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Abstract

Image compression is an application of data compressiorigitaldmages, which is in
high demand as it reduces the computational time and coesélgthe cost in image
storage and transmission. The basis for image compressitinremove redundant and
unimportant data while to keep the compressed image qualiy acceptable range. In
this paper we will introduce three different still image gomssion methods: Fast Fourier
transform (FFT), wavelet transform (WT) and singular vatieeomposition (SVD). We
apply these three lossy compression techniques to differexges and compare their per-
formances in terms of compression ratig,-norm error, mean squared error (MSE), peak
signal-to-noise ratio (PSNR) and visual quality. As theitgesve get the advantages, draw-
backs and potential application areas for each method.
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1. Introduction

Uncompressedimage data requires considerable storageityggnd transmission band-
width. The recent growth of multimedia-based data-intemsieb applications have not
only sustained the need for more efficient ways to encodeatigand images, but also
have made compression of these data central to storage amdwaication technology.

A common characteristic for most digital images is that tleéghboring pixels are
correlated and contain redundant information. Therefoeerhost important task when
compressing an image is to find less correlated and yet rézalge representation of
the image. The algorithmic tools developed to take this eagn are called image com-
pression, which can be viewed as an early step in image wimgesTwo fundamental
components of image compression eedundancandirrelevancyreduction. Redundancy
reduction aims at removing duplication from the signal seuimage/video). Irrelevancy
reduction omits parts of the signal that will not be noticetie signal receiver, namely
the Human Visual System (HVS). In general, three types afimeédncy can be identified:
Spatial Redundancy or correlation between neighboringlpiddues, Spectral Redundancy
or correlation between different color planes or spectealds, Temporal Redundancy or
correlation between adjacent frames in a sequence of in{ageisleo applications).

Image compression research aims at reducing the numbesafdeded to represent an
image by removing the spatial and spectral redundanciesuas as possible. Since we
will focus only on still image compression, we will not worapout temporal redundancy.

The procedure of the image compression can be performecdeimiime following two
approaches: the lossy or lossless image compression. dmeié we consider methods
used in the study of the lossy approach: the crossed donmaths iTable 1 below,

There are, mainly, four types of methods used to study theylosmpression:

Reducing the color space to the most common colors in theémag
Chroma subsampling

Transform coding

Fractal compression

Among these methods thiansform codings the one which is most widely used. In
this thesis, we compare the results of image compressioig tisiee different mathemati-
cal transforms:

e Fourier transform in the form afliscrete cosine transfor(@CT) and Fast Fourier
Transform (FFT)
o Wavelet transform based dtaar, db2 and db4 wavelet basis
e A numerical linear algebra transform presentedsemgular value decomposition
(SVD).
These three techniques are applied to a variety of imagesHimh the compression is,
in one or other way, of interest in science and technology &l @ in daily life. More
specifically we have studied the images with application in:

Redundancy _
Approaches Spatial | Spectral| Temporal
lossy »; X -
lossless _ - -

TABLE 1. The image compression procedure
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I) Electromagnetic field (Coil)

I1) Identification and Criminology (Finger print)
I1I) Medical Physics (Fungus, & MRI)
IV) Nature and environment (Wood & bird)

V) People in general (Duan)

In each of the above application areas we choose a relatedpdxas the original
image, apply the three transforms to the image, compute mesajpn degreel..-norm
error, mean squared error (MSE), peak signal-to-noise I@5NR) and visual quality,
and finally compare the outcoming results.

As a general summarizing comment, we find out that FFT, an éncagnpression pro-
cedure based on DCT, has the advantages of simplicity, &itsfactory performance, and
availability of special purpose for implementation. Howewthe DCT is block-based lead-
ing to “blocking artifacts”, especially for low bit rates ages. This is the most serious
drawback in FFT. As for SVD, the quality of the compresseddma not as good as the
other two approaches, but SVD is more stable so that we cantkawost in having less
oscillations, which appear otherwise. Furthermore, thep@ssion speed in SVD is also
very high. We found out that among these three methods, etigetuperior in most situ-
ations, it is the best way to compress still images and avaistwf the problem arising in
FFT and SVD.

2. Mathematical modeling

2.1. Fourier transform (FT). Fourier transform is a useful tool for signal processing and
analysis. It transfers a signal from its original 'time damnigor 'spatial domain’) into
'frequency domain’, describing the frequency componeamtse signal [6].

Before applying Fourier transform for 2D image compressienus first take a look at
the Fourier approach for one dimensional signals. Like demmsing a vector into the sum
of basis vectors in Euclidean space, a signal can be prdject® a set of basis functions
in frequency domain. For Fourier transform, the basis ugetthé frequency domain are
given by{cos(2maw), sin(2raw)} , wherew € R is the frequency. We can write the basis
ase 2w since

(1) eI — cos(2maw) — i sin(2maw).

Here we can see, like the standard basis in Euclidean spgaatethe basis functions are
orthogonal to each other if they have different frequencfor their scalar products are all
0. For example, for integes; andws, wi # wo;

1
2 / cos(2maw )cos(2maws)dx = 0,
0
while for w; = wo, fol cos®(2mwi)dx = 1/2.

Assumef(z) is a function in the space (or time far > 0) domainR , using the basis
discussed above, its Fourier transform is given by

(3) Flf(2)] = F(w) = [ N fx)e 2™ dy,
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F represents the Fourier transform, an integrable functidn) is a function in space do-
mainR or time domairR ™, and the independent variable x represents space or filfig)

is corresponding to the function in the frequency domaimwiias frequency variable.
After processing and analysis in frequency domain, theadigan be transformed back into
time domain, which is called Inverse Fourier transformegivwy

@ FAFWI = 1) = [ P,

As there are imaginary parts in the basis functions, theasignthe frequency domain
F(w) is complex and can be expressed as

®) F(w) = a(w) +ib(w) = |[F(w)] ™),
where
(6) |F(w)| = Va? + b2, P(w) = tan"*(b/a).

The absolute value of the amplitude is the Fourier spectamd® (w) represents phase
information. Although in many applications phase inforioats not as important as am-
plitude spectrum, in image processing however, phasergpecarries a lot of information.
Here is an example, (see Figures 1 to 4).

WH"{H” !‘ ‘Ii“w il ""Iu
H: il ,u“l Ul‘m
4“ “< "H‘“” ! J!" il

FIGURE 1. Finger Print FIGURE 2. Wood

We make Fourier transform for the first two pictures, fingenpand wood, extract their
amplitude and phase information. Then we reconstruct thid gicture with amplitude
information from finger print and phase information from vepovhile reconstruct the
fourth picture with amplitude information from wood and gleanformation from finger
print. From these reconstructed pictures we can see thaegh#ormation dominates the
picture. This example shows that phase is as important &/gormore important than the
amplitude information, in image applications.

The Fourier transform can be used as an image processingota@compose an im-
age into its sine and cosine components, transforming irfrageits spatial domain into
frequency domain with each point representing a partidoémuency contained in the im-
age. As images are two-dimensional (2D) functions, herentr@duce the 2D Fourier
transform,
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FIGURE 3. Reconstructed FIGURE 4. Reconstructed
image with amplitude in- image with amplitude in-
formation of finger print formation of wood and
and phase information of phase information of finger
wood print

@) F@o = [ [ swpe ey,

Here (x,y) are variables in a 2D space domain, and represent the variables in the
corresponding frequency domain. The 2verse Fourier transform is given by

® PRl = e = [ [ P,

2.1.1. Discrete Fourier transform (DFT). As the images we are dealing with are digi-
tal images, the signals are discrete. Then, the relevanidfdtansform is theliscrete
Fourier trans form:

The discrete Fourier transform is a linear mapping that agsronV-dimensional vec-
tors in the same way that the Fourier transform operatesictifons inR. As the image is
of finite size, we approximate the Fourier transform by adimtimber of algebraic opera-
tions performed on a finite set of data. First we replace ttegimal over(—oo, co) by the
integral over a finite interve, Q2]: We may assume thgt vanishes outside the bounded
interval [0, ©2]. Thus we define

Q
9 F(w):/O f(z)e = da.

Using the sampling points = Q2/N we approximaté’(w) by the Riemann sum

N-—1
(10) Flw)~ Y. f(%)e—m%w x %
n=0

The sum is periodic i with the period@. Now we calculateF'(w) at the points
w=2" m=0,1,.,N -1
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o () S ),

and leta,, = f(% , then we get

—1
2 s 2Tnm

F(%m) = N&m’ where |m| << N and a,, = ; e TR g,

We have therefore a mapping that transforms a given N-dimeabvectora = (ag, a1, ...,an—_1)
into another N-dimensional vectar= (ao, a1, ..., an—1), and the definition of V-point
discrete Fourier transformFy is given by

N—-1
(12) Fn(a)=a, with a, =Y e “Fa,
n=0

For a square image of siZ€ x N, the 2D DFT is defined as:

N—-1N-1
A A _j2m(kntim)
(13) Fn(a)=4a, and ari=» > e g, where 0<k,l< N.
n=0 n=0
a is the image in the space domain an corresponding to its discrete Fourier trans-
form. The basis functions are sine and cosine waves witleaging frequencies. The 2D
Inverse Discrete Fourier transform then reads as follows:

N

1 — )
(14) Flab) =55 D2 Y F(Lk)er /N = 0,1, N,
k=0 I=

—

N—

—

2.1.2. Fast Fourier transform (FFT). Define an “elementary operation” as a multiplica-
tion of two real numbers followed by an addition of two reahmaers. From the definition
of a,, we have that the calculation of eagh requiresV elementary operations. There are
N sucha,,’s, hence the calculation of all,, requires a total ofV2? elementary operations.
So the discrete Fourier transform may become computatipnamanageable for large
N. To compute the DFT efficiently, here we introduce the fasirta transform (FFT)
algorithm [1].

When N is prime, not much can be done about this. But whérs composite we can
write N = N7 N> and the indexes: andn in the definition ofa,,, as multiples ofV;and
Ns plus remainders. Let us assume that

m=m'N; +m”, where 0<m”" <N, —1 and 0<m' < Ny;—1

n=n'Ny+n", where 0<n”" <Ny—1 and 0<n' <N, —1.
Then it follows that

r_! ro 1 "’
A m/n/NiNg | m/n/' Ny | m'n/Ng | ;! n N e e
_j2mnm *27"%( N + ~ + ~ + 7y —271 N + N g
e N =e =€ .

Thus we have
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No—1 X ( 7 o1 )
_271,1/ m_n + m_ " n
~ N. N
(15) Ay = E C(m",n")e 2
n'’=0

where

Ni—1 "o Ni—1 "o

_opim//n _opim//n
(16) C(m”a TL”) = E € T An/ No4n! = E € T Q.
/_0 /_0

EachC(m”,n") requiresN; elementary operations and there &feN, = N different
C(m”,n")'s, soN N; elementary operations are needed to calculate them all.

ThenN, elementary operations are required to calculate éagha,, = Zf,?;é o),
and there areéV of those, hencéV N, elementary operations [5] are required to compute is
all a,,.

The total number of elementary operations is tAU&; + NNy = N(N; + Na).

SupposeV; can be factored further, such th¥it = Ny Ny»2. Forafixedn”, C(m”,n’)

is a discrete Fourier transform in”. Then allC'(m”,n’") can be calculated with
NoNi(N11 + Ni2) = N(N11 + Niz),

elementary operations, wheng, is the number of,” and NV, is the number ofn” for a
fixedn”. Totally it requiresN (N11 + N12) + NNy = N(Ny; + Ni2 + N2) elementary
operations, wher&/' N» is the number of alti,,, : s.

If N = N;Ns-...- Ni, then it requiresV(N; + N2 + ... + Ni) elementary operations.
In particular, if N is a power of 2, sayV = 2” it requires2k N = 2N log, N elementary
operations. The resulting algorithm for calculating déetertransforms is called théast
Fourier transform, FFT

2.1.3. Discrete cosine transform (DCT). Suppose we have a periodic sigrfdlk) with
period N. In DFT, if f(0) # f(N) we will have a discontinuity at = 0 (or z = N),
which will cause the Fourier coefficients to decay slowerdnig large frequencies and the
packing of the coefficients is decreased. If we use the 2hogiereven extension of (x)

o (e 5

then the signal will be continuous at time levels= — N, 0, andN. Due to the symmetry
of f(z) (even extension of) the sine terms in the Fourier series will disappear, and the
cosine terms are left. This is the concept of the discretaedsansform (DCT) [8].

DCT is similar to DFT, but with twice the length in the spatilimain than DFT. DCT
uses only real numbers and transforms a sequence of finagrdata sum of cosine func-
tions at different frequencies.

There are 8 types of DCTs, the most common used is type-1l D@ich is referred
to as the DCT. It is often used in signal and image processihig;h ensures that the data
are implicitly continuous at the boundaries. In this thesisuse this transform for image
compression.

The one-dimensional discrete cosine transf6tfn) of a function f(x), with the discrete
vector x of length N, is defined by
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m(2x + 1)u

(18) C(u) = a(u) Z f(x)cos| 5N 1,

x=0

whereu = 0, 1,2..., N — 1. The inverse cosine transform is given by

(2z + 1)u

N-1
(19) F@) =3 a(u)C(u)eos[ ===,
u=0

wherez = 0,1,2..., N — 1. Thea(u) in both equations is defined as

o=

(20)

15

In the definition of DCTpos[%], u=0,...,N—1isthe basis for the transform.

Here we plot the basis fa¥ = 8, see Figure 5:

FIGURE5. DCT basisforN =8

The basis element correspondingite- 0 is always 1 for all x, and’,—g =

VE D @)

is an average value of f(x). This value is called detail cogffit (DC). Other transform

coefficients are referred to as the approximation coefftsigd].
Now we extend DCT into two dimensional space and define

N—-1N-1

(21)  C(u,v) = a(u)a(v) Z Z f(z,y)cos|

=0 y=0

m(2z + 1)u m(2y + 1)v
o TN

whereu,v = 0,1,2..., N — 1, anda(u) anda(v) are defined as(u) in 1D
two-dimensional inverse transform is then given by

I,

DCT. The
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C(%U)cos[w(Qw + Du T2y + 1)v

oN sl oy )

N—
22)  flz,y) Z

wherex,y = 0,1, ...,N— 1.

As we can see in the DCT definition, the 2D basis functions areegated by multiplying
the horizontal 1D basis function with the vertical ones. Ror= 8 (8 x 8 block), the 2D
basis are shown in the chess box, in Figure 6:

o s N
i ’i ni |:!:|: I:I:I:I 1)

HMZ

LLLE
¢

FIGURE 6. 2D DCT basis forN =8

Similar to the 1D basis, the 2D basis on the top left is a DC camept, while fre-
guency increases both in the vertical and horizontal divestto get refined approximation
coefficient components.

2.1.4. Fourier transform in image compression. Fourier transform is one of the most
common techniques used in different imaging procedurese@an discrete cosine trans-
form (DCT), ISO (International Standards Organization)l #BC (International Electro-
Technical Commission) have established the ‘Joint Phafdgc Experts Group’'(JPEG)
standard for image compression [3].

The reason for using DCT is that it has the ability to deal it boundary coefficients
in DFT. In this thesis, we apply the DCT to each distiick 8 block of the 2D image,
padding the image with zeros if the number of elements in thensn and row are nat™y
(N is a positive integer).
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Original

FIGURE 7. Original Fungus Image

As we can see from the original fungus image, see Figure Te i@ higher frequen-
cies in the fungus cells, and lower frequencies in the bamkgd. So in the DCT result,
see Figure 8, the cell part appears brighter than the othéryhich indicates a higher
frequency in the cells. Now we set a threshold and get rid efhtigh frequencies which
representing the details of the image block by block. Theninkierse DCT is applied to
the compressed matrix, and we get the compressed imagetioiSgc

2.2. Wavelet Transform. As described above, Fourier Transform could transform a sig
nal into the sum of infinite series of sines and cosines, whictesponds to the frequencies
in the signal. However, one disadvantage of Fourier Transfe that we only know which
frequencies are presented in the signal, but we don’t knoenwthe frequencies occur.
Here we introduce a method, wavelet transform, which coedesent both frequency and
space (or time).

In the image compression field, wavelet methods has advesitager Fourier methods
in the applicants where the signal contains discontimsiied sharp spikes.The wavelet-
based image compression has been developed and implenoeetethe few past years,
which has a better performance in many applications than.M&E€ DCT, wavelet trans-
form (WT) belongs to unitary transforms, a class of transferwhich are linear, invert-
ible. Wavelet functions are defined over a finite intervahndero average value. Wavelet
transform represents any signal f(t) as a superpositionsataf wavelet basis functions
('mother wavelet’). The difference between WT and DCT i tih@ WT has a realization
is more flexible we can use any mother wavelets, which are diffarent properties.

2.2.1. Continuous Wavelet Transform (CWT). First we introduce the continuous wavelet
transform (CWT). In analogy to FT, we can construct CWT atofel
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FIGURE 8. Fangus, DCT

(23) W(a,b) = /700 f(2)¥qp(r)de,

where f(x) is the original signal, and/(a, b) is the signal after wavelet transforni, ;
is a set of basis functions, called wavelets. The waveletganerated from the 'mother
wavelet’', ¥, by scaling and shift translation:

(24) U, p(z) = %qf(xa_b>

wherea is the scale factor, and b is the translation fa%ris for energy normalization
for different scales.

Wavelet Properties

One of the most significant feature of wavelet is that its agervalue in spatial domain
is zero:

(25) /00 U (z)dz = 0,

— 00
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It is a wave-like oscillation with an amplitude that startshazero, increases, and then
decreases back to zero. This is why it is called wavelet. Vgawenctions also satisfy the
admissibility condition,

2

- [io)
(26) / dw < 4005
——
where ¥ (w) represents the Fourier transform o{z). But we shall denote it bys (w)
instead of’ , where the frequency variable) dependence indicates that it is transformed.

This condition indicates thak (w) vanishes at zero frequency,

(27) @)%,y =0,
which means wavelet functions have band-pass spectrums.

2.2.2. Discrete Wavelet Transform. Discrete wavelet transform (DWT) is wavelet trans-
form where wavelets are discretely sampled. Note like CWWTDare also continuous-
time transforms. CWTs operate over every possible scaldrandlation while DWTs can
only be scaled and translated in discrete (finite) numbetepfss The sampled wavelets of
DWT are showed as below,

J
(28) 0y () = = (L),
where jand k are integerg, > 1 is the dilation step, anf, is the a translation factor which
depends on the dilation step. Usually we uge= 2 andby = 1 for dyadic sampling for
both frequency axis and time axis, which makes it easierdogss by computers.

If the functions¥; ,, form a dense frame df?(R), then any signaf () of finite energy
can be reconstructed.

In CWT the signals are analyzed using a set of basis functlwatsare related to each
others by simple scaling and translation, while in DWT tlasformed signal is obtained
by digital filter banks with different cutoff frequenciesdifferent scales.

As shown in Figure 9, DWT is computed by iteration of filterglwiescaling. The filter-
ing operations determine the resolution of the signal, ampg&ssampling and subsampling
operations determine the scale. The signal is denoted bsetingence:[n|, wheren is an
integer. The low pass filter is denoted 6y while the high pass filter is denoted &,
wherel means the level of decomposition. At each level, the higls filier produces de-
tail information,d[n], while the low pass filter associated with scaling functiooducing
coarse approximationa[n]. This is called the Mallat algorithm or Mallat-tree decompo
sition, which connects the continuous-time multiresalatio discrete-time filters.

According to the Nyquists rule, if the highest frequency loé toriginal signal isv,
the lowest sampling frequency should he @wultiple. Note that the band filters at each
decomposition level produce signals spanning only halfitaguency band, it now has a
highest frequency af/2 multiple. the signal can be sampled at a frequeney ofultiple
thus discarding half the samples with no loss of informatibhis decimation by 2 halves
the time resolution as the entire signal is now represenyedrly half the number of
samples. The half band low pass filtering removes half of tegquencies and halves
the resolution, the decimation by 2 doubles the scale. Sdirhe resolution becomes
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X[n]

an]

FIGURE 9. 3 level wavelet decomposition tree

arbitrarily good at high frequencies, while the frequenegalution becomes arbitrarily
good at low frequencies. The filtering and decimation pre¢esontinued until the aim
level is reached. The maximum number of levels depends oletiggh of the signal. The
DWT of the original signal is then obtained by all the coeéfitis,a[n] andd|[n], starting
from the last level of decomposition.

The reconstruction of the original signal from the wavelsfficients is the reverse pro-
cess of decomposition, as shown in Figure 10. The approiamand detail coefficients
at every level are supersampled by two, passed throughvbesies low pass filters Gi and
high pass filters Hi and then added. This process is contithwedgh the same number of
levels as in the decomposition process to obtain the ofligigaal.

X[n]

”‘“"“},

FIGURE 10. 3 level wavelet reconstruction tree

In image compression, the images are 2D signals. Assithig the original image,
I™ is decomposed into a set of imagég™' , A7t AZ*! andI™+!, each image is the
result of a convolution operation performed betwdé&nand each 2D discrete filters GG,
GH, HG and HH, respectively. After convolution, each imagesubsampled, removing
one column and one row; the result is a wavelet representatioesolutiom composed
by the fourimages. The decomposition can be done repegieegrvingAd elements and
decomposing the | element.

Reconstruction algorithm starts from taking the last atedi decomposition sedf ,
AT, Ay andI™. Each element is expanded introducing zeros between rodvs@omns.
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Next, a convolution operation is performed at each imagh thieir respective reconstruc-
tion filters GGi, GHi, HGi and HHi. At the end, image additiadone in order to obtain

the I"~! image. Oncd™ is obtained the algorithm ends, it represents the recoctsiiu

image.

2.2.3. Haar Wavelet. (Haar Scaling Function and Wavelets)
In this part,we are using Haar wavelet for image compresdibe Haar wavelet is the first
known wavelet, which was proposed in 1909 by Alfred Haar.sIthie simplest wavelet
function, but it is not continuous, which means Haar wavislebt differentiable [7].

The two- dimensional parametrization is achieved from thecfion ¢ (¢) which is
called the generating or mother wavelet

(29) Vi(t) =222t — k), jkeZ

whereZ is the set of all integers and the fac#r? maintains a constant norm independent
of scalgj. This parametrization of the time or space locatiorklaynd the frequency or scale
by j turns out to be extraordinarily effective.

In our approach, Haar is the most important wavelet. The inesthlution formula-
tion needs two closely related basic functions. In additmthe wavelet) that has been
discussed, we will need another basic function calleditaéing function o(t). The sim-
plest orthogonal wavelet system is generated from the Hamding function and wavelet.
Haar wavelet function is shown in the Figure 11.

FIGURE 11. Haar wavelet

Here is an example of the Haar wavelet system which may hebp doick understand-
ing. We choose the scaling function to have compact suppert®< ¢ < 1, then we can
get a simple rectangle function

(30) o(t) =

1 if 0<t<1
0 otherwise

with only two nonzero coefficients(0) = h(1) = 1/+/2, which is the Haar scaling func-
tion. Another kind of Haar requires that the wavelet to be
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1 for0<t <0.5
(31) Y(t)=4¢ -1 for05<t<1
0 otherwise

with only two nonzero coefficients; (0) = 1/v/2 and h,(1) = —1/+/2, which is Haar
wavelet.

Haar Decomposition and Reconstruction Algorithms

Decomposition is the most important part of using waveletction. We illustrate this
in an example.

Lemma 1. The following relations hold for all& R:
(32) $(2z) = (V(27 " x) + (2 w)) /2

(33) ¢(2x —1) = (¢(2712) — (27 w))/2.

This lemma can be used to decompoé®’ = — [) into its W;-components fof < j. So
the description of in the example in terms af(22z — [) is given by

(34) f(x) =2¢(42) + 2¢(4x — 1) 4+ ¢(4x — 2) — Pp(4dx — 3).

We want to decomposginto its Wy, Wy, and 4 components. Before we do that, we
should introduce the W and V components. gbe the space of all functions of the form

(35) Vo={>_ arp(z—k), ar€ R}

keZ

where k can range over any finite set of positive or negatitegiers.¢(x — k) is discon-
tinuous atr = k andx = k + 1, V{ consists of all piecewise constant functions whose
discontinuities are contained in the set of integers. Adl ghements outside the range are
set zero. In this way, we can Sét as the space of functions of the form

(36) Vi={> ad(2x—k), ar€R,}
kez
with possible discontinuities 0, £1/2, +1,+3/2, .. .}.
A more general definition can be given as follows.

Definition 1. Suppose j is any honnegative integer. The space of stepdnseétt level |,
denoted by}, is defined to be the space spanned by the set

37) {6(2z +1),6(272),6(2" — 1), p(27z — 2)}

over the real numbersy; is the space of piecewise constant functions of finite suppor
whose discontinuities are contained in the set

(38) {...,—=1/29,0,1/29,2/27,3/27 .. .}.
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Any function inVj is contained in/; , the same applies tg, C V5 and so forth:

(39) VocVic...CVjo1 CV; C V...

These inclusions are strict. For example, the functid?x) belongs toV; but does
not belong tol} , because)(2x) is discontinuous at = 1/2. Whenj gets larger, the
resolution will be finer. There is a spike of widlly2/ in the functioné(2/z). Whenj
becomes large, the(27x) will be similar to one of the spikes of a signal which we want
to remove. We have an efficient algorithm to decompose a kigiteits V; -components.
To construct an orthogonal basis iy is a quite efficient way. But this kind of orthogonal
basis ofV; is only half of the function’s graph, so we need to find a waysolate the
'spikes’ which belong toV; but notV;_;. And at this point the wavelep enters the
picture. Let us start with=1, ;) is generated by and its translates, so one expects that
the orthogonal complement ®f) is generated by the translates of some functions

To construct) we need two components:

At is an element of; andy can be expressed @$x) =, a;¢(2x — ) for some choice
of a¢; € R (note that only a finite number of the are nonzero).

A is orthogonal td/y. This is equivalent tg ¢ (z)¢(x — k)dx = 0 for all integersk.

For example, there is a function consisting of two blocks

(40) P(z) = ¢(22) — 9(2(x — 1/2)) = ¢(22) — (22 — 1)

satisfying the first requirement. In addition,

oo 1/2 1
(42) /_OO o(x)(x)dx :/0 1al;v—/1/2 lde=1/2—-1/2=0.

So, we can see that is orthogonal tap . Therefor,) belongs tol; and is orthogonal to
Vo ; ¢ is called theH aar wavelet.

Definition 2. The function of Haar is

(42) P(x) = ¢(22) — ¢(2z — 1).

In other words, a function i/, is orthogonal tolj if and only if it is of the form
Yrary(z — k). Let W, be the space of all functions of the form

(43) Z app(z — k), ap €R

keZ

and assume that only a finite number of theare nonzerol, is the orthogonal comple-
ment of ;) in V; or we can say; =V & Wy, hered means that, andiV; are orthogonal
to each others. In this way, more general results can belsstad.

Theorem 1. LetW; be the space of functions of the form

(44) Z app(22x — k),  ap €R,

keZ
W; is the orthogonal complement &f in V;, and

(45) Vipn =V, @ W;.
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According to this theorem, we can get

Vi=W;_1® V1
(46) =W,_1&W; 20 V_g=---
=Wis10oW;_ 2@ & Wy V.
So eachf in V; can be decomposed uniquely as a sum

(47) Ji=wj—1+wj_a+-+wo+ fo
Whenj goes to infinity, there is a limiting theorem.
Theorem 2. The spacd.?(R) can be decomposed as an infinite orthogonal direct sum
(48) LRy =VoaWoa W& .
In particular, each fe L?(R) can be written uniquely as
(49) F=rfo+d w,
=0
wheref, belongs toly andw; belongs tdV;.

This result can be seen as
N
(50) f=fort Jim 3w
7=0
Now we return to the previous example. Using of the equation

(51) f(x) =2¢(4z) + 2¢(4x — 1) + ¢(4x — 2) — ¢(4dx — 3),
We decompos¢ into its Wy, Wy, andV; components. So we can get

¢(4x) = (¥ (2z) + ¢(27))/2

(52) P4z —1) = (¢(2x) — ¢ (22))/2
¢(dr —2) = ¢(4(z — 1/2)) = (V(2(x — 1/2)) + ¢(2(z — 1/2)))/2

¢4z —3) = ¢(4(x — 1/2) = 1) = (¢(2(z — 1/2)) — P(2(x — 1/2)))/2.

Inserting these equations in the previous one and collgteims yields

f(x) = [¥(22) + ¢(20)] + [¢(22) — ¢(22)]
(53) +[2r = 1) + 622 - 1)]/2 = [¢(22 — 1) — (22 — 1)]/2
=92z —1) +2¢(2x).
Here thel; - componentoff (z) isy(2z — 1), sincel; is the linear span ofy(2x — k); k € Z}.

And theV; - component off () is 2¢(2z). We also can use the equatiof2z) = (¢(z) + ¥(x))/2
to decompose more infig, - component andily - component. The final result is

(54) f(@) =922 — 1) + ¢ (2) + o).

That means the componentsjoghould be
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Wy = L/J(Qx - 1)
(55) Wo = (z)
Vo = ¢(x)

We summarize the previous decomposition scheme in theAfwiptheorem.

Theorem 3. ( Haar Decomposition)Suppose

(56) fiw) =) oz —k) €V;.
keZ

Thenf; can be decomposed as

(57) fi=wj1+ fia

where

wjsy = U@ e —k) € Wi

(58) kez o
fira=> a2 e —k) € Vi
kez
with
J J J J
j—1 Qo — Ay j—1 G T a5,
(59) b= —— a, = ——

This process can be repeated for 1 to decomposg;_; asw;_o + fj—2. In this way, we
get the decomposition

(60) fi =wj—1 +wj—2 +---+wo + fo.

Finally, we can summarize all as follows: a signal is firstdeslited which produces an ap-
proximate signaf; € V;. Then the decomposition algorithm can produce a decomposit
of f; into its various frequency component§:= w;_1 + w;—2 + - - - + wo + fo.

Reconstruction

Our goal is image compression. To this approach after deosimg a signaf into its V; -
andWW; - components, th&/; - components that are small enough can be removed without
significant changes in the original signal. The informatioait we need to transmit is only
the significanti¥’; - components, and significant data compression can be achidhe
size of 'small’ components depend on the tolerance for éooa particular application.

In order to rebuild the compressed or filtered signal in teohshe basis elements
#(27x — 1) of V; , we need a reconstruction algorithm using

(61) fl@) =) ajé(2z —1).

lez
That means we can rewrite the sigrnjabs a linear combination of step functions with
amplitudesz] over the intervalg/27 < z < (I+1)/2/ . Now we assume a signal of the
form
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(62) f(x) = fo(x) +wo(x) + - +wj—1(z), w €W

where

(63) folx) = Z alo(x —k) € Vo and w; = Zb ) e W,
kez

for 0<i<j — 1. There are two equations

(64) ¢(z) = ¢(2z) + o2z — 1), ¥(2) = ¢(22) — ¢(2z — 1).

which follow from the definitions of) and¢. Now we replace: by 27!« to get

(65)  ¢(27') = ¢(22) + ¢(2x — 1), (2 2) = ¢(2x) — H(27x — 1).

In this way, we have

66)  folw) = alplx —k) = %2z — 2k) + afy 41 $(20 — 2k — 1)

keZ kez
So
0 :
- A1 A5y |1:l:2]€7
(67) ,é a; ¢(2z — 1), where a} = { =2k,
In a similar waywy = >, b%¢(z — k) can be written as
- - b9 if | =2k
_ 1 _ 1 _ 2k 3
(68) wo(z) = Y _ bi¢(2x — 1), where b} = { WL =2k 1,

ez

Hence, we can get a formula of the form

(69)
0,10
B ) A+ 80, if =2k
Jo(x) + wo(x E ajp(2x — 1), Wherea’_a’+b’_{a2—b2, 1= 2k 1.

lez

According to the form of the signal, the next step is toget= >, by1(2z — k) , and
add it to the sum in the same way as above, i.e.

(70)
1 1 i
B a4+ 0by, ifl=2k
fo(z) + wo(x) + wi(x Z“l¢ x —1),where q; —{ al — bl ifl=2k+1.

lez

Here thea] — coefficient is determined by the) — and)— coefficient. Then the?—
coefficients is determined by thg— andb} — coefficients, and so on in a recursive manner.
The previous reconstruction algorithm can be summarizékdriollowing theorem.

Theorem 4. Haar ReconstructionSuppose

(71) f=fo+two+w +was+-+wjq



COMPUTATIONAL ASPECTS OF MATHEMATICAL MODELS IN IMAGE COMRESSION 27

with
(72)
ZZCL%(%—/@‘)EVm wj (x ij W'z —k)eW,, 0<j <j.
keZ keZ
Then
(73) =N d'o@z-1) eV,
€z

where thealj/ are determined recursively fgf = 1, thenj’ = 2, and so on untilj’ = j,
using the algorithm

J'=1 -1

i’ + by, if | = 2k

74 a = % ’ ’
7 : { 7 bf—l, if 1 =2k + 1.

Summary
A format in a step-by-step procedure used to process a gigealswe lety andi) be the
Haar scaling function and wavelet.

Step.1  Sample.
If the signal is analogy = f(t), wheret represents time, sgt= J as the top level, so that
27 is larger than the Nyquist rate for the signal. Gg¢t= f(k/27) . In fact, the range of
is a finite interval determined by the duration of the signal, if the duration of the signal
is0 <t <1,thentherange dfwillbe 0 <k <2/ —1.

If the signal is discrete, then this step is not necessarycaieset the top level; as
the k. h term in the sampled signal, then the sampling rate wilkheBut in any case, we
have the highest-level approximation pfjiven by

(75) Fi(@) =) aie2’e -

keZ

Step.2 Decomposition.
We use the decomposition algorithm and to decomggsato

(76) fr=wr1+--Fwj_+ fj1+ ...+ wo+ fo,
where

(77) Wji—1 = ij 1w(2] 1.23 —l fJ 1= Zal 2j 1],‘ - l)

lez lez

The coefficients] "' andb! " are determined by the algorithm

(78) al”' = DL(d")k,  b"'=DH(d),

whereH and L are the high-pass and low-pass filters. Whiea J, ai determlnesr’ !

andb]~'. Thenforj = J — 1, a] ' determinesz{ > andb]~>. Then; becomes
J — 2, and so on, until there are too few coefficients to continueot@erwise stated, the
decomposition algorithm will continue until the levek= 0.
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Step.3 Processing.
After decomposition, the signal will be of the form

J—1 J—1
79 fil@) =) wi+fo=) (Z b2 — k)) + > add(x — k).
j=0

j=0 “keZ kez

Now the signal can be filtered by modifying the wavelet co'ea‘ﬁtsbi . To filter out all
high frequencies, all thé}; would be set to zero fof above a threshold. Maybe there is
only a certain segment of the signal corresponding to pdatic/alues ofk to be filtered.
Our goal is data compression, then ﬂjethat are below a certain absolute value would be
set to zero.

Step.4 Reconstruction.
To take the modified signaf,;, we can reconstruct it as

(80) fr=>ale(2'x — k).

keZ

We use the reconstruction algorithm

(81) o = LU + HUY ™,

forj = 1,---J. Whenj = 1, a} is obtained fromu? andb). Forj = 2, thea}, andb;,
can be computed from; and so forth. When has reached the top level; represents
the approximate value of the processed signal atk/2”.

2.2.4. Daubechies wavelet Daubechies wavelets (dbN) are a family of orthogonal wasgle
named after Ingrid Daubechies. N is the order. Some auttswaige 2N instead of N.

With a given support width, the Daubechies wavelets havetieémal number of van-
ishing moments. It is impossible to write down these wageletan explicit expression,
except for dbl, which is the Haar wavelet discussed befohgs i§ so because they are
not defined in terms of resulting scaling and wavelet fumgiodb1-db10 are the most
commonly used Daubechies wavelets. Here are the wavelgidnsV :

Each wavelet has a number of vanishing moments equal to tinderof coefficients,
which is also the order N of dbN. The vanishing moments arenthmber of zeros at of
z-transformed coefficients. Actually N determines the aacy of the wavelet. Because
wavelet order N means that the polynomial signal up to order d&n be represented
completely in scaling space, while when the order is equiarger than N, the coefficients
of the polynomial will be zero. For example, db4 represeng®lgnomial signal with 4
coefficients, and db8 encodes the signal with 8 coefficieStdarge order (more vanishing
moments) means the wavelet can represent more complexsswgittahigher accuracy, see
Figure 12.

Though the dbN wavelets\ > 1) are not explicit, however, the square modulus of the
transfer function of, can be expressed as following,

N—-1
(82) Py) =Y CY Ty,
k=0
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db7 db8 db9 dbi0

FIGURE12. db2-db10, Image comes from MATLAB Help

whereP(y) means the polynomial signal, arﬂ;{?’*”k is the binomial coefficients,

(83) Imo()[* = [(cos”(5))" Plsin®(5)],
where

1 2N—1 ,
(84) mo(w) = 7 kZ:O hye™ .

2.2.5. Wavelet in Image Compression.Wavelet-based compression has basis functions
with variable length, and does not block the input image.sTgroperty leads to a kind

of compression with higher compression ratio while avajdiocking artifacts. Further-
more, it is more robust under transmission and decodinggrend also facilitates pro-
gressive transmission of images. Because of all these tayes) the JPEG-2000 standard
prescribes wavelet-based compression algorithms [2].

2.3. Singular Value Decomposition (SVD).The decomposition has been known since
the late 19th century, and is wildly used in signal processind statistics. Many methods
have been given to decompose a matrix into more useful elesm®ne of the most popular
factorization has been the singular value decompositisMD{Swhich can be applied to
both real and complex rectangular matrices. It is one of tlestruseful tools of linear
algebra, it is a factorization and approximation techniqiee SVD works wonderfully
with both under - and over - determined matrices.

Let A denote ann x n matrix of real-valued or complex-valued data with rankere
the rankr is the maximal number of linearly independent rows or colar@hA, which is
at most min(m, n). Then the real-valued matrix could be presented in the form

(85) Amxn = meSanVnTXna
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where U denotes am x m orthogonal matrix that is OU = 1,,, ..., with | being them x m
identity matrix. S is an x n diagonal matrix with nonnegative real numbers, and theimatr
V7Tis the transposed matrix of thex n orthogonal matri¥’ thatis(VTV = I,,,,). This
factorization is called the singular-value decompositié\. That means the matrix can
be decomposed as the product of three matrices, see eq(&&ijon

The diagonal elements & are ordered in a non-increasing way, and S is uniquely
determined byA. The diagonal entries 0§ are called singular values of. However,
the matriced/ and V' are not uniquely determined by§. The columns of/ is a set of
orthogonal 'output’ basis vector directions fdr which is called the left singular vectors;
and the rows of/” form a set of orthogonal 'input’ basis vector, called thentigingular
vectors.

2.3.1. SVD in Image Compression.In linear algebra, SVD is a very powerful technique
dealing with sets of equation or matrices that are eithagudar or numerically very close
to singular. It is an important factorization of a rectaraguhatrix, which can be applied in
image compression. It has also several applications irabgecessing and statistics [4].

In this project, there are several steps that should be wérgferformed in order to
successfully compress an image with SVD. Firstly, we setrar n pixel image as an
m x n matrix A. In particular, we illustrate SVD with low-rank approxiniats of the
original image. Anm x n image is ann x n matrix, where the entryi, j) is interpreted
as the brightness of pixél, j). This means that the matrix entries are interpreted asgixel
ranging from black (0) through various shades of gray to e/(ii). It can presenta colorful
image too.

Let A = USVT be the SVD ofA. We write

(86) U =luy,ug,...,upl,and V = [v1,ve,...,v,].
so that the matriX could be written as

(87) A=USvT = Zaiuw?.
i=1

Sinceo; = 0 for j > r where ris the rank of the matrix A, we may define a compact SVD
as

(88) A= o).
=1

The best rank: approximation of matrixA can be written as

k
(89) A =) o]
=1

It is the best approximation in the sense of minimizing thenorm of the error

(90) ||A_AkH2 = Ok+1-

We may also write

(91) A, =US, VT,
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whereSy, = diag(A1,..., A\, 0,...,0).
Here we should explain the 2-norm of a matrix. The length d@orr = (21, 2o, ..., 2,)7
is usually given by the Euclidean norm

(92) ||IH2= ($12+I22+...—|—$n2)1/2.

In the case of the Euclidean norm and square matrices, thied@admatrix norm is the
spectral norm. The spectral norm of a matrix A is the largesjidar value of A or the
square root of the largest eigenvalue of the positive-sefimide matrix A* A.

(93) HAHQ =V Amaz (A*A),

where A* denotes the conjugate transpose of A. In this way,has rankk and can be
represented as

g1
k 72
(94) Ap =) o] =U| ... ... o | VT
i=1 Ok
The L, norm of the error is given by
(95) A=Akl =1 D o]l = ok
i=k+1

Here we only needh - k + n - k = (m + n) - k memory places to store, throughu,
and\;v; through\,vy,. Later we can use these to reconstruct the imager the matrix
Aj. Compared with the storage places needed for the origineixma namelym x n.
The storage requirement for the decomposed matrix is mushudenk is small. So
now, A; is our compressed image, only usifw + n) - K memory places. By chang-
ing k, we can get different errof$A — Ag||2/||A||2 and compression degrees defined as
1—(m+mn)-k/(m-n).

2.3.2. The SVD method for image compressionAn Exampl@. It is quite obvious that
the mathematics behind the SVD would become extraordinemiolved rather quickly.
Once the theory has been understood, it is a good idea to usghematical software.
MATLAB works quite nicely. From above, it is clear that the & A, provides less
information than the original matrix A. In fact, considegitthe requirements of human
visual, choosing a suitable valie< r for the image filed,, we can get a good approxi-
mation of A from A;. The smaller value of, the less data to present tHg. Whenk gets
close to rank-, the matrixA; will approach the original image matri®. That means, if
we can choose an appropriate number of singular values,oifmpressed matri¥; can
show a reasonably nice image, sufficiently close to the maigbhne, which can satisfy the
human visual.

After several rounds of tests, we get a result. UsuallyAgx.,, with 256 < n < 2048,
we can get a good quality image choositig< k£ < 100. For a nearly square matrix i.e
m ~ n andr =~ n , whenk is in the range of/5 to r/30, the compression ratio will be
between 3/5 to 14/15.
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The SVD Matlab commands are very simple:

load A.mat;

[U, S, V]=svd(X);

colormap('gray’);

image(U(:,1:k) *S(L:k,1:k)  *V(,1:K));

(96)

First of all, we load the image in MATLAB as a matrix A. Then wseuthesuvd function
to decompose the matrix into U, S and V and save thestormap is an m-by-3 matrix
of real numbers between 0.0 and 1.0. Each row is an RGB (regngblue) vector that
defines one color. In our project, we just use 'gray’ colorn@pet all the values between
O0to 1. In the end, we reconstruct the image with U, V and%he

To find out more about these commands and others while woikiNATLAB use the
help command. For example, if the commandisspace(0,5), type help linspace to
find out more about thBnspace command.

Here is an example: Create a rand®m 10 matrix A with integer values ranging from
—64 to 64 and use MATLAB’ssvd command to find the matricd$, S, V' corresponding
to A.

To create a matrix of random integers, the easiest way isddhes-andint command.
The command with these parameters reads:

> A = randint(8,10, [—64, 64])

The function randint(m,n,rg) which we use here generate&lay+10 (m-by-n) integer
matrix with element in the range [-64, 64] (rg).
We now get the SVD by

> [U, S, V] = svd(A)

and we can check the rank of the matdpy
> rank(A),

or by
> diag(S)

Below is an example with a much smaller matrix than our imdmgé can be helpful to
explain the process. The image matrix 1o is decomposed by SVD into three matrices:
U9 x9),S5(9 x 10), V(10 x 10).

(68 71 63 63 61 64 60 67 66 63
67 64 64 61 63 65 66 77 70 66
69 63 64 63 69 194 201 197 193 92
67 67 65 65 81 112 54 87 85 147
(97) A= 166 68 68 72 59 90 57 54 84 139
67 61 70 75 83 90 96 101 107 64
68 72 77 68 84 92 100 101 70 145
65 65 62 72 84 93 104 130 101 134
65 61 62 69 81 88 123 113 105 122




(98)
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[—.239
—.248
—.489
~.320
—.288
~.310
—.337
~.356

| —.348

(99)

(100)

[—.236
—.231
—.233
—.238
—.263
—.373
—.367
—.389
—.370

| —.387

—.146
—.103
+.781
—.344
—.386
+.085
—.277
—.083
—.009

0

164.686

O OO OO oo

—.186
—.230
—.216
—.216
—.219
+.217
+.434
+.314
+.319
—.579

+.519
+.457
+.218
—.331
—.202
+.522
—.159
—.149
—.060

76.

O OO O OO oo

+.339
+.307
+.311
+.317
+.251
—.283
—.010
—.022
+.030
—.670

+.147
+.031
+.240
—.395
+.656
+.066
+.394
—.420
—.458

R
—
o
T
coocoomo oo

+.117
+.112
+.070
+.034
—.235
+.625
—.471
—.381
+.361
—.158

If £ =4, then we get th&/y, Sk, Vi as

—.050
+.062
—.058
+.582
—.593
+.140
—.114
+.367
—.363

=
'y

[N}
©w
cCooc o poooOo

—.051
—.085
—.138
—.127
+.417
+.190
—.582
+.605
—.154
—.132

—.297
—.197
—.196
+.007
+.229
+.417
—.628
+.309
+.344

o
©

[N}
ot

—.142
—.342
—.255
+.335
+.226
—-.377
—.197
—.089
+.661
+.091

—.344
—.255
—.062
+.175
—.128
+.581
+.393
—.517
+.080

o
©

—
[=2]

—.264
—.413
+.233
—.024
+.973
+.303
+.209
—.388
—.159
—.102

+.306
—.039
—.024
+.373
—.297
—.271
—.252
—.380
+.629

DO
D
(=)

+.424
+.229
—.540
—.470
+.394
—.008
+.132
—.269
+.101
+.007

33

+.573]
—.780
+.000
—.063
—.005] ,
+.124
+.069
+.159
—.115
0 0 0]
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
7040 0
0 3.756 0
—.546 +.458]
+.526 —.402
—.427 —.397
+.399 +.535
+.125 —.104
+.158  +.220
+.089  +.092
—.087 +.001
—.140 —.340
—.070 —.032]
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[—0.239 —0.146
—0.248 —0.103
—0.489 0.781
—0.320 —0.344
U, = | —0.288 —0.386
—0.310  0.085
—0.337 —0.277
—0.356  —0.083
| —0.347  —0.009
833.208 0
g = 0 164.6863
(101) k= 0 0
0 0
[—0.236  —0.186
—0.231 —0.230
—0.233 —0.216
—0.238 —0.216
Vi — —0.263 —0.219
' —0.373  0.217
—0.367 0.434
—0.389 0.314
—0.370  0.319
| —0.387 —0.579

CalculatingA, = Ui S, VI now gives

(102)

[65.707 64.423 64.463 65.310 65.548
63.812 62.367 62.750 63.858 66.289
68.013 60.785 62.694 64.343 71.513
67.463 69.248 67.907 68.478 71.068
66.202 168.102 66.524 66.821 67.082
72.198 68.973 69.844 71.171 73.947
68.092 69.134 69.897 72.151 85.919
65.885 65.446 66.744 69.134 83.513
_63.996 62.855 64.446 66.889 81.163

From these matrices, we can see tHatis almost equal tod. The size of the image

0.519
0.457
—0.218
—0.331
—0.331
0.522
—0.159
—0.149
—0.060

76.291

0.339
0.307
0.314
0.317
0.251
—0.283
—0.010
—0.022
0.030
—0.670

62.788
64.469
192.761
107.979
96.157
190.277
84.692
96.270
93.056

55.3135 |

0.117 ]
0.112
0.070
0.034
~0.235
0.625
—0.471
~0.381
0.361
~0.158]

08.344  65.824
67.238  73.526
199.242 194.181
63.281  78.233
48.500  63.912
98.761  102.587
93.782  103.648
113.956 120.204
117.597 121.943

69.962
72.457
195.863
87.714
77.312
102.403
81.175
69.547
97.289

63.063 ]
66.073
192.121
49.529
135.940
64.588
146.667
133.947
119.852

(matrix) is large, in practice, say024 x 768 matrix. For a larger matrix we may choose

relatively smaller value ok. Hence the compression ratio will become very large. For
example, ift = 100, the compression degreei§% for a 1024 x 768 matrix. Normally,
the image can be compressedto— 90% of the original one, and the distortion is still not

serious.

There are several reasons why the SVD has become so popudy.iths very stable.
Small change in the input result in small change in the singular matfixand vice versa.

Second, the singular values provide an easy way to approximate
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2.4. Error Estimates. In order to measure the quality of image compression, we $800
three methods to calculate the difference in distortiorpise thayf (=, y) represents the
original image, ang(z, y) is the compressed image,both of size &fex N. Then we will
have the following formulas.

Average absolute difference:

M—-1N-1
z=0 y=0
Ly-norm:
M—-1N-1
Dp, = f(z,y) =gz pll, = {/NM Y > [gla,y) — f(z,y)P}7
(104) =0 =0

where we will use p = 2.

Note the p = 1 gives Daad.
Signal-to-noise ratio:

S S ()
M Mol y) — flay)?

In these three norms, we can compare the effect of differempcession methods more
accurately. The average absolute difference and SNR cand®rstood easily.

In image processing, the SNR of an image is usually definetleasatio of the mean
pixel value to the standard deviation of the pixel valuedafRel measures are the "contrast
ratio” and the "contrast-to-noise ratio”.

(105) Dsnr =

3. Coding Methods

3.1. Fourier Transform. For gray picture, first we load the data, and set the threstfold
compression. Then we use the commeétighroc in MATLAB.
As the help of MATLAB describes, the commend

(106) B = blkproc(A, [mn], fun)

processes the image A by applying the functfam to each distinct m by n (here we use
8-by-8) block of A, padding A with 0’s if necessaryun is a function handle that accepts
an m by n matrix, and returns a matrix, vector, or scalgii.e.

(107) y = fun(z).

blkproc does not require that y be of the same size as x. However, Blieafame size as
A only if y is of the same size as x. Here we use 'dct2’ asfthe, which represents the
two-dimensional discrete cosine transform.
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Now we get the image in Fourier domain. As the major inforimatf an image relies
on the low frequency part, we set a threshold and remove tjte frequency part, which
contains mostly details and noises. We do this also by m bgpeckkl(here we use 8-by-8).

We reconstruct the image again by the commé&iitghroc, but with the fun asidct2,
which returns the two-dimensional inverse discrete cosiesform of the threshold data.

To get the error rate, we calculate the difference betweerotiginal image and the
compressed image by subtraction. Then in order to makereiffecompressed images
comparable, we calculate tHe-norm of the difference matrix and normalize it with the
Ly-norm of the original image. The result is the error rate &f ithage compression.

For pictures with color, we first divide the picture into terayers: red, green and blue.
Then we process the three layers respectively as the metkeagsed for gray pictures.
After we get 3 compressed layers, we combined them back isiloghe color picture.

3.2. Wavelet Transform. For gray pictures, first we load the data, and set the thrdshol
and the level of Wavelet compression. We useuheedec2 commend in MATLAB:

(108) [C, S] = wavedec2(X, N, wname")

As the MATLAB help describeswavedec?2 is a two-dimensional wavelet analysis func-
tion. The function returns the wavelet decomposition of tintrix X at level N, using
the wavelet named in string 'wname’ (here we are using Haaeles). Outputs are the
decomposition vector C and the corresponding book keepaigxs, see Figure 13.

The vector C is organized as

(109)
C = [AN)|H(N)|V(N)|D(N)|.. H(N = )|V(N = 1)|D(N = 1)|... H(1)[V(1)|D(1)]

where A, H, V, D, are row vectors with entries described alofos:

A = approximation coefficients
H = horizontal detail coefficients
V = vertical detail coefficients

D = diagonal detail coefficients

The matrix S is such that

S(1,:) = size of approximation coefficients (N)
(110) S(i,:) = size of detail coefficients (N-i+2) fori=2, ...N+1
S(N 4+ 2,:) = size(X)
Now we take the firs6(1,1) x S(1,2) elements in the decomposition vector C, which
contain the coarsest approximation. Then we thresholcetieémments to get the com-

pressed data.
To inverse the Wavelet Transform back to image, we use the M¥'command

(111) X = waverec2(C, S, wname')

which performs a multilevel wavelet reconstruction of thatrix X based on the wavelet
decomposition structure [C,S]. Use the same 'wname’ asdmthvedec?.
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e

FIGURE 13. The structure of S

As we did before in Fourier Transform, we calculate the défece between the original
image and the compressed image by subtraction. Then wdatathiel.o-norm of the dif-
ference matrix and normalize it with thie,-norm of the original image, to make different
compressed images comparable. The result is the errorfrite onage compression.

For pictures with color, we first divide the picture into terayers: red, green and blue.
Then we process the three layers respectively with the ndatked for gray pictures. After
that we get 3 compressed layers and we combined them back mgle colorful picture.

3.3. Singular Value Decomposition. In order to get a better understanding of the coding
method for SVD, it is necessary to include a discussion ahout MATLAB constructs
images. Normally, each entry in the matrix corresponds tmallssquare of the image.
The value of the entry corresponds to a color. We can get tha spectrum easily in
MATLAB.

> A =1:64;> image(A);

FIGURE 14. Colour spectrum and blocked image
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The right figure shows a3 3 matrix of random integers which has 9 square blocks
comprising one large block. The code we used is

> A = randint(3,3); > image(A);

According to our previous theory, any matrik can be approximated using a smaller
number of iterations (singular values) when calculatiregapproximate SVD ofi. These
images we can get by o\’ D code. We choose three iterations images with three dif-
ferent parameters of; :01,02,03, and the number of iterations equals the rank of the
approximate SVD matrixy.

FIGURE FIGURE FIGURE
15. One 16. Two 17. Three
iteration iterations iterations

Through the figures, we can see that the original image doeappear until the third
iteration. Note that a more detailed imagdevhich is anm x n matrix, can be approximated
using the same techniques.

For another example, led be al5 x 20 matrix of random integers ranging from64
to 64, with rank 12. So the original image should be representethéywelfth iteration.
But for human vision, it is possible to get a good quality apimation in ten iterations.
Here we use the MATLAB commands

> A = randint(15,20,64);>> [U, S, V] = svd(A);

and compute the approximath, by 4, = UxS,V, for different values of k (itera-
tions).
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FIGURE 18. Five iterations FIGURE 19. Ten iterations

FIGURE 20. Twelve iterations FIGURE 21. Original image

For the actual random matrix with= 12, A, is an exact copy of the original matrix
A. The ten iteration imagel;y has a good enough quality for human vision, see Figure
19.

Now we use a real nature image which is representegiiByx 512 matrix for analysis,
the group images of vegetables. As we can see, after 10idlesave can already make
out what the image is, see Figure 24. By 25 iterations the digaimuch clear and with
75 iterations the figure is mostly the same as the original ®he compression degree for
this image isl — G1ZE1XT0 — 779,

Our project coding command computes the matrix singularevdecomposition, it pro-
duces a diagonal matrix of the same dimension af with nonnegative diagonal elements
in decreasing order, and orthogonal matri€eandV so thatd = USV”. When we get
the decomposed matrices, it means that we choose a kdbréamage compression. The
value ofk decides the content of compressed image which combinesdxy iew matrices.
In MATLAB-code this reads

(112) Ay =U(G1: k)« Sk, 1: k)« V(:,1:k)



40 W. CHEN AND W. DUAN

The difference between the original image and the compdesse is calculated by the
Lo-norm, ||A — Agll2 = ox+1. For the colorful image, at the first step we always divide
the image into three layers (red green and blue). For eadr,lage process the matrix as
above, decompose them and compress them separatelyyFingé#t a colorful figure, we
combine three compressed matrices together.
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FIGURE 22. Original image FIGURE 23. 2 iterations

FIGURE 24. 10 iterations FIGURE 25. 25 iterations

FIGURE 26. 50 iterations FIGURE 27. 75 iterations
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4. Result

4.1. The processed figuresWe apply the MATLAB methods described above to the cho-
sen pictures. First we set the threshold of Wavelet and Eodiriansform. The level of
Wavelet is set as 3 to be comparable to Fourier Transformn Weechoose different com-
pression ratios: abo80%, 90% and98.5%, and according these compressions choose the
singular value of SVD. We can get three different qualityelsvof the compressed figures:
A+: recognizable from original onéy: acceptableA-: can’t be accepted.

We compress all the images in five methods with three quaitgls, and calculate their
compression ratios and error ratios. The order of the meti®BFT, SVD, Wavelet(db1l),
Wavelet(db2), Wavelet(db4).

In this way, there are three figures for each method, and fivbads for each image,
which means there are fifteen figures for each image. We psedeseven different kinds
of images, so there are one hundred and five figures in all. eTéuer abbreviations some
used in this part: CR means compression ratio, ER means matior FP means Finger
Print.
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Fourier Compression Ratio = 0.77659 ; Error Ratio = 0.0029535 || Threshold = 0.6% ; 0.056483

FIGURE 28. A+, FP, FFT, CR =0.77659, ER = 0.0029535

Fourier Compression Ratio = 0.94727 ; Error Ratio = 0.0107 || Threshold = 3% ; 0.28241

FIGURE 29. A, FP, FFT,CR =0.94727, ER = 0.0107

Fourier Compression Ratio = 0.98207 ; Error Ratio = 0.031263 || Threshold = 10% ; 0.94138

FIGURE 30. A-, FP, FFT, CR =0.98207, ER = 0.031263

43
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SVD Compression Ralo = 079421 : Eror Rl = 00089942

FIGURE31. A+, FP, SVD, CR =0.79427, ER = 0.0089942

SVD Compression R = 0.95573 : Eror Rt =0.024261

FIGURE32. A, FP, SVD, CR = 0.95573, ER = 0.024261

SVD Compression Rato = 09817  Eror Rao =0.030756

FIGURE 33. A-, FP, SVD, CR =0.98177, ER = 0.030756
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Wavelet Compression Ratio = 0.775 ; Error Ratio = 0.0050185 || Threshold = 1% ; 0.093593

FIGURE 34. A+, FP, Haar, CR =0.775, ER =0.0050185

Wavelet Compression Ratio = 0.94222 ; Error Ratio = 0.016428 || Threshold = 2.9% ; 0.27142

FIGURE 35. A, FP, Haar, CR = 0.94222; ER = 0.016428

Wavelet Compression Ratio = 0.98172 ; Error Ratio = 0.032037 || Threshold = 8% ; 0.74875

FIGURE 36. A-, FP, Haar, CR =0.98172, ER = 0.032037
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Wavelet Compression Ratio =0.7791 ; Error Ratio = 0.004197 || Threshold =0.8% ; 0.077805

FIGURE37. A+, FP, db2, CR =0.7791, ER = 0.004197

Wavelet Compression Ratio = 0.94745 ; Erfor Ratio = 0.013493 || Threshold = 3% ; 0.29177

FIGURE 38. A, FP, db2, CR =0.94745, ER = 0.013493

Wavelet Compression Ratio = 0.98206 ; Error Ratio = 0.034217 || Threshold = 10% ; 0.97256

FIGURE 39. A-, FP, db2, CR =0.98206, ER = 0.034217
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\Wavelet Compression Ratio = 0.7597 ; Error Ratio = 0.0030893 || Threshold = 0.6% ; 0.056831

FIGURE 40. A+, FP, db4, CR =0.7597, ER = 0.0030893

Wavelet Compression Ratio = 0.94488 ; Error Ratio = 0.011193 || Threshold = 3% ; 0.28416

FIGURE41. A, FP, db4, CR =0.94488, ER = 0.011193

Wavelet Compression Ratio = 0.98207 ; Error Ratio = 0.036155 || Threshold = 20% ; 1.8944

FIGURE42. A-, FP, db4, CR =0.98207, ER = 0.036156
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Fourier Compression Ratio = 0.84666 ; Error Ratio = 0.0022608 || Threshold = 0.6% ; 0.049068

FIGURE 43. A+, Wood, FFT, CR =0.84666, ER = 0.0022608

Fourier Compression Ratio = 0.96577 ; Error Ratio = 0.014464 || Threshold = 4% ; 0.32712

FIGURE 44. A, Wood, FFT, CR = 0.96577, ER = 0.014464

Fourier Compression Ratio = 0.98318 ; Error Ratio = 0.033584 || Threshold = 10% ; 0.8178

FIGURE 45. A-, Wood, FFT, CR =0.98318, ER = 0.033584
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FIGURE 48. A-, Wood, SVD, CR =0.98438, ER = 0.035328
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Wavelet Compression Ratio = 0.84341 ; Error Ratio = 0.0042611 || Threshold = 0.85% ; 0.066713

FIGURE 49. A+, Wood, Haar, CR =0.84341; ER = 0.0042611

Wavelet Compression Ratio = 0.96779 ; Error Ratio = 0.02145 || Threshold = 4% ; 0.31394

FIGURE 50. A, Wood, Haar, CR =0.96779, ER = 0.02145

Wavelet Compression Ratio = 0.98321 ; Error Ratio = 0.034436 || Threshold = 10% ; 0.78485

FIGURE51. A-, Wood, Haar, CR =0.98321, ER = 0.034436
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\Wavelet Compression Ratio = 0.84547 ; Error Ratio = 0.005229 || Threshold = 0.74% ; 0.06869

FIGURE52. A+, Wood, db2, CR =0.84547, ER = 0.005229

Wavelet Compression Ratio = 0.96733 ; Error Ratio = 0.021788 || Threshold = 3.5% ; 0.32488

FIGURE53. A, Wood, db2, CR =0.96733, ER =0.021788

Wavelet Compression Ratio = 0.98364 ; Error Ratio = 0.0442 || Threshold = 80% ; 7.4259

FIGURE 54. A-, Wood, db2, CR =0.98364; ER = 0.0442



52

W. CHEN AND W. DUAN

Wavelet Compression Ratio = 0.84466 ; Error Ratio = 0.0044818 || Threshold = 0.85% ; 0.073038
] N 0

FIGURE 55. A+, Wood, db4, CR =0.84466, ER = 0.0044818

Wavelet Compression Ratio = 0.96446 ; Error Ratio = 0.020858 || Threshold = 4% ; 0.34371
| 1901 ]
1

FIGURE56. A, Wood, db4, CR = 0.96446, ER = 0.020858

Wavelet Compression Ratio = 0.98211 ; Error Ratio = 0.040336 || Threshold = 40% ; 3.4371

FIGURES57. A-, Wood, db4, CR =0.98211, ER = 0.040336
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Fourier Compression Ratio = 0.87371 ; Error Ratio = 0.0051129 || Threshold = 0.6% ; 0.062334

FIGURES58. A+, Fungus, FFT, CR =0.87371, ER = 0.0051129

Fourier Compression Ratio = 0.95946 ; Error Ratio = 0.013982 || Threshold = 2% ; 0.20778

FIGURE59. A, Fungus, FFT, CR =0.95946, ER = 0.013982

Fourier Compression Ratio = 0.98294 ; Error Ratio = 0.028869 || Threshold = 8% ; 0.83112

FIGURE 60. A-, Fungus, FFT, CR =0.98294, ER = 0.028869
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SVD Compression Ratio = 0.875 ; Error Ratio = 0.027916

FIGURE61. A+, Fungus, SVD, CR =0.875, ER =0.027916

SVD Compression Ratio = 0.95703 : Error Ratio = 0.054683

FIGURE62. A, Fungus, SVD, CR =0.95703, ER =0.054683

SVD Compression Ratio = 0.98438 ; Error Ratio = 0.10515

FIGURE 63. A-, Fungus, SVD, CR =0.98438, ER = 0.10515
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Wavelet Compression Ratio = 0.87827 ; Error Ratio = 0.0075554 || Threshold = 0.8% ; 0.083349

FIGURE 64. A+, Fungus, Haar, CR =0.87827, ER = 0.0075554

Wavelet Compression Ratio = 0.95797 ; Error Ratio = 0.0161 || Threshold = 1.9% ; 0.19795

FIGURE 65. A, Fungus, Haar, CR =0.95797, ER = 0.0161

Wavelet Compression Ratio = 0.98256 ; Error Ratio = 0.028536 || Threshold = 7% ; 0.7293

FIGURE 66. A-, Fungus, Haar, CR =0.98256, ER = 0.028536
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Wavelet Compression Ratio = 0.87409 ; Error Ratio = 0.0067255 || Threshold = 0.73% ; 0.073549

FIGURE67. A+, Fungus, db2, CR =0.87409, ER = 0.0067255

Wavelet Compression Ratio = 0.9579 ; Error Ratio = 0.015683 || Threshold = 1.9% ; 0.19143

FIGURE 68. A, Fungus, db2, CR =0.9579, ER = 0.015683

Wavelet Compression Ratio = 0.9825 ; Error Ratio = 0.028368 || Threshold = 8% ; 0.80602

FIGURE 69. A-,Fungus,db2,CR=0.9825,ER=0.028368
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Wavelet Compression Ratio = 0.87559 ; Error Ratio = 0.0070514 || Threshold = 0.8% ; 0.075805

FIGURE 70. A+, Fungus, db4, CR =0.87559, ER =0.0070514

Wavelet Compression Ratio = 0.95654 ; Error Ratio = 0.015324 || Threshold = 2% ; 0.18951

FIGURE 71. A, Fungus, db4, CR = 0.95654, ER = 0.015324

Wavelet Compression Ratio = 0.98206 ; Error Ratio = 0.043639 || Threshold = 20% ; 1.8951

FIGURE 72. A-, Fungus, db4, CR = 0.98206, ER = 0.043639
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Fourier Compression Ratio = 0.80042 ; Error Ratio = 0.0021607 || Threshold = 0.4% ; 0.031394

FIGURE 73. A+, MRI, FFT, CR =0.80042, ER = 0.0021607

Fourier Compression Ratio = 0.95477 ; Error Ratio = 0.01124 || Threshold = 2% ; 0.15697

FIGURE74. A, MRI, FFT, CR=0.95477,ER =0.01124

Fourier Compression Ratio = 0.98438 ; Error Ratio = 0.069299 || Threshold = 40% ; 3.1394

FIGURE75. A-, MRI, FFT, CR =0.98438, ER = 0.069299
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SVD Compression Ratio = 0.80469 ; Error Ratio = 0.011546

FIGURE 76. A+, MRI, SVD, CR =0.80469, ER = 0.011546

SVD Compression Ratio = 0.96875 ; Error Ratio = 0.05091

FIGURET77. A, MRI, SVD, CR =0.96875, ER = 0.05091

SVD Compression Ratio = 0.98438 ; Error Ratio = 0.08565

FIGURE 78. A-, MRI, SVD, CR =0.98438, ER = 0.08565
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Wavelet Compression Ratio = 0.80277 ; Error Ratio = 0.0049436 || Threshold = 0.6% ; 0.046318

FIGURE 79. A+, MRI, Haar, CR =0.80277, ER = 0.0049436

Wavelet Compression Ratio = 0.95078 ; Error Ratio = 0.014788 || Threshold = 2% ; 0.15439

FIGURE 80. A, MRI, Haar, CR =0.95078, ER =0.014788

Wavelet Compression Ratio = 0.98434 ; Error Ratio = 0.067778 || Threshold = 20% ; 1.5439

FIGURE 81. A-, MRI, Haar, CR =0.98434, ER = 0.067778
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Wavelet Compression Ratio = 0.80977 ; Error Ratio = 0.0042916 || Threshold = 0.53% ; 0.041193

FIGURE 82. A+, MRI, db2, CR =0.8098, ER = 0.0042916

Wavelet Compression Ratio = 0.95767 ; Error Ratio = 0.013892 || Threshold = 2% ; 0.15545

FIGURE83. A, MRI, db2, CR =0.95767, ER =0.013892

Wavelet Compression Ratio = 0.98364 ; Error Ratio = 0.050141 || Threshold = 80% ; 6.2178

FIGURE 84. A-, MRI, db2, CR =0.98364, ER = 0.050141
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Wavelet Compression Ratio = 0.80346 ; Error Ratio = 0.0039866 || Threshold = 0.5% ; 0.037416

FIGURE 85. A+, MRI, db4, CR = 0.8035, ER = 0.0039866

Wavelet Compression Ratio = 0.95575 ; Error Ratio = 0.012429 || Threshold = 2% ; 0.14966

FIGURE 86. A, MRI, db4, CR = 0.95575, ER = 0.012429

Wavelet Compression Ratio = 0.98211 ; Error Ratio = 0.045417 || Threshold = 80% ; 5.9865

FIGURE87. A-, MRI, db4, CR =0.98211, ER = 0.045417
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Fourier Compression Ratio = 0.92738 ; Error Ratio = 0.024011 || Threshold = 0.45%

FIGURE 88. A+, bird, FFT, CR = 0.92738, ER = 0.024011

Fourier Compression Ratio = 0.97652 ; Error Ratio = 0.024908 || Threshold = 2%

FIGURE 89. A, bird, FFT, CR = 0.97652, ER = 0.024908

Fourier res: atio = 0.98231 ; Error Ratio = 0.028418 || Threshold = 6%

FIGURE 90. A-, bird, FFT, CR =0.98231, ER = 0.028418
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SVD Compression Ratio = 0.92593 ; Error Ratio = 0.012252

FIGURE 91. A+, bird, SVD, CR =0.92593, ER = 0.012252

SVD Compression Ratio = 0.97957 ; Error Ratio = 0.032357

FIGURE92. A, bird, SVD, CR =0.97957, ER = 0.032357

SVD Compression Ratio = 0.98467 ; Error Ratio = 0.038124

FIGURE 93. A-, bird, SVD, CR =0.98467, ER = 0.038124
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Wavelet Compression Ratio = 0.92214 ; Error Ratio = 0.003742 || Threshold = 0.45%

FIGURE 94. A+, bird, Haar, CR = 0.92214, ER = 0.003742

Wavelet Compression Ratio = 0.97567 : Error Ratio = 0.0092727 || Threshold = 2%

FIGURE95. A, bird, Haar, CR =0.97567, ER = 0.0092727

Wavelet Compression Ratio = 0.98284 ; Error Ratio = 0.019097 ||  Threshold = 6%

FIGURE 96. A-, bird, Haar, CR = 0.98284, ER = 0.019097
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Wavelet Compression Ratio = 0.92618 ; Error Ratio = 0.0035689 || Threshold = 0.4%

FIGURE 97. A+, bird, db2, CR =0.92618, ER = 0.0035689

Wavelet Compression Ratio = 0.97816 ; Error Ratio = 0.0089658 || Threshold = 2%

FIGURE 98. A, bird, db2, CR =0.97816, ER = 0.0089658

Wavelet Compres: atio = 0.98299 ; Error Ratio = 0.017445 || Threshold = 6%

FIGURE99. A-, bird, db2, CR =0.98299, ER = 0.017445
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Wavelet Compression Ratio = 0.9279 ; Error Ratio = 0.0037105 || Threshold = 0.4%

FIGURE 100. A+, bird, db4, CR =0.9279, ER = 0.0037105

Wavelet Compression Ratio = 0.97743 ; Error Ratio = 0.0088242 || Threshold = 2%

FIGURE 101. A, bird, db4, CR =0.97743, ER = 0.0088242

Wavelet Compres: atio = 0.98225 ; Error Ratio = 0.03381 || Threshold = 80%

FIGURE 102. A-, bird, db4, CR =0.98225, ER = 0.03381
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Fourier Compression Ratio = 0.76069 ; Error Ratio = 0.027834 || Threshold = 0.6%

FIGURE 103. A+, coil, FFT, CR =0.76069, ER =0.027834

Fourier Compression Ratio = 0.84303 ; Error Ratio = 0.027919 || Threshold = 1%

FIGURE 104. A, coil, FFT, CR = 0.84303, ER =0.027919

Fourier Compression Ratio = 0.98308 ; Error Ratio = 0.039847 || Threshold = 8%

FIGURE 105. A-, coil, FFT, CR =0.98308, ER = 0.039847
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SVD Compression Ratio = 0.76686 ; Error Ratio = 0.011497

FIGURE 106. A+, coil, SVD, CR =0.76686, ER = 0.011497

SVD Compression Ratio = 0.84795 ; Error Ratio = 0.014587

FIGURE 107. A, coil, SVD, CR =0.84795, ER =0.014587

SVD Compression Ratio = 0.98986 ; Error Ratio = 0.053735

FIGURE 108. A-, coil, SVD, CR =0.98986, ER = 0.053735
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Wavelet Compression Ratio = 0.84929 ; Error Ratio = 0.0053452 || Threshold = 1%

FIGURE 109. A+, coil, Haar, CR =0.84929, ER = 0.0053452

Wavelet Compression Ratio = 0.91974 ; Error Ratio = 0.0098579 || Threshold = 2%

FIGURE110. A, coil, Haar, CR =0.91974, ER = 0.0098579

Wavelet Compression Ratio = 0.98337 ; Error Ratio = 0.026396 || Threshold = 8%

FIGURE111. A-, coil, Haar, CR =0.98337, ER = 0.026396
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Wavelet Compression Ratio = 0.75725 ; Error Ratio = 0.00324 || Threshold = 0.6%

FIGURE112. A+, coil, db2, CR =0.75725, ER = 0.00324

Wavelet Compression Ratio = 0.92111 ; Error Ratio = 0.01364 || Threshold = 2%

FIGURE113. A, coil, db2, CR =0.92111, ER =0.01364

Wavelet Compression Ratio = 0.98324 ; Error Ratio = 0.041773 || Threshold = 8%

FIGURE 114. A-, coil, db2, CR =0.98324, ER = 0.041773
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Wavelet Compression Ratio = 0.768 ; Error Ratio = 0.0032312 || Threshold = 0.6%

FIGURE 115. A+, coil, db4, CR =0.768, ER = 0.0032312

Wavelet Compression Ratio = 0.84852 ; Error Ratio = 0.0056264 || Threshold = 1%

FIGURE116. A, coil, db4, CR =0.84852, ER = 0.0056264

Wavelet Compression Ratio = 0.9831 ; Error Ratio = 0.037662 || Threshold = 10%

FIGURE117. A-, coil, db4, CR =0.9831, ER = 0.037662
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Fourier Compression Ratio = 0.89921 ; Error Ratio = 0.010955 || Threshold = 0.6%

FIGURE118. A+, Duan, FFT, CR =0.89921, ER = 0.010955

Fourier Compression Ratio = 0.93891 ; Error Ratio = 0.011219 || Threshold = 1%

FIGURE 119. A, Duan, FFT, CR =0.93891, ER =0.011219

Fourier Compression Ratio = 0.98452 ; Error Ratio = 0.042725 || Threshold = 10%

FIGURE 120. A-, Duan, FFT, CR =0.98452, ER = 0.042725
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SVD Compression Ratio = 0.8372 ; Error Ratio = 0.0084477

FIGURE 121. A+, Duan, SVD, CR =0.8372, ER =0.0084477

SVD Compression Ratio = 0.93929 ; Error Ratio = 0.021755

FIGURE122. A, Duan, SVD, CR =0.93929, ER = 0.021755

SVD Compression Ratio = 0.98344 ; Error Ratio = 0.068952

FIGURE123. A-, Duan, SVD, CR =0.98344, ER = 0.068952



COMPUTATIONAL ASPECTS OF MATHEMATICAL MODELS IN IMAGE COMRESSION 75

Wavelet Compression Ratio = 0.88565 ; Error Ratio = 0.0038646 || Threshold = 0.6%

FIGURE 124. A+, Duan, Haar, CR = 0.88565, ER = 0.0038646

Wavelet Compression Ratio = 0.93062 ; Error Ratio = 0.0059593 || Threshold = 1%

FIGURE 125. A, Duan, Haar, CR =0.93062, ER = 0.0059593

Wavelet Compression Ratio = 0.9842 ; Error Ratio = 0.034342 || Threshold = 20%

FIGURE 126. A-, Duan, Haar, CR =0.9842, ER = 0.034342
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Wavelet Compression Ratio = 0.88475 ; Error Ratio = 0.0028814 || Threshold = 0.5%

FIGURE 127. A+, Duan, db2, CR =0.88475, ER = 0.0028814

Wavelet Compression Ratio = 0.93998 ; Error Ratio = 0.0052047 || Threshold = 1%

FIGURE 128. A, Duan, db2, CR = 0.93998, ER = 0.0052047

Wavelet Compression Ratio = 0.98347 ; Error Ratio = 0.032203 || Threshold = 80%

FIGURE 129. A-, Duan, db2, CR =0.98347; ER =0.032203
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Wavelet Compression Ratio = 0.89977 ; Error Ratio = 0.0029361 || Threshold = 0.5%

FIGURE 130. A+, Duan, db4, CR =0.8997, ER =0.0029361

Wavelet Compression Ratio = 0.93342 ; Error Ratio = 0.0043167 || Threshold = 0.8%

FIGURE 131. A, Duan, db4, CR =0.93342, ER =0.0043167

Wavelet Compression Ratio = 0.98243 ; Error Ratio = 0.031897 || Threshold = 80%

FIGURE 132. A-, Duan, db4, CR =0.98243, ER = 0.031897
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4.2. Data Analysis. These eightimages almost include all different kinds ofgentypes,
gray, color, texture, animal, human face, detail, roughthis way, we can analysis the
data more professionally and more persuasively. In thisagonve will do some study in
different interesting perspectives, and we can see a quigedsting result.

4.2.1. Comparison of different compression methods.In order to feel more directly

the effects of different compression methods, we gathdredharacteristic curves of all
the methods in one graph for each compressed image. Finding phenomena of each
image. The plots are shown after these paragraphs.

Fingerprint
There are lots of curve texture in finger print image. In thisife we can see that
1. As a whole, FFT is the best method for the image. At the sasngeession degree,
FFT always has the lower error ratio.
2. SVD does not work very well, the error ratio is higher thiaa bthers.
3. Among the wavelets way, db4 is the best one, and Haar wasedlee worst.
4. With the raising of the compression degree, the erroomafor all the methods raise
very quickly. Wavelet and FFT can’t compress the image bdyecertain compression
degree, but SVD continue compressing.

Wood
There are lots of vertical texture in wood image. In this fegure can see that
1. As awhole, FFT is the best method for Wood image. At the seongression degree,
FFT always has the lower error ratio.
2. SVD does not work very well, the error ratio is higher thha bthers.
3. The effects of three wavelet methods are quite similaatthethers.
4. With the raising of the compression degree, the erroomafor all the methods raise
very quickly. Wavelet and FFT can’t compress the image bdyecertain compression
degree, but SVD continues compressing.

Fungus
There are some clear objects in fungus image. In this figureamesee that
1. As a whole, FFT is still the best one, but the differencedsso clear now. FFT and
wavelet are quite similar to each others.
2. SVD does not work very well, the error ratio is much highweart the others.
3. The effects of three wavelet methods are almost the same.
4. Wavelet and FFT stop compressing the image beyond aredaipression degree, but
SVD still can compress a lot.

MRI
MRI is a gray scale image here. In this figure we can see that
1. As a whole, FFT is still the best one, but now the differeisceot obvious. FFT and
wavelet are quite similar to each others.
2. SVD does not work very well, the error ratio is much highrer the others.
3. The effects of three wavelet methods are almost the same.
4. Wavelet and FFT stop compressing the image at a certaipression degree, but SVD
still can compress a lot.
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Bird
This is a color image with a lot of blue color. In this figure wancsee that
1. With the compression ratig 0.9675, wavelet is much better than FFT and SVD, the
FFT is the worst. For the compression ration0.9675, FFT turns out to be better than
SVD.
2. With raising compression degree SVDs behavior becomeepo
3. The effects of three wavelet methods are almost the same.
4. Wavelet and FFT stop compressing the image at a certaipression degree, but SVD
still can compress a lot.

Coil
This image combines two parts: a color one and a gray oneidfiiglure we can see that
1. Wavelet is better than both FFT and SVD. Now the FFT is perémce the worst. The
error ratio in FFT hardly changes.
2. SVD works better, when the compression degree is raising.
3. The effects of three wavelet methods are almost the same.
4. Wavelet and FFT stop compressing the image beyond aredaipression degree, but
SVD still can compress a lot.

Duan
'Duan’ is a common photo of Wei Duan with true colors. In thiguiie we can see that
1. As awhole, wavelet is the best method, SVD is the worst BR@.is in the middle and
doesn’t change a lot when the compression degree is lowerlecartain value.
2. SVD does not work very well, the error ratio is quite higttean the other methods.
3. The effects of three wavelet methods are similar, but tilesttems to be the best one,
the second best is db2, then comes the Haar wavelet in theldast
4. Wavelet and FFT stop compressing the image beyond aredaipression degree, but
SVD still can compress a lot.
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FIGURE 134. Five compressed methods of Wood
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FIGURE 136. Five compressed methods of MRI



82

Error Ratio

Error Ratio

W. CHEN AND W. DUAN

Bird: Color Scale
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FIGURE 137. Five compressed methods of bird
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FIGURE 138. Five compressed methods of Coil
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Duan
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FIGURE 139. Five compressed methods of Duan

4.2.2. The effect of compressed gray image versus color imag&hrough compressing
the 'bird’ images, we found that even using the same methmdsmpress, the effect of
gray one is different from the color one.

Below we start considering trgraybird
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Fourier Compression Ratio = 0.92396 ; Error Ratio = 0.023294 || Threshold = 0.4% ; 0.029724

FIGURE 140. A+, graybird, FFT, CR = 0.92396, ER =0.023294

Fourier Compression Ratio = 0.97081 ; Error Ratio = 0.02342 || Threshold = 1% ;0.07431

FIGURE 141. A, graybird, FFT, CR = 0.97081, ER = 0.02342

Fourier Compression Ratio = 0.9828 ; Error Ratio = 0.024201 || Threshold = 6% ; 0.44586

FIGURE 142. A-, graybird, FFT, CR = 0.9828, ER = 0.024201
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SVD Compression Ratio = 0.92337 ; Error Ratio = 0.012332

FIGURE 143. A+, graybird, SVD, CR = 0.92337, ER = 0.012332

SVD Compression Ratio = 0.9719 ; Error Ratio = 0.026432

FIGURE 144. A, graybird, SVD, CR = 0.9719, ER = 0.026432

SVD Compression Ratio = 0.98467 ; Error Ratio = 0.037873

FIGURE 145. A-, graybird, SVD, CR =0.98467, ER = 0.037873
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Wavelet Compression Ratio = 0.92738 ; Error Ratio = 0.0025672 || Threshold = 0.4% ; 0.029571

FIGURE 146. A+, graybird, Haar, CR = 0.92738, ER = 0.0025672

Wavelet Compression Ratio = 0.97265 ; Error Ratio = 0.004665 || Threshold = 1.3% ; 0.096104

FIGURE 147. A, graybird, Haar, CR = 0.97265, ER = 0.004665

Wavelet Compression Ratio = 0.98257 ; Error Ratio =0.010394 || Threshold = 4% ; 0.29571

FIGURE 148. A-, graybird, Haar, CR =0.98257, ER =0.010394
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Wavelet Compression Ratio = 0.9262 ; Error Ratio = 0.0023367 || Threshold = 0.35% ; 0.027552

FIGURE 149. A+, graybird, db2, CR =0.9262, ER = 0.0023367

Wavelet Compression Ratio = 0.9723 ; Error Ratio = 0.0037908 || Threshold = 1% ; 0.078719

FIGURE 150. A, graybird, db2, CR = 0.9723, ER = 0.0037908

Wavelet Compression Ratio = 0.98265 ; Error Ratio = 0.0089934 || Threshold = 4% : 0.31488

FIGURE 151. A-, graybird, db2, CR =0.98265, ER = 0.0089934
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Wavelet Compression Ratio = 0.92652 ; Error Ratio = 0.0021438 || Threshold = 0.35% ; 0.02786

FIGURE 152. A+, graybird, db4, CR = 0.92652, ER = 0.0021438

Wavelet Compression Ratio = 0.97244 ; Error Ratio = 0.0038031 || Threshold = 1% : 0.079599

FIGURE 153. A, graybird, db4, CR = 0.97244, ER = 0.0038031

Wavelet Compression Ratio = 0.98225 ; Error Ratio = 0.020159 || Threshold = 40% :3.184

FIGURE 154. A-, graybird, db4, CR = 0.98225, ER = 0.020159
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FIGURE 155. Five compressed methods of color bird and gray bird

In Figure 155 we can see that

1. The rough trends of the two images’ methods are similar.

2. Mostly, the compression methods work better for the grag/then the color one.

3. SVD has an opposite behavior, it works better for the coh@ge than for the gray one.
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4.2.3. Comparison of various parameters. Up to now, we have calculated the compres-
sion degree and error ratio of three-level images for défiféimethods. These two param-
eters can only show how deep we can compress the image. Farhwision, in reality, a
high quality image is demanded. Now a natural question isv Eian one judge the quality
of an image? MSE and PSNR answer to this question easily.

In statistics, the mean squared error,i.e. theerror squared, see page 27, of an estima-
tor is one of many ways to quantify the amount by which an esttomdiffers from the true
value of the quantity being estimated. For a loss functignis called squared error loss.
Lo, measures the average of the square of the "error.” The esrtire amount by which
the estimator differs from the quantity to be estimatéd.is one of the ways to get the
difference between compressed image and original one.

It is most easy to define PSNR: the peak signal-to-noise, rbtiche mean squared
error.

MAX
(113) PSNR =20 - logo( !

)

Here,M AX| is the maximum possible pixel value of the image. In our pjthe pixels
are represented from 0 to 1, so this value is 1 here. The PSR®$s commonly used as
a measure of quality of reconstruction of lossy compressisuch as image compression.
The signal here is the original image, and the noise is ther ertroduced by compression.
When comparing compression codes PSNR is used as an apptidrto human percep-
tion of reconstruction quality, therefore in some cases r@eenstruction may appear to
be closer to the original than the another, even though itahlasver PSNR. Normally, a
higher PSNR would indicate that the reconstruction is ohkigquality. One has to pay
extra attention to the range of validity of this metric. Itasly conclusively valid when it
is used to compare results from the same content.

Typical values for the PSNR in compressed image are betweem@ 50 dB, where
higher is better. Acceptable values for wireless transimisguality loss are considered to
be about 20 dB to 25 dB. When the two images are identical the Wi$ be equal to zero,
resulting in an infinite PSNR.

Now we get some figures and tables to show the data of severgmadifferent meth-
ods, and in this way we can get the point/gf and PSNR directly. In the pictures we use
the notation MSE (mean square error) for theerror squared.
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FIGURE 156. MSE-bird-Color
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FIGURE 157. MSE-bird-Gray
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FIGURE161. MSE-Fungus
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FIGURE 162. MSE-FingerPrint
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FIGURE 163. MSE-MRI
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FIGURE 164. MSE-Wood
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FIGURE 165. PSNR-bird-C
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FIGURE 168. PSNR-Coil
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FIGURE 169. PSNR-Duan
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FIGURE 173. PSNR-Wood
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CD =~ 0.923 FFT Haar | wavelet(db2)| wavelet(db4) SVD
PSNR(Finger Print] 27.073| 24.969 25.472 26.625 21.896
PSNR(Wood) 29.804| 28.809 27.820 28.208 26.024
PSNR(Fungus) | 33.155| 31.171 31.828 32.295 23.220
PSNR(MRI) 30.146| 28.889 29.507 29.967 35.652
PSNR(Bird-gray) | 37.089| 41.920| 42.0877 42.381 36.682
PSNR(Bird-color) | 35.508| 40.275 39.974 40.004 37.770
PSNR(Coil) 24.409| 25.719 25.310 25.288 25.112
PSNR(Duan) 34.691| 33.841 34.608 34.572 34.22

TABLE 2. PSNR forimages whose compression degrees are all aro828 0

CD ~0.984 FFT Haar | wavelet(db2)| wavelet(db4)| SVD
PSNR(Finger Print] 18.147| 18.147 18.296 18.340204 | 17.875
PSNR(Wood) | 20.717| 20.717 21.025 21.125 20.323
PSNR(Fungus) | 21.56 | 21.570 22.189 22.442 17.201
PSNR(MRI) 22.733| 22.733 24.038 24.344 25.992
PSNR(Bird-gray) | 28.038| 30.836 31.575 31.979 30.571
PSNR(Bird-color) | 25.128| 27.015 27.990 28.436 28.806
PSNR(Coil) 18.363| 18.135 18.436 18.487 23.643
PSNR(Duan) | 23.253| 23.690 24.801 24.898 27.981

TaBLE 3. PSNR forimages whose compression degrees are all arod@d 0

4.2.4. Integrating all methods. PSNR and compression degree are two most important
parameters to measure the quality and efficiency of compdeissages. Now we inte-
grate the images with different methods to see what happeti®tPSNR value if we set
compression degree to a constant (Tables 2 and 3). For eaap gof tables, the PSNR

of three quality levels of images (A+, A and A-) will be compdrtogether and for all
compression methods having the same compression ratichidwhay, we see how the
compressed images look like when they occupy similar amofistorage. In the tables,
CD = Compression Degree.

Subsequently, we integrate the images with different nagho see what happens to
the compression degree if PSNR is set to as a constant (Télaled 5). For each group
of tables, the compression degree of three quality levelgnages (A+, A and A-) is
compared together for all compression methods with the $28i¢R. In this way, we see
how much storage the compressed images occupy.

5. Discussion

5.1. Comparisons between Fourier Transform, Wavelet Transform and SVD. From

our experiments, we got a series of graphs to compare all fathods on each image. In
this way we can easily predict the characteristic effectsamipression methods. In those
graphs, the x-axis is set as the compression degree andakis ys set as the error ratio.
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PSNR~ 32.608| FFT | Haar | wavelet(db2)| wavelet(db4)| SVD
CD(Finger Print)| 0.819| 0.733 0.779 0.814 0.794
CD(Wood) 0.895| 0.8634 0.882 0.864 0.895
CD(Fungus) | 0.916| 0.905 0.909 0.901 0.914
CD(MRI) 0.955| 0.951 0.958 0.956 0.836
CD(Bird-gray) | 0.982| 0.983 0.983 0.981 0.946
CD(Bird-color) | 0.977| 0.976 0.978 0.977 0.941
CD(Coil) 0.688| 0.713 0.684 0.694 0.911
CD(Duan) 0.939| 0.930 0.940 0.946 0.912

TABLE 4. Compression Degree for images whose PSNR are all arouf882

PSNR~ 28.038| FFT | Haar | wavelet(db2)| wavelet(db4)| SVD
CD(Finger Print)| 0.923| 0.898 0.922 0.923 0.922
CD(Wood) 0.938| 0.925 0.941 0.928 0.938
CD(Fungus) | 0.959] 0.961 0.961 0.957 0.938
CD(MRI) 0.975| 0.975 0.976 0.974 0.865
CD(Bird-gray) | 0.984| 0.984 0.984 0.982 0.985
CD(Bird-color) | 0.983| 0.983 0.983 0.982 0.957
CD(Caoil) 0.843| 0.849 0.839 0.849 0.937
CD(Duan) 0.966| 0.965 0.968 0.969 0.926

TAaBLE 5. Compression Degree for images whose PSNR are all arouf828

The roughly trend of those graphs are curves, showing hovetia ratio is raised with
growing compression degree.

Finger print, Fungus, MRI and wood are gray images. For tirmages DCT compres-
sion provides lowest error ratio among our considered timegression methods. Whereas,
the outcome is different for color images: Bird, coil and DudVavelet including Haar,
db2, db4 work well in differentimages. Among all the wavslete used, the performance
of compression does not necessarily gets better with tee difilter length. For example,
in the color image coil, Haar is better than db2 and db4. Tlsae for this is that the
longer the length a the wavelet filter is, the more detailslmakept. The performance of
SVD is as good as the first two methods. The error ratio of SVime@ssion is often ex-
ceeding the other two, except for Bird image. With the sanmmeression degree, mostly,
DCT and wavelet have lower error ratio than SVD. But they (D& wavelet) always
stuck at certain compression degrees and can not compegndge any further. SVD
method compresses the image more than DCT and wavelet. dnisecexplained easily
according to the SVD theory: the compression degree is dddiy the number of terms
in the truncated SVD sum and this number can be very small. Bitarimage, certain
compression degrees, SVD even works better than DCT.

5.2. Gray images versus Color imagesln the graphs comparing the compressed Bird
images with gray and color scales, it is easily seen that titee gatio of the gray one is
lower than the color one, except for the SVD case. The erriw differences between
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wavelet compressed gray image and color image are especiatious. The reason for
these differences is based on the pixels of the images. Byemage has only one layer,
whereas the color image has three layers to representdriaeld, green and blue (RGB).
When the color image is compressed, all three layers are @ss@d simultaneously. This
means that there is a risk of increasing error as the effeatcfimulated layer errors.

Note that in the Figures 158 and 167 we have used differemtpthan in the Figures
156 and 165, repectively. This is the resason for discrgseappearing in the correspond-
ing figures.

5.3. The relationship in parameters. The graphs above show the rough trend of MSE
and PSNR. While MSE becomes smaller with the decrease obti@@ssion degree, the
PSNR grows larger. This inverse relationship between MSERSNR is in accordance
with the Equation of PSNR. Furthermore, MSE is just anothay t@ check the quality of
the compressed image, which is similar to error ratio. Sdrreds of MSE and error ratio
are correlated. They also have some similar charactesiskor example, in those MSE
graphs, DCT method provides the gray images with the lowestmsquare error, except
for the Bird image. For the wavelet methods, the images atsdogv errors. SVD is still
not good here but images can be compressed further than prek®us two methods.

5.4. Different methods fit different images. Through the tables on PSNR and compres-
sion degree, we get some ideas about the compression méttad@dse suitable for each
kind of image. Through the tables, we can see that the valuBSNR for image Bird,
is obviously larger than others: over 35db for high compessevel and over 25db for
low compression level. Images Duan and MRI seem to work well {This means that
normally, for the common three layers color pictures, thaligyiof the compressed images
are better than those of the corresponding gray one. Witlesammpression degree, three
layers image can provide more information than in the gragcao that human vision will
be more satisfied.

There is one case that we should pay a particular attenti@astthe DCT has directional
property, for the texture image with a similar directionatfern, such as the Wood image,
DCT method has a much better performance than in the otheydssuch as Finger print
and Fungus. Its error ratio is much lower than the other twom@ssion methods, and its
PSNR is much higher.

Wavelet has a higher PSNR while the compression degree g guoaugh for the color
images. SVD is good at a kind of image compression which carifiea the quality of
the picture but on the other hand compresses up to the corffouexample, in medical
image processing, sometimes the doctors just want to knewttape of tumor rather than
the quality of the image. For this purpose, SVD will compréssimages to a very high
degree and save a huge amount of memory.
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6. Conclusions

In this paper we focused on three image compression metheamsier, wavelet and
singular value decomposition (SVD). Applying these methtal the selected gray and
color images from different application fields, we compatteem in terms of compression
ratio, error ratio, peak signal-to-noise ratio (PSNR).

Discrete cosine transform (DCT) compression provides tag gnages with the lowest
error ratio, lowest MSE and the highest PSNR in all three casgion ways, except for
the gray image of the Bird. It does not perform as good as weavet Bird, Coil and Duan,
but if performs better than SVD. As the DCT has directionalgarty, the performance for
the texture image with a similar directional pattern is mbetter and the error ratio is
much lower than for the other two compression methods, aa®8NR is much higher.

Wavelet provides a high PSNR and its compression degredfisisatly good for both
gray and color images. Considering the very same image \Wwghsame compression
degree, MSE and PSNR of the three wavelets used Haar, db2bdrid dere are close to
each others. In most cases, with the raise of filter lengthpdrformance of compression
gets better. But this rule breaks down for the color imageadf ¢

The performance of SVD is not as good as the other two comipressethods. To get
the same compression degree, the MSE error is much highét@RN& is much lower than
the results of the other two compression methods. Howe¥#d, &n compress the image
much further while Fourier and Wavelet have a limitation loé tmaximal compression
degree. In the application where only the contour matterewinage quality is not so
significant, SVD is a good choice. In the SVD case, comparédemther two methods,
the image have somewhat low quality. On the other hand, tioe extio in SVD is much
lower than the other two cases. Further SVD is more stable B@T transform and
wavelet transform.
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