.23% 3.03%
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Table 6.2: Results from repeated training on support vectors using shearlets. The testing
procedure is performed as described in Section 6.1.

Class 0 1 2 3 4 5 6 7 8 9
0 0.08% 0.88% 0.30% 0.20% 0.35% 1.05% 0.03% 1.03% 0.55%
1 0.53% 0.05% 0.50% 0.05% 0.38% 0.48% 0.15% 0.68%
2 3.60% 0.55% 3.45% 3.48% 1.18% 2.23% 1.85%
3 0.25% 5.60% 0.85% 0.43% 3.55% 1.55%
4 0.35% 0.60% 2.20% 0.83% 2.58%
5 1.45% 0.50% 2.58% 1.68%
6 0.65% 1.70% 0.90%
7 0.93% 3.68%
8 2.75%
9

Table 6.3: The mean error rate between the binary classes using the Gabor feature extrac-
tion. Here the testing and training is identical to the results shown in 6.1 except that we
used the Gabor wavelet instead of the shearlet. The total mean error in this table is 2.45%,
median 1.98% and a standard deviation of 1.97%. We see that the majority of the values
are higher (larger error) compared to the results obtained using the shearlet model, which
is indicated by the color red.

Class 0 1 2 3 4 5 6 7 8 9
0 0.40% 4.45% 1.43% 1.10% 2.13% 2.65% 0.55% 0.98% 1.83%
1 0.43% 0.60% 0.30% 0.63% 0.30% 0.70% 0.58% 0.40% 0.53%
2 4.08% 0.63% 5.80% 1.89% 8.10% 6.98% 2.15% 3.23% 3.70%
3 1.58% 0.20% 5.35% 0.98% 8.15% 3.33% 1.30% 2.63% 1.98%
4 1.48% 0.73% 2.85% 0.53% 1.25% 4.15% 3.00% 1.45% 3.80%
5 2.15% 0.35% 6.98% 7.90% 0.88% 3.45% 2.08% 1.33% 3.35%
6 2.83% 0.43% 7.20% 2.83% 4.58% 3.05% 1.70% 4.18% 3.90%
7 0.58% 0.80% 2.10% 1.25% 2.80% 1.83% 1.85% 0.80% 3.03%
8 1.13% 0.48% 3.83% 2.55% 1.55% 1.53% 4.70% 0.73% 2.98%
9 1.90% 0.80% 3.70% 2.43% 3.98% 2.83% 3.40% 3.10% 3.18%

The results shown in the Tables 6.1 and 6.3 indicate that in general the shearlet
based binary classifiers performs better compared to the Gabor based ones. The shearlet
model performs slightly worse than Gabor for class 8, they are almost equal in terms of
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classifying class 1, but for the other classes the shearlet based model performs better in
every single case. This is also indicated by the corresponding mean error of all binary
classifiers. The mean error of all shearlet based classifiers was 1.93%, while the mean
error for the Gabor based classifiers was 2.45%.

6.2 Performance using a DAGSVM
In this section we represent the classification performance of the MNIST dataset using
a MSVM based on the shearlet and Gabor transform. We construct the MSVM using a
DAGSVM which was described in Section 4.2. In a classification model, the training size
can have major effects on classification accuracy. For this we used three different sizes,
namely N = 300, 500, 700 per class. We test the entire test set that is obtainable from
MNIST. The MSVM is extremly slow compared to the binary classifiers. This is mainly
due to the training sizes but also since each testing point has to be classified 10 times
before it gets a final assignment. For example classifying all the data (a total of 10000
points) corresponds to a total of 105 tests. When the total training size is larger than 103

it takes several hours to find the minimum that corresponds to the optimal hyperplane.
Therefore we were not able to pursue training on the full training set as desired. However
when making a linear increase of total training size we note an almost linear increase
in classification accuracy. In general the shearlet based model performed better than
the Gabor based model for both the binary- and multiclass models. The difference
between shearlet and Gabor for some binary classifiers were almost zero but shearlet
outperformed the Gabor ones for the majority of the classifiers. The most significant
difference was that shearlets performed much better at classifying digit 2 compared to
Gabor wavelets. The shearlet based binary classifiers had a harder time classifying digit
8 compared to Gabors, this is also visible in the MSVM results shown in Tables 6.4 and
6.5.
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Table 6.4: The results from classifying all images in the MNIST test dataset using a
shearlet based DAGSVM. Here E denotes the number of incorrect classifications, and µ(E)
is the mean of E (in percent) averaged over all 10 classes. The first row shows the order
of the corresponding class (MNIST digit). The second row is the size of the full test set,
and the following rows correspond to the number of incorrect classifications, for different
training sizes N . Note that the number N is per class, thus the full training size for each
binary classifier is 2N . The rows marked by RTSV is the results from repeatedly training
on support vectors.

Class 0 1 2 3 4 5 6 7 8 9 µ(E) [%]
Size of class 980 1135 1032 1010 982 892 958 1028 974 1009
E (N=300) 61 25 159 115 84 108 58 76 132 137 9.70
E (N=300)(RTSV) 20 11 105 91 42 75 44 65 98 91 6.49
E (N=500) 39 31 150 104 59 90 59 70 117 102 8.27
E (N=500)(RTSV) 21 11 111 79 46 80 46 49 101 76 6.28
E (N=700) 34 19 125 102 55 83 56 72 115 96 7.64
E (N=700)(RTSV) - - - - - - - - - - -

Table 6.5: The results from classifying all images in the MNIST test dataset using a
Gabor based DAGSVM. Here E denotes the number of incorrect classifications, and µ(E) is
the mean of E (in percent) averaged over all 10 classes. The first row shows the order of the
corresponding class (MNIST digit). The second row is the size of the full test set, and the
following rows correspond to the number of incorrect classifications, for different training
sizes N . Note that the number N is per class, thus the full training size for each binary
classifier is 2N .

Class 0 1 2 3 4 5 6 7 8 9 µ(E) [%]
Size of class 980 1135 1032 1010 982 892 958 1028 974 1009
E (N=300) 76 20 254 131 100 153 123 110 86 131 11.98
E (N=300)(RTSV) 53 10 218 130 67 131 107 50 71 99 9.49
E (N=500) 56 17 232 131 78 133 118 75 104 130 10.87
E (N=500)(RTSV) 49 8 198 120 62 125 108 58 67 107 -
E (N=700) 67 18 224 114 61 117 93 73 78 108 9.63
E (N=700)(RTSV) - - - - - - - - - - -

It is interesting to note that classification accuracy for some of the classes appears
to remain almost constant for different values of N , while some are slightly improving.
Classification of class 0, 4 and 9 however have a more rapid change compared to the
other classes which indicates that the classification accuracy could be improved more by
on more samples. Generally for all classes, the classification accuracy is improving by
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increases the training size, thus it is plausible that even greater results are obtained if
N is increased more.
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Conclusion

Our simulations indicate that the shearlet transform performs better for image classifi-
cation of the MNIST dataset compared to the Gabor transform. We use the notion of
’indicate’ in the sense that larger training sets and further improved feature extraction
are needed to actually say that shearlets are better. All MSVM experiments show that
shearlet performs slightly better than the Gabor since the relative difference between
the results were approximately 20%. As for the binary cases the shearlet also performs
better for the majority of the cases, however the Gabor is slightly better at classifying
digit 8. Moreover the error for some binary classifiers were almost equal indicating that
the two models classified those classes equally well.

Compared to other algorithms applied to the MNIST dataset our results are not
particularly outstanding. This is most notably due to the not being able to apply the
models for the entire MNIST dataset. However the goal of this thesis was to simply
compare shearlets with wavelets, and not to construct a model that outperforms other
current state-of-the-art algorithms. If the goal of this thesis was to construct an algo-
rithm to give outstanding classification result it had been better to use already available
SVM-packages that are also optimized for data classification using support vector ma-
chines. However from a learning perspective of the author, not using available packages
was successful.

7.1 Future work and choice of algorithm
As with any algorithm, there are many ways to construct and modify an algorithm.
Therefore, in this section we keep a discussion regarding the advantages or disadvantages
of the proposed model and point out some interesting ideas for future work.

It would also be interesting to construct a model that is not based on correlation
matrices, but instead, a model that sees the actual transform coefficients. Since perhaps
the correlation matrix is an abstract way of representing an image and therefore using
the coefficients themselves as input to the model is perhaps a better approach. If not
correlation matrices pursue covariance matrices.

The shearlet transform is capable of transforming an image for different scales j.
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The amount of scales is limited to the size of the image in process. In the MNIST set,
all images were of size 28 × 28 which could be considered typically small. This implies
that we can only consider the smallest scales of j such as j = 0 and j = 1 for any
useful information. If the images were larger we could obtain more precise information
regarding edges in the images from j = 2, 3 and so forth.

The model in this thesis is independent of the size of the image, since we use the
transformation coefficients to construct correlation matrices. The size of those matrices
depend only on the amount of features. Adding additional features does neither increase
the computational cost by any noticable amount. The only time-consuming part in the
algorithm is finding a solution to the optimization problem. The optimization is based
on fmincon and solves a high dimensional problem. If we have N data points for training
in a binary classifier, fmincon tries to find a minimum for a function of N variables. The
MNIST dataset makes it possible to train on several thousands of data points per class
but this is practically not doable due to the proposed implementation being inefficient
for large datasets.

Using the correlation matrices it is also possible to add additional information on
the diagonal of the correlation matrix, for example such as mean or variances, additional
color informaion (if it is available) etc. There are also several techniques for preprocessing
of data. Here we only used deslanting and it improved the classification accuracy by a
few percent. There might be additional methods that could improve the classification
accuracy of the proposed method.

Another interesting idea is to test other metrics and kernels. We did only consider the
log-Euclidean metric using a Gaussian RBF kernel. However there are several different
metrics and kernels that could also be applied to this problem. For example the affine-
invariant metric and stein metric, and kernels such as polynomial-based kernels.

Since current state-of-the-art algorithms, i.e. algorithms based on neural networks,
currently classify data to a very high accuracy one might ponder upon why anyone
would use shearlets for data classification. In fact these models are well suited for image
classification but currently not applicable for video classification. There are previous
work of video classification using a shearlet approach and Riemannian manifolds in [12]
where the author reached very good classification results. Using the shearlet transform
and Riemannian manifolds one can define velocities on the manifold i.e. rate of change
in a video which obviously can be very important information in video classification.
Also since a video is a sequence of image, one can define a path that is defined by the
location of each image on that manifold. Moreover one can turn to the three-dimensional
shearlet transform which could also be applicable for data classification.

The next step for shearlets and image classification is to investigate how the shearlet
framework can be combined with current state-of-the-art algorithms to possibly obtain
even greater results.
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