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Abstract
Image compression is an application of data compression on digital images, which is in
high demand as it reduces the computational time and consequently the cost in image
storage and transmission. The basis for image compression is to remove redundant and
unimportant data while to keep the compressed image qualityin an acceptable range. In
this paper we will introduce three different still image compression methods: Fast Fourier
transform (FFT), wavelet transform (WT) and singular valuedecomposition (SVD). We
apply these three lossy compression techniques to different images and compare their per-
formances in terms of compression ratio,L2-norm error, mean squared error (MSE), peak
signal-to-noise ratio (PSNR) and visual quality. As the result, we get the advantages, draw-
backs and potential application areas for each method.
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1. Introduction

Uncompressed image data requires considerable storage capacity and transmission band-
width. The recent growth of multimedia-based data-intensive web applications have not
only sustained the need for more efficient ways to encode signals and images, but also
have made compression of these data central to storage and communication technology.

A common characteristic for most digital images is that the neighboring pixels are
correlated and contain redundant information. Therefore the most important task when
compressing an image is to find less correlated and yet recognizable representation of
the image. The algorithmic tools developed to take this approach are called image com-
pression, which can be viewed as an early step in image processing. Two fundamental
components of image compression areredundancyandirrelevancyreduction. Redundancy
reduction aims at removing duplication from the signal source (image/video). Irrelevancy
reduction omits parts of the signal that will not be noticed by the signal receiver, namely
the Human Visual System (HVS). In general, three types of redundancy can be identified:
Spatial Redundancy or correlation between neighboring pixel values, Spectral Redundancy
or correlation between different color planes or spectral bands, Temporal Redundancy or
correlation between adjacent frames in a sequence of images(in video applications).

Image compression research aims at reducing the number of bits needed to represent an
image by removing the spatial and spectral redundancies as much as possible. Since we
will focus only on still image compression, we will not worryabout temporal redundancy.

The procedure of the image compression can be performed in one of the following two
approaches: the lossy or lossless image compression. In this note we consider methods
used in the study of the lossy approach: the crossed domains in the Table 1 below,

There are, mainly, four types of methods used to study the lossy compression:

• Reducing the color space to the most common colors in the image
• Chroma subsampling
• Transform coding
• Fractal compression

Among these methods theTransform codingis the one which is most widely used. In
this thesis, we compare the results of image compression using three different mathemati-
cal transforms:

• Fourier transform in the form ofdiscrete cosine transform(DCT) and Fast Fourier
Transform (FFT)

• Wavelet transform based onHaar, db2 and db4 wavelet basis
• A numerical linear algebra transform presented assingular value decomposition

(SVD).

These three techniques are applied to a variety of images forwhich the compression is,
in one or other way, of interest in science and technology as well as in daily life. More
specifically we have studied the images with application in:

`
`

`
`

`
`

`
`

`
`

`
`

Approaches
Redundancy

Spatial Spectral Temporal

lossy × × -
lossless - - -

TABLE 1. The image compression procedure
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I) Electromagnetic field (Coil)
II) Identification and Criminology (Finger print)

III) Medical Physics (Fungus, & MRI)
IV) Nature and environment (Wood & bird)
V) People in general (Duan)

In each of the above application areas we choose a related example as the original
image, apply the three transforms to the image, compute compression degree,L2-norm
error, mean squared error (MSE), peak signal-to-noise ratio (PSNR) and visual quality,
and finally compare the outcoming results.

As a general summarizing comment, we find out that FFT, an image compression pro-
cedure based on DCT, has the advantages of simplicity, with satisfactory performance, and
availability of special purpose for implementation. However, the DCT is block-based lead-
ing to “blocking artifacts”, especially for low bit rates images. This is the most serious
drawback in FFT. As for SVD, the quality of the compressed image is not as good as the
other two approaches, but SVD is more stable so that we can save the cost in having less
oscillations, which appear otherwise. Furthermore, the compression speed in SVD is also
very high. We found out that among these three methods, wavelet is superior in most situ-
ations, it is the best way to compress still images and avoid most of the problem arising in
FFT and SVD.

2. Mathematical modeling

2.1. Fourier transform (FT). Fourier transform is a useful tool for signal processing and
analysis. It transfers a signal from its original ’time domain’ (or ’spatial domain’) into
’frequency domain’, describing the frequency components in the signal [6].

Before applying Fourier transform for 2D image compression, let us first take a look at
the Fourier approach for one dimensional signals. Like decomposing a vector into the sum
of basis vectors in Euclidean space, a signal can be projected onto a set of basis functions
in frequency domain. For Fourier transform, the basis used in the frequency domain are
given by{cos(2πxω), sin(2πxω)} , whereω ∈ R is the frequency. We can write the basis
ase−2πixω, since

(1) e−2πixω = cos(2πxω) − i sin(2πxω).

Here we can see, like the standard basis in Euclidean space, that the basis functions are
orthogonal to each other if they have different frequencyω, for their scalar products are all
0. For example, for integerω1 andω2, ω1 6= ω2;

(2)
∫ 1

0

cos(2πxω1)cos(2πxω2)dx = 0,

while forω1 = ω2,
∫ 1

0 cos
2(2πω1)dx = 1/2.

Assumef(x) is a function in the space (or time forx > 0) domainR , using the basis
discussed above, its Fourier transform is given by

(3) F [f(x)] = F (ω) =

∫ ∞

−∞
f(x)e−2πixωdx.
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F represents the Fourier transform, an integrable function,f(x) is a function in space do-
mainR or time domainR+, and the independent variable x represents space or time.F (ω)
is corresponding to the function in the frequency domain with ω as frequency variable.
After processing and analysis in frequency domain, the signal can be transformed back into
time domain, which is called Inverse Fourier transform, given by

(4) F−1[F (ω)] = f(x) =

∫ ∞

−∞
F (ω)e2πixωdω,

As there are imaginary parts in the basis functions, the signal in the frequency domain
F (ω) is complex and can be expressed as

(5) F (ω) = a(ω) + ib(ω) = |F (ω)| eiΦ(w),

where

(6) |F (ω)| =
√

a2 + b2, Φ(ω) = tan−1(b/a).

The absolute value of the amplitude is the Fourier spectrum,andΦ(ω) represents phase
information. Although in many applications phase information is not as important as am-
plitude spectrum, in image processing however, phase spectrum carries a lot of information.
Here is an example, (see Figures 1 to 4).

Original image

FIGURE 1. Finger Print

Original image

FIGURE 2. Wood

We make Fourier transform for the first two pictures, finger print and wood, extract their
amplitude and phase information. Then we reconstruct the third picture with amplitude
information from finger print and phase information from wood, while reconstruct the
fourth picture with amplitude information from wood and phase information from finger
print. From these reconstructed pictures we can see that phase information dominates the
picture. This example shows that phase is as important as, oreven more important than the
amplitude information, in image applications.

The Fourier transform can be used as an image processing toolto decompose an im-
age into its sine and cosine components, transforming imagefrom its spatial domain into
frequency domain with each point representing a particularfrequency contained in the im-
age. As images are two-dimensional (2D) functions, here we introduce the 2D Fourier
transform,
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FIGURE 3. Reconstructed
image with amplitude in-
formation of finger print
and phase information of
wood

FIGURE 4. Reconstructed
image with amplitude in-
formation of wood and
phase information of finger
print

(7) F(f(x, y)) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−2πi(xω+yν)dxdy.

Here (x,y) are variables in a 2D space domain, andω, ν represent the variables in the
corresponding frequency domain. The 2Dinverse Fourier transform is given by

(8) F−1[F (ω, ν)] = f(x, y) =

∫ ∞

−∞

∫ ∞

−∞
F (ω, ν)e2πi(xω+yν)dωdν.

2.1.1. Discrete Fourier transform (DFT). As the images we are dealing with are digi-
tal images, the signals are discrete. Then, the relevant Fourier transform is thediscrete
Fourier transform:

The discrete Fourier transform is a linear mapping that operates onN -dimensional vec-
tors in the same way that the Fourier transform operates on functions inR. As the image is
of finite size, we approximate the Fourier transform by a finite number of algebraic opera-
tions performed on a finite set of data. First we replace the integral over(−∞,∞) by the
integral over a finite interval[0,Ω]: We may assume thatf vanishes outside the bounded
interval[0,Ω]. Thus we define

(9) F (ω) =

∫ Ω

0

f(x)e−ixωdx.

Using the sampling pointsx = Ω/N we approximateF (ω) by the Riemann sum

(10) F (ω) ≈
N−1
∑

n=0

f
(nΩ

N

)

e−in Ω
N

ω × Ω

N
.

The sum is periodic inω with the period2πN
Ω . Now we calculateF (ω) at the points

ω = 2πm
Ω , m = 0, 1, ..., N − 1:
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(11) F
(2πm

Ω

)

∼= Ω

N

N−1
∑

n=0

e
−2πinm

N f
(nΩ

N

)

,

and letan = f
(

nΩ
N

)

, then we get

F
(2πm

Ω

)

∼= Ω

N
âm, where |m| << N and âm =

N−1
∑

n=0

e−i 2πnm
N an.

We have therefore a mapping that transforms a given N-dimensional vectora = (a0, a1, ..., aN−1)
into another N-dimensional vectorâ = (â0, â1, ..., âN−1), and the definition of “N -point
discrete Fourier transform”FN is given by

(12) FN (a) = â, with âm =
N−1
∑

n=0

e−i 2πnm
N an .

For a square image of sizeN ×N , the 2D DFT is defined as:

(13) FN (a) = â, and âk,l =
N−1
∑

n=0

N−1
∑

n=0

e−i 2π(kn+lm)
N an,m where 0 ≤ k, l < N.

a is the image in the space domain andâ is corresponding to its discrete Fourier trans-
form. The basis functions are sine and cosine waves with increasing frequencies. The 2D
Inverse Discrete Fourier transform then reads as follows:

(14) f(a, b) =
1

N2

N−1
∑

k=0

N−1
∑

l=0

F (l, k)ei2π(ka+lb)/N , n = 0, 1, ..., N.

2.1.2. Fast Fourier transform (FFT). Define an “elementary operation” as a multiplica-
tion of two real numbers followed by an addition of two real numbers. From the definition
of âm we have that the calculation of eachâm requiresN elementary operations. There are
N suchâm’s, hence the calculation of all̂am requires a total ofN2 elementary operations.
So the discrete Fourier transform may become computationally unmanageable for large
N . To compute the DFT efficiently, here we introduce the fast Fourier transform (FFT)
algorithm [1].

WhenN is prime, not much can be done about this. But whenN is composite we can
writeN = N1N2 and the indexesm andn in the definition of̂am as multiples ofN1and
N2 plus remainders. Let us assume that

m = m′N1 +m′′, where 0 ≤ m′′ ≤ N1 − 1 and 0 ≤ m′ ≤ N2 − 1

n = n′N2 + n′′, where 0 ≤ n′′ ≤ N2 − 1 and 0 ≤ n′ ≤ N1 − 1.

Then it follows that

e−i 2πnm
N = e

−2πi

(

m′n′N1N2
N

+
m′n′′N1

N
+

m′′n′N2
N

+m′′n′′

N

)

= e
−2πi

(

m′n′′

N2
+ m′′n′

N1
+ m′′n′′

N

)

.

Thus we have
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(15) âm =

N2−1
∑

n′′=0

C(m′′, n′′)e
−2πi

(

m′n′′

N2
+ m′′n′′

N

)

where

(16) C(m′′, n′′) =

N1−1
∑

n′=0

e−2πi m′′n′

N1 · an′N2+n′′ =

N1−1
∑

n′=0

e−2πi m′′n′

N1 · an.

EachC(m′′, n′′) requiresN1 elementary operations and there areN1N2 = N different
C(m′′, n′′)’s, soNN1 elementary operations are needed to calculate them all.

ThenN2 elementary operations are required to calculate eachâm, (âm =
∑N2−1

n′′=0 . . . ),
and there areN of those, henceNN2 elementary operations [5] are required to compute is
all âm.

The total number of elementary operations is thusNN1 +NN2 = N(N1 +N2).
SupposeN1 can be factored further, such thatN1 = N11N12. For a fixedn′′,C(m′′, n′′)

is a discrete Fourier transform inm′′. Then allC(m′′, n′′) can be calculated with

N2N1(N11 +N12) = N(N11 +N12),

elementary operations, whereN2 is the number ofn′′ andN1 is the number ofm′′ for a
fixedn′′. Totally it requiresN(N11 +N12) +NN2 = N(N11 + N12 +N2) elementary
operations, whereNN2 is the number of all̂am : s.

If N = N1N2 · ... ·Nk, then it requiresN(N1 +N2 + ...+Nk) elementary operations.
In particular, ifN is a power of 2, sayN = 2k it requires2kN = 2N log2N elementary
operations. The resulting algorithm for calculating discrete transforms is called theFast
Fourier transform, FFT.

2.1.3. Discrete cosine transform (DCT). Suppose we have a periodic signalf(x) with
period N. In DFT, iff(0) 6= f(N) we will have a discontinuity atx = 0 (or x = N ),
which will cause the Fourier coefficients to decay slower towards large frequencies and the
packing of the coefficients is decreased. If we use the 2N-periodic even extension off(x)
:

(17) f̃(x) :=

{

f(x), 0 ≤ x < N
f(−x), −N < x ≤ 0,

then the signal will be continuous at time levelsx = −N, 0, andN . Due to the symmetry
of f(x) (even extension off ) the sine terms in the Fourier series will disappear, and the
cosine terms are left. This is the concept of the discrete cosine transform (DCT) [8].

DCT is similar to DFT, but with twice the length in the spatialdomain than DFT. DCT
uses only real numbers and transforms a sequence of finite data into a sum of cosine func-
tions at different frequencies.

There are 8 types of DCTs, the most common used is type-II DCT,which is referred
to as the DCT. It is often used in signal and image processing,which ensures that the data
are implicitly continuous at the boundaries. In this thesiswe use this transform for image
compression.

The one-dimensional discrete cosine transformC(u) of a function f(x), with the discrete
vector x of length N, is defined by
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(18) C(u) = α(u)

N−1
∑

x=0

f(x)cos[
π(2x + 1)u

2N
],

whereu = 0, 1, 2..., N − 1. The inverse cosine transform is given by

(19) f(x) =

N−1
∑

u=0

α(u)C(u)cos[
π(2x + 1)u

2N
],

wherex = 0, 1, 2..., N − 1. Theα(u) in both equations is defined as

(20) α(u) =







√

1
N , u = 0

√

2
N , u 6= 0.

In the definition of DCT,cos[π(2x+1)u
2N ], u = 0, . . . , N−1 is the basis for the transform.

Here we plot the basis forN = 8, see Figure 5:
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0 1 2 3 4 5 6 7
−1

0

1
u = 5
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u = 7

FIGURE 5. DCT basis for N = 8

The basis element corresponding tou = 0 is always 1 for all x, andCu=0 =
√

1
N

∑N−1
x=0 f(x)

is an average value of f(x). This value is called detail coefficient (DC). Other transform
coefficients are referred to as the approximation coefficients [9].
Now we extend DCT into two dimensional space and define

(21) C(u, v) = α(u)α(v)

N−1
∑

x=0

N−1
∑

y=0

f(x, y)cos[
π(2x+ 1)u

2N
]cos[

π(2y + 1)v

2N
],

whereu, v = 0, 1, 2..., N − 1, andα(u) andα(v) are defined asα(u) in 1D DCT. The
two-dimensional inverse transform is then given by
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(22) f(x, y) =

N−1
∑

u=0

N−1
∑

v=0

α(u)α(v)C(u, v)cos[
π(2x + 1)u

2N
]cos[

π(2y + 1)v

2N
],

wherex, y = 0, 1, 2..., N − 1.
As we can see in the DCT definition, the 2D basis functions are generated by multiplying
the horizontal 1D basis function with the vertical ones. ForN = 8 (8 × 8 block), the 2D
basis are shown in the chess box, in Figure 6:

FIGURE 6. 2D DCT basis for N = 8

Similar to the 1D basis, the 2D basis on the top left is a DC component, while fre-
quency increases both in the vertical and horizontal directions to get refined approximation
coefficient components.

2.1.4. Fourier transform in image compression. Fourier transform is one of the most
common techniques used in different imaging procedures. Based on discrete cosine trans-
form (DCT), ISO (International Standards Organization) and IEC (International Electro-
Technical Commission) have established the ‘Joint Photographic Experts Group’(JPEG)
standard for image compression [3].

The reason for using DCT is that it has the ability to deal withthe boundary coefficients
in DFT. In this thesis, we apply the DCT to each distinct8 × 8 block of the 2D image,
padding the image with zeros if the number of elements in the column and row are not2N

(N is a positive integer).
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Original

FIGURE 7. Original Fungus Image

As we can see from the original fungus image, see Figure 7, there are higher frequen-
cies in the fungus cells, and lower frequencies in the background. So in the DCT result,
see Figure 8, the cell part appears brighter than the other part, which indicates a higher
frequency in the cells. Now we set a threshold and get rid of the high frequencies which
representing the details of the image block by block. Then the inverse DCT is applied to
the compressed matrix, and we get the compressed image in Section 5.

2.2. Wavelet Transform. As described above, Fourier Transform could transform a sig-
nal into the sum of infinite series of sines and cosines, whichcorresponds to the frequencies
in the signal. However, one disadvantage of Fourier Transform is that we only know which
frequencies are presented in the signal, but we don’t know when the frequencies occur.
Here we introduce a method, wavelet transform, which could represent both frequency and
space (or time).

In the image compression field, wavelet methods has advantages over Fourier methods
in the applicants where the signal contains discontinuities and sharp spikes.The wavelet-
based image compression has been developed and implementedover the few past years,
which has a better performance in many applications than DCT. Like DCT, wavelet trans-
form (WT) belongs to unitary transforms, a class of transforms which are linear, invert-
ible. Wavelet functions are defined over a finite interval with zero average value. Wavelet
transform represents any signal f(t) as a superposition of aset of wavelet basis functions
(’mother wavelet’). The difference between WT and DCT is that the WT has a realization
is more flexible we can use any mother wavelets, which are withdifferent properties.

2.2.1. Continuous Wavelet Transform (CWT). First we introduce the continuous wavelet
transform (CWT). In analogy to FT, we can construct CWT as follow,
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FIGURE 8. Fangus, DCT

(23) W(a, b) =

∫ ∞

−∞
f(x)Ψa,b(x)dx,

where f(x) is the original signal, andW(a, b) is the signal after wavelet transform.Ψa,b

is a set of basis functions, called wavelets. The wavelets are generated from the ’mother
wavelet’,Ψ, by scaling and shift translation:

(24) Ψa,b(x) =
1√
a
Ψ

(

x− b

a

)

,

wherea is the scale factor, and b is the translation factor.1√
a

is for energy normalization
for different scales.

Wavelet Properties

One of the most significant feature of wavelet is that its average value in spatial domain
is zero:

(25)
∫ ∞

−∞
Ψ(x)dx = 0,
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It is a wave-like oscillation with an amplitude that starts with zero, increases, and then
decreases back to zero. This is why it is called wavelet. Wavelet functions also satisfy the
admissibility condition,

(26)
∫ ∞

−∞

∣

∣

∣
Ψ̂(ω)

∣

∣

∣

2

|ω| dω < +∞;

whereΨ̂(ω) represents the Fourier transform ofΨ(x). But we shall denote it byΨ(ω)

instead of̂Ψ , where the frequency variable(ω) dependence indicates that it is transformed.
This condition indicates thatΨ(ω) vanishes at zero frequency,

(27) |Ψ(ω)|2
∣

∣

ω=0
= 0,

which means wavelet functions have band-pass spectrums.

2.2.2. Discrete Wavelet Transform. Discrete wavelet transform (DWT) is wavelet trans-
form where wavelets are discretely sampled. Note like CWT, DWT are also continuous-
time transforms. CWTs operate over every possible scale andtranslation while DWTs can
only be scaled and translated in discrete (finite) number of steps. The sampled wavelets of
DWT are showed as below,

(28) Ψj,k(x) =
1

√

aj
0

Ψ
(x− kb0a

j
0

aj
0

)

,

where j and k are integers,a0 > 1 is the dilation step, andb0 is the a translation factor which
depends on the dilation step. Usually we usea0 = 2 andb0 = 1 for dyadic sampling for
both frequency axis and time axis, which makes it easier to process by computers.

If the functionsΨj,k form a dense frame ofL2(R), then any signalf(x) of finite energy
can be reconstructed.

In CWT the signals are analyzed using a set of basis functionsthat are related to each
others by simple scaling and translation, while in DWT the transformed signal is obtained
by digital filter banks with different cutoff frequencies atdifferent scales.

As shown in Figure 9, DWT is computed by iteration of filters with rescaling. The filter-
ing operations determine the resolution of the signal, and supersampling and subsampling
operations determine the scale. The signal is denoted by thesequencex[n], wheren is an
integer. The low pass filter is denoted byGl while the high pass filter is denoted byHl,
wherel means the level of decomposition. At each level, the high pass filter produces de-
tail information,d[n], while the low pass filter associated with scaling function producing
coarse approximations,a[n]. This is called the Mallat algorithm or Mallat-tree decompo-
sition, which connects the continuous-time multiresolution to discrete-time filters.

According to the Nyquists rule, if the highest frequency of the original signal isω,
the lowest sampling frequency should be 2ω multiple. Note that the band filters at each
decomposition level produce signals spanning only half thefrequency band, it now has a
highest frequency ofω/2 multiple. the signal can be sampled at a frequency ofω multiple
thus discarding half the samples with no loss of information. This decimation by 2 halves
the time resolution as the entire signal is now represented by only half the number of
samples. The half band low pass filtering removes half of the frequencies and halves
the resolution, the decimation by 2 doubles the scale. So thetime resolution becomes
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FIGURE 9. 3 level wavelet decomposition tree

arbitrarily good at high frequencies, while the frequency resolution becomes arbitrarily
good at low frequencies. The filtering and decimation process is continued until the aim
level is reached. The maximum number of levels depends on thelength of the signal. The
DWT of the original signal is then obtained by all the coefficients,a[n] andd[n], starting
from the last level of decomposition.

The reconstruction of the original signal from the wavelet coefficients is the reverse pro-
cess of decomposition, as shown in Figure 10. The approximation and detail coefficients
at every level are supersampled by two, passed through the inverses low pass filters Gi and
high pass filters Hi and then added. This process is continuedthrough the same number of
levels as in the decomposition process to obtain the original signal.

FIGURE 10. 3 level wavelet reconstruction tree

In image compression, the images are 2D signals. AssumeI0 is the original image,
In is decomposed into a set of imagesAn+1

0 , An+1
1 , An+1

2 andIn+1, each image is the
result of a convolution operation performed betweenIn and each 2D discrete filters GG,
GH, HG and HH, respectively. After convolution, each image is subsampled, removing
one column and one row; the result is a wavelet representation at resolutionn composed
by the four images. The decomposition can be done repeatedlypreservingA elements and
decomposing the I element.

Reconstruction algorithm starts from taking the last obtained decomposition setAn
0 ,

An
1 , An

2 andIn. Each element is expanded introducing zeros between rows and columns.
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Next, a convolution operation is performed at each image with their respective reconstruc-
tion filters GGi, GHi, HGi and HHi. At the end, image addition is done in order to obtain
the In−1 image. OnceIn is obtained the algorithm ends, it represents the reconstructed
image.

2.2.3. Haar Wavelet. (Haar Scaling Function and Wavelets)
In this part,we are using Haar wavelet for image compression. The Haar wavelet is the first
known wavelet, which was proposed in 1909 by Alfred Haar. It is the simplest wavelet
function, but it is not continuous, which means Haar waveletis not differentiable [7].

The two- dimensional parametrization is achieved from the functionψ(t) which is
called the generating or mother wavelet

(29) ψj,k(t) = 2j/2ψ(2jt− k), j, k ∈ Z

whereZ is the set of all integers and the factor2j/2 maintains a constant norm independent
of scalej. This parametrization of the time or space location byk and the frequency or scale
by j turns out to be extraordinarily effective.

In our approach, Haar is the most important wavelet. The multiresolution formula-
tion needs two closely related basic functions. In additionto the waveletψ that has been
discussed, we will need another basic function called thescalingfunction ϕ(t). The sim-
plest orthogonal wavelet system is generated from the Haar scaling function and wavelet.
Haar wavelet function is shown in the Figure 11.

FIGURE 11. Haar wavelet

Here is an example of the Haar wavelet system which may help for a quick understand-
ing. We choose the scaling function to have compact support over 0≤ t ≤ 1, then we can
get a simple rectangle function

(30) φ(t) =

{

1 if 0≤ t ≤ 1

0 otherwise,

with only two nonzero coefficientsh(0) = h(1) = 1/
√

2, which is the Haar scaling func-
tion. Another kind of Haar requires that the wavelet to be
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(31) ψ(t) =











1 for 0≤ t ≤ 0.5

−1 for 0.5≤ t ≤ 1

0 otherwise,

with only two nonzero coefficientsh1(0) = 1/
√

2 andh1(1) = −1/
√

2, which is Haar
wavelet.

Haar Decomposition and Reconstruction Algorithms

Decomposition is the most important part of using wavelet function. We illustrate this
in an example.

Lemma 1. The following relations hold for all x∈ R:

(32) φ(2jx) = (ψ(2j−1x) + φ(2j−1x))/2

(33) φ(2jx− 1) = (φ(2j−1x) − ψ(2j−1x))/2.

This lemma can be used to decomposeφ(2jx− l) into itsWl-components forl < j. So
the description off in the example in terms ofφ(22x− l) is given by

(34) f(x) = 2φ(4x) + 2φ(4x− 1) + φ(4x − 2) − φ(4x− 3).

We want to decomposef into its W1, W0, and V0 components. Before we do that, we
should introduce the W and V components. LetV0 be the space of all functions of the form

(35) V0 = {
∑

k∈Z

akφ(x− k), ak ∈ R}

where k can range over any finite set of positive or negative integers.φ(x − k) is discon-
tinuous atx = k andx = k + 1 , V0 consists of all piecewise constant functions whose
discontinuities are contained in the set of integers. All the elements outside the range are
set zero. In this way, we can setV1 as the space of functions of the form

(36) V1 = {
∑

k∈Z

akφ(2x − k), ak ∈ R, }

with possible discontinuities at{0,±1/2,±1,±3/2, . . .}.
A more general definition can be given as follows.

Definition 1. Suppose j is any nonnegative integer. The space of step functions at level j,
denoted byVj , is defined to be the space spanned by the set

(37) {φ(2jx+ 1), φ(2jx), φ(2x − 1), φ(2jx− 2)}
over the real numbers.Vj is the space of piecewise constant functions of finite support
whose discontinuities are contained in the set

(38) {. . . ,−1/2j, 0, 1/2j, 2/2j, 3/2j, . . .}.
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Any function inV0 is contained inV1 , the same applies toV1 ⊂ V2 and so forth:

(39) V0 ⊂ V1 ⊂ . . . ⊂ Vj−1 ⊂ Vj ⊂ Vj+1 . . . .

These inclusions are strict. For example, the functionφ(2x) belongs toV1 but does
not belong toV0 , becauseφ(2x) is discontinuous atx = 1/2. Whenj gets larger, the
resolution will be finer. There is a spike of width1/2j in the functionφ(2jx). Whenj
becomes large, theφ(2jx) will be similar to one of the spikes of a signal which we want
to remove. We have an efficient algorithm to decompose a signal into its Vj -components.
To construct an orthogonal basis forVj is a quite efficient way. But this kind of orthogonal
basis ofVj is only half of the function’s graph, so we need to find a way to isolate the
’spikes’ which belong toVj but notVj−1. And at this point the waveletψ enters the
picture. Let us start withj=1, V0 is generated byφ and its translates, so one expects that
the orthogonal complement ofV0 is generated by the translates of some functionsψ.

To constructψ we need two components:
∆ψ is an element ofV1 andψ can be expressed asψ(x) =

∑

l alφ(2x − l) for some choice
of al ∈ R (note that only a finite number of theal are nonzero).
∆ψ is orthogonal toV0. This is equivalent to

∫

ψ(x)φ(x − k)dx = 0 for all integersk.
For example, there is a function consisting of two blocks

(40) ψ(x) = φ(2x) − φ(2(x− 1/2)) = φ(2x) − φ(2x− 1)

satisfying the first requirement. In addition,

(41)
∫ ∞

−∞
φ(x)ψ(x)dx =

∫ 1/2

0

1dx−
∫ 1

1/2

1dx = 1/2 − 1/2 = 0.

So, we can see thatψ is orthogonal toφ . Therefor,ψ belongs toV1 and is orthogonal to
V0 ; ψ is called theHaar wavelet.

Definition 2. The function of Haar is

(42) ψ(x) = φ(2x) − φ(2x− 1).

In other words, a function inV1 is orthogonal toV0 if and only if it is of the form
Σkakψ(x− k). LetW0 be the space of all functions of the form

(43)
∑

k∈Z

akψ(x − k), ak ∈ R

and assume that only a finite number of theak are nonzero.W0 is the orthogonal comple-
ment ofV0 in V1 or we can sayV1 = V0 ⊕W0, here⊕ means thatV0 andW0 are orthogonal
to each others. In this way, more general results can be established.

Theorem 1. LetWj be the space of functions of the form

(44)
∑

k∈Z

akψ(2jx− k), ak ∈ R,

Wj is the orthogonal complement ofVj in Vj+1 and

(45) Vj+1 = Vj ⊕Wj .
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According to this theorem, we can get

Vj = Wj−1 ⊕ Vj−1

= Wj−1 ⊕Wj−2 ⊕ Vj−2 = · · ·
= Wj−1 ⊕Wj−2 ⊕ · · · ⊕W0 ⊕ V0.

(46)

So eachf in Vj can be decomposed uniquely as a sum

(47) fj = wj−1 + wj−2 + · · · + w0 + f0

Whenj goes to infinity, there is a limiting theorem.

Theorem 2. The spaceL2(R) can be decomposed as an infinite orthogonal direct sum

(48) L2(R) = V0 ⊕W0 ⊕W1 ⊕ · · · .
In particular, each f∈ L2(R) can be written uniquely as

(49) f = f0 +

∞
∑

i=0

wj ,

wheref0 belongs toV0 andwj belongs toWj .

This result can be seen as

(50) f = f0 + lim
N→∞

N
∑

j=0

wj

Now we return to the previous example. Using of the equation

(51) f(x) = 2φ(4x) + 2φ(4x− 1) + φ(4x − 2) − φ(4x− 3),

We decomposef into itsW1,W0, andV0 components. So we can get

(52)

φ(4x) = (ψ(2x) + φ(2x))/2

φ(4x− 1) = (φ(2x) − ψ(2x))/2

φ(4x− 2) = φ(4(x − 1/2)) = (ψ(2(x− 1/2)) + φ(2(x− 1/2)))/2

φ(4x− 3) = φ(4(x − 1/2)− 1) = (φ(2(x− 1/2)) − ψ(2(x− 1/2)))/2.

Inserting these equations in the previous one and collecting terms yields

f(x) = [ψ(2x) + φ(2x)] + [φ(2x) − ψ(2x)]

+ [ψ(2x− 1) + φ(2x− 1)]/2 − [φ(2x− 1) − ψ(2x− 1)]/2

= ψ(2x− 1) + 2φ(2x).

(53)

Here theW1 - component off(x) isψ(2x− 1), sinceW1 is the linear span of{ψ(2x− k); k ∈ Z}.
And theV1 - component off(x) is2φ(2x). We also can use the equationφ(2x) = (φ(x) + ψ(x))/2
to decompose more intoV0 - component andW0 - component. The final result is

(54) f(x) = ψ(2x− 1) + ψ(x) + φ(x).

That means the components off should be
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(55)

W1 = ψ(2x− 1)

W0 = ψ(x)

V0 = φ(x)

We summarize the previous decomposition scheme in the following theorem.

Theorem 3. ( Haar Decomposition)Suppose

(56) fj(x) =
∑

k∈Z

aj
kφ(2jx− k) ∈ Vj .

Thenfj can be decomposed as

(57) fj = wj−1 + fj−1

where

(58)

wj−1 =
∑

k∈Z

bj−1
k ψ(2j−1x− k) ∈ Wj−1

fj−1 =
∑

k∈Z

aj−1
k φ(2j−1x− k) ∈ Vj−1

with

(59) bj−1
k =

aj
2k − aj

2k+1

2
, aj−1

k =
aj
2k + aj

2k+1

2
.

This process can be repeated forj−1 to decomposefj−1 aswj−2 + fj−2. In this way, we
get the decomposition

(60) fj = wj−1 + wj−2 + · · · + w0 + f0.

Finally, we can summarize all as follows: a signal is first discredited which produces an ap-
proximate signalfj ∈ Vj . Then the decomposition algorithm can produce a decomposition
of fj into its various frequency components:fj = wj−1 + wj−2 + · · · + w0 + f0.

Reconstruction

Our goal is image compression. To this approach after decomposing a signalf into itsV0 -
andWj - components, theWj - components that are small enough can be removed without
significant changes in the original signal. The informationthat we need to transmit is only
the significantWj - components, and significant data compression can be achieved. The
size of ’small’ components depend on the tolerance for errorfor a particular application.

In order to rebuild the compressed or filtered signal in termsof the basis elements
φ(2jx− l) of Vj , we need a reconstruction algorithm using

(61) f(x) =
∑

l∈Z

aj
lφ(2jx− l).

That means we can rewrite the signalf as a linear combination of step functions with
amplitudesaj

l over the intervalsl/2j ≤ x ≤ (l + 1)/2j . Now we assume a signal of the
form
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(62) f(x) = f0(x) + w0(x) + · · · + wj−1(x), wl ∈Wl

where

(63) f0(x) =
∑

k∈Z

a0
kφ(x− k) ∈ V0 and wl =

∑

k

blkψ(2lx− k) ∈Wl

for 0≤l≤j − 1. There are two equations

(64) φ(x) = φ(2x) + φ(2x− 1), ψ(x) = φ(2x) − φ(2x− 1).

which follow from the definitions ofψ andφ. Now we replacex by 2j−1x to get

(65) φ(2j−1x) = φ(2jx) + φ(2jx− 1), ψ(2j−1x) = φ(2jx) − φ(2jx− 1).

In this way, we have

(66) f0(x) =
∑

k∈Z

a0
kφ(x − k) =

∑

k∈Z

a0
2kφ(2x− 2k) + a0

2k+1φ(2x− 2k − 1)

So

(67) f0(x) =
∑

k∈Z

â1
l φ(2x− l),where â1

l =

{

a0
2k, if l = 2k,
a0
2k+1, if l = 2k + 1.

In a similar way,w0 =
∑

k b
0
kψ(x − k) can be written as

(68) w0(x) =
∑

l∈Z

b̂1l φ(2x− l),where b̂1l =

{

b02k, if l = 2k,
b02k+1, if l = 2k + 1.

Hence, we can get a formula of the form

(69)

f0(x) + w0(x) =
∑

l∈Z

a1
l φ(2x− l),where a1

l = â1
l + b̂1l =

{

a0
k + b0k, if l = 2k
a0

k − b0k, if l = 2k + 1.

According to the form of the signal, the next step is to getw1 =
∑

k b
1
kψ(2x− k) , and

add it to the sum in the same way as above, i.e.

(70)

f0(x) + w0(x) + w1(x) =
∑

l∈Z

a2
l φ(22x− l),where a2

l =

{

a1
k + b1k, if l = 2k
a1

k − b1k, if l = 2k + 1.

Here thea1
l − coefficient is determined by thea0

l − andb0l − coefficient. Then thea2
l −

coefficients is determined by thea1
l − andb1l− coefficients, and so on in a recursive manner.

The previous reconstruction algorithm can be summarized inthe following theorem.

Theorem 4. Haar Reconstruction,Suppose

(71) f = f0 + w0 + w1 + w2 + · · · + wj−1
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with
(72)
f0(x) =

∑

k∈Z

a0
kφ(x − k) ∈ V0, wj′ (x) =

∑

k∈Z

bj
′

k ψ(2j′x− k) ∈ Wj′ , 0 ≤ j′ ≤ j.

Then

(73) f(x) =
∑

l∈Z

aj′

l φ(2jx− l) ∈ Vj

where theaj′

l are determined recursively forj′ = 1, thenj′ = 2, and so on untilj′ = j,
using the algorithm

(74) aj′

l =

{

aj′−1
k + bj

′−1
k , if l = 2k,

aj′−1
k − bj

′−1
k , if l = 2k + 1.

Summary

A format in a step-by-step procedure used to process a given signal, we letφ andψ be the
Haar scaling function and wavelet.

Step.1 Sample.
If the signal is analog,y = f(t), wheret represents time, setj = J as the top level, so that
2J is larger than the Nyquist rate for the signal. GetaJ

k = f(k/2J) . In fact, the range ofk
is a finite interval determined by the duration of the signal,i.e. if the duration of the signal
is 0 ≤ t ≤ 1 , then the range ofk will be 0 ≤ k ≤ 2J − 1.

If the signal is discrete, then this step is not necessary. Wecan set the top levelaJ
k as

thekth term in the sampled signal, then the sampling rate will be2J . But in any case, we
have the highest-level approximation off given by

(75) fJ(x) =
∑

k∈Z

aJ
kφ(2Jx− k)

Step.2 Decomposition.
We use the decomposition algorithm and to decomposefJ into

(76) fJ = wJ−1 + · · · + wj−1 + fj−1 + . . .+ w0 + f0,

where

(77) wj−1 =
∑

l∈Z

bj−1
l ψ(2j−1x− l), fj−1 =

∑

l∈Z

aj−1
l φ(2j−1x− l).

The coefficientsaj−1
l andbj−1

l are determined by the algorithm

(78) aj−1
l = DL(aj)k, bj−1

l = DH(aj)k,

whereH andL are the high-pass and low-pass filters. Whenj = J , aJ
k determinesaJ−1

k

and bJ−1
k . Then for j = J − 1, aJ−1

k determinesaJ−2
k and bJ−2

k . Then j becomes
J − 2, and so on, until there are too few coefficients to continue. Or otherwise stated, the
decomposition algorithm will continue until the levelj = 0.
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Step.3 Processing.
After decomposition, the signal will be of the form

(79) fJ(x) =
J−1
∑

j=0

wj + f0 =
J−1
∑

j=0

(

∑

k∈Z

bjlψ(2jx− k)

)

+
∑

k∈Z

a0
kφ(x− k).

Now the signal can be filtered by modifying the wavelet coefficientsbjk . To filter out all
high frequencies, all thebjk would be set to zero forj above a threshold. Maybe there is
only a certain segment of the signal corresponding to particular values ofk to be filtered.
Our goal is data compression, then thebjk that are below a certain absolute value would be
set to zero.

Step.4 Reconstruction.
To take the modified signal,fJ , we can reconstruct it as

(80) fJ =
∑

k∈Z

aJ
kφ(2Jx− k).

We use the reconstruction algorithm

(81) aj = L̃Uaj−1 + H̃Ubj−1,

for j = 1, · · ·J . Whenj = 1, a1
k is obtained froma0

k andb0k. For j = 2, thea1
k andb1k

can be computed froma2
k and so forth. Whenj has reached the top level,aJ

k represents
the approximate value of the processed signal atx = k/2J .

2.2.4. Daubechies wavelet.Daubechies wavelets (dbN) are a family of orthogonal wavelets,
named after Ingrid Daubechies. N is the order. Some authors also use 2N instead of N.

With a given support width, the Daubechies wavelets have themaximal number of van-
ishing moments. It is impossible to write down these wavelets in an explicit expression,
except for db1, which is the Haar wavelet discussed before. This is so because they are
not defined in terms of resulting scaling and wavelet functions. db1-db10 are the most
commonly used Daubechies wavelets. Here are the wavelet functionsΨ :

Each wavelet has a number of vanishing moments equal to the number of coefficients,
which is also the order N of dbN. The vanishing moments are thenumber of zeros atπ of
z-transformed coefficients. Actually N determines the accuracy of the wavelet. Because
wavelet order N means that the polynomial signal up to order N-1 can be represented
completely in scaling space, while when the order is equal orlarger than N, the coefficients
of the polynomial will be zero. For example, db4 represents apolynomial signal with 4
coefficients, and db8 encodes the signal with 8 coefficients.So large order (more vanishing
moments) means the wavelet can represent more complex signals with higher accuracy, see
Figure 12.

Though the dbN wavelets (N > 1) are not explicit, however, the square modulus of the
transfer function ofh can be expressed as following,

(82) P (y) =

N−1
∑

k=0

CN−1+k
k yk,
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FIGURE 12. db2-db10, Image comes from MATLAB Help

whereP (y) means the polynomial signal, andCN−1+k
k is the binomial coefficients,

(83) |m0(ω)|2 = |(cos2(ω
2

))NP (sin2(
ω

2
))|,

where

(84) m0(ω) =
1√
2

2N−1
∑

k=0

hke
−ikω .

2.2.5. Wavelet in Image Compression.Wavelet-based compression has basis functions
with variable length, and does not block the input image. This property leads to a kind
of compression with higher compression ratio while avoiding blocking artifacts. Further-
more, it is more robust under transmission and decoding errors, and also facilitates pro-
gressive transmission of images. Because of all these advantages, the JPEG-2000 standard
prescribes wavelet-based compression algorithms [2].

2.3. Singular Value Decomposition (SVD).The decomposition has been known since
the late 19th century, and is wildly used in signal processing and statistics. Many methods
have been given to decompose a matrix into more useful elements. One of the most popular
factorization has been the singular value decomposition (SVD), which can be applied to
both real and complex rectangular matrices. It is one of the most useful tools of linear
algebra, it is a factorization and approximation technique. The SVD works wonderfully
with both under - and over - determined matrices.

Let A denote anm× n matrix of real-valued or complex-valued data with rankr. Here
the rankr is the maximal number of linearly independent rows or columns of A, which is
at most min(m,n). Then the real-valued matrix could be presented in the form

(85) Am×n = Um×mSm×nV
T
n×n,
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where U denotes anm×m orthogonal matrix that is UT U = Im×m, with I being them×m
identity matrix. S is am×n diagonal matrix with nonnegative real numbers, and the matrix
V T is the transposed matrix of then×n orthogonal matrixV that is(V TV = In×n). This
factorization is called the singular-value decompositionof A. That means the matrix can
be decomposed as the product of three matrices, see equation(85).

The diagonal elements ofS are ordered in a non-increasing way, and S is uniquely
determined byA. The diagonal entries ofS are called singular values ofA. However,
the matricesU andV are not uniquely determined byA. The columns ofU is a set of
orthogonal ’output’ basis vector directions forA, which is called the left singular vectors;
and the rows ofV T form a set of orthogonal ’input’ basis vector, called the right singular
vectors.

2.3.1. SVD in Image Compression.In linear algebra, SVD is a very powerful technique
dealing with sets of equation or matrices that are either singular or numerically very close
to singular. It is an important factorization of a rectangular matrix, which can be applied in
image compression. It has also several applications in signal processing and statistics [4].

In this project, there are several steps that should be carefully performed in order to
successfully compress an image with SVD. Firstly, we set anm × n pixel image as an
m × n matrix A. In particular, we illustrate SVD with low-rank approximations of the
original image. Anm× n image is anm× n matrix, where the entry(i, j) is interpreted
as the brightness of pixel(i, j). This means that the matrix entries are interpreted as pixels
ranging from black (0) through various shades of gray to white (1). It can present a colorful
image too.

LetA = USV T be the SVD ofA. We write

(86) U = [u1, u2, . . . , um], and V = [v1, v2, . . . , vn].

so that the matrixA could be written as

(87) A = USV T =
n

∑

i=1

σiuiv
T
i .

Sinceσj = 0 for j > r where r is the rank of the matrix A, we may define a compact SVD
as

(88) A =

r
∑

i=1

σiuiν
T
i .

The best rank-k approximation of matrixA can be written as

(89) Ak =

k
∑

i=1

σiuiv
T
i .

It is the best approximation in the sense of minimizing theL2 -norm of the error

(90) ‖A−Ak‖2 = σk+1.

We may also write

(91) Ak = USkV
T ,
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whereSk = diag(λ1, . . . , λk, 0, . . . , 0).
Here we should explain the 2-norm of a matrix. The length of a vectorx = (x1, x2, . . . , xn)T

is usually given by the Euclidean norm

(92) ‖x‖2 = (x1
2 + x2

2 + . . .+ xn
2)1/2.

In the case of the Euclidean norm and square matrices, the induced matrix norm is the
spectral norm. The spectral norm of a matrix A is the largest singular value of A or the
square root of the largest eigenvalue of the positive-semidefinite matrixA∗A.

(93) ‖A‖2 =
√

λmax(A∗A),

whereA∗ denotes the conjugate transpose of A. In this way, Ak has rankk and can be
represented as

(94) Ak =

k
∑

i=1

σiuiv
T
i = U

















σ1 . . . . . . . . . . . .
. . . σ2 . . . . . . . . .

. . . . . .
. . . . . . . . .

. . . . . . . . . σk . . .

. . . . . . . . . . . .
. . .

















V T

TheL2 norm of the error is given by

(95) ‖A−Ak‖2 = ‖
n

∑

i=k+1

σiuiv
T
i ‖2 = σk+1

Here we only needm · k + n · k = (m+ n) · k memory places to storeu1 throughuk

andλ1v1 throughλkvk. Later we can use these to reconstruct the imageAk or the matrix
Ak. Compared with the storage places needed for the original matrix A namelym × n.
The storage requirement for the decomposed matrix is much less whenk is small. So
now,Ak is our compressed image, only using(m + n) · k memory places. By chang-
ing k, we can get different errors||A−Ak||2/||A||2 and compression degrees defined as
1 − (m+ n) · k/(m · n).

2.3.2. The SVD method for image compression (An Example). It is quite obvious that
the mathematics behind the SVD would become extraordinarily involved rather quickly.
Once the theory has been understood, it is a good idea to use a mathematical software.
MATLAB works quite nicely. From above, it is clear that the matrix Ak provides less
information than the original matrix A. In fact, considering the requirements of human
visual, choosing a suitable valuek < r for the image fileAk, we can get a good approxi-
mation ofA fromAk. The smaller value ofk, the less data to present theAk. Whenk gets
close to rankr, the matrixAk will approach the original image matrixA. That means, if
we can choose an appropriate number of singular values, the compressed matrixAk can
show a reasonably nice image, sufficiently close to the original one, which can satisfy the
human visual.

After several rounds of tests, we get a result. Usually, forAm×n, with 256 ≤ n ≤ 2048,
we can get a good quality image choosing25 ≤ k ≤ 100. For a nearly square matrix i.e
m ≈ n andr ≈ n , whenk is in the range ofr/5 to r/30, the compression ratio will be
between 3/5 to 14/15.
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The SVD Matlab commands are very simple:

load A.mat;

[U, S, V]=svd(X);

colormap(’gray’);

image(U(:,1:k) * S(1:k,1:k) * V(:,1:k)’);

(96)

First of all, we load the image in MATLAB as a matrix A. Then we use thesvd function
to decompose the matrix into U, S and V and save them.colormap is an m-by-3 matrix
of real numbers between 0.0 and 1.0. Each row is an RGB (red, green, blue) vector that
defines one color. In our project, we just use ’gray’ colormapto set all the values between
0 to 1. In the end, we reconstruct the image with U, V and theSk.

To find out more about these commands and others while workingin MATLAB use the
help command. For example, if the command islinspace(0, 5), typehelp linspace to
find out more about thelinspace command.

Here is an example: Create a random8× 10 matrixA with integer values ranging from
−64 to 64 and use MATLAB’ssvd command to find the matricesU, S, V corresponding
toA.

To create a matrix of random integers, the easiest way is to use therandint command.
The command with these parameters reads:

≫ A = randint(8, 10, [−64, 64])

The function randint(m,n,rg) which we use here generates an8-by-10 (m-by-n) integer
matrix with element in the range [-64, 64] (rg).
We now get the SVD by

≫ [U, S, V ] = svd(A)

and we can check the rank of the matrixA by

≫ rank(A),

or by

≫ diag(S)

Below is an example with a much smaller matrix than our imagesbut it can be helpful to
explain the process. The image matrixA9×10 is decomposed by SVD into three matrices:
U(9 × 9), S(9 × 10), V (10 × 10).

(97) A =





























68 71 63 63 61 64 60 67 66 63
67 64 64 61 63 65 66 77 70 66
69 63 64 63 69 194 201 197 193 92
67 67 65 65 81 112 54 87 85 147
66 68 68 72 59 90 57 54 84 139
67 61 70 75 83 90 96 101 107 64
68 72 77 68 84 92 100 101 70 145
65 65 62 72 84 93 104 130 101 134
65 61 62 69 81 88 123 113 105 122




























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(98)

U =





























−.239 −.146 +.519 +.147 −.050 −.297 −.344 +.306 +.573
−.248 −.103 +.457 +.031 +.062 −.197 −.255 −.039 −.780
−.489 +.781 +.218 +.240 −.058 −.196 −.062 −.024 +.000
−.320 −.344 −.331 −.395 +.582 +.007 +.175 +.373 −.063
−.288 −.386 −.202 +.656 −.593 +.229 −.128 −.297 −.005
−.310 +.085 +.522 +.066 +.140 +.417 +.581 −.271 +.124
−.337 −.277 −.159 +.394 −.114 −.628 +.393 −.252 +.069
−.356 −.083 −.149 −.420 +.367 +.309 −.517 −.380 +.159
−.348 −.009 −.060 −.458 −.363 +.344 +.080 +.629 −.115





























,

(99)

S =





























833.208 0 0 0 0 0 0 0 0 0
0 164.686 0 0 0 0 0 0 0 0
0 0 76.291 0 0 0 0 0 0 0
0 0 0 55.314 0 0 0 0 0 0
0 0 0 0 29.909 0 0 0 0 0
0 0 0 0 0 25.309 0 0 0 0
0 0 0 0 0 0 16.026 0 0 0
0 0 0 0 0 0 0 6.704 0 0
0 0 0 0 0 0 0 0 3.756 0





























(100)

V =

































−.236 −.186 +.339 +.117 −.051 −.142 −.264 +.424 −.546 +.458
−.231 −.230 +.307 +.112 −.085 −.342 −.413 +.229 +.526 −.402
−.233 −.216 +.311 +.070 −.138 −.255 +.233 −.540 −.427 −.397
−.238 −.216 +.317 +.034 −.127 +.335 −.024 −.470 +.399 +.535
−.263 −.219 +.251 −.235 +.417 +.226 +.973 +.394 +.125 −.104
−.373 +.217 −.283 +.625 +.190 −.377 +.303 −.008 +.158 +.220
−.367 +.434 −.010 −.471 −.582 −.197 +.209 +.132 +.089 +.092
−.389 +.314 −.022 −.381 +.605 −.089 −.388 −.269 −.087 +.001
−.370 +.319 +.030 +.361 −.154 +.661 −.159 +.101 −.140 −.340
−.387 −.579 −.670 −.158 −.132 +.091 −.102 +.007 −.070 −.032

































.

If k = 4, then we get theUk, Sk, Vk as



34 W. CHEN AND W. DUAN

Uk =





























−0.239 −0.146 0.519 0.147
−0.248 −0.103 0.457 0.031
−0.489 0.781 −0.218 0.240
−0.320 −0.344 −0.331 0.395
−0.288 −0.386 −0.331 0.395
−0.310 0.085 0.522 0.066
−0.337 −0.277 −0.159 0.394
−0.356 −0.083 −0.149 −0.420
−0.347 −0.009 −0.060 −0.458





























,

Sk =









833.208 0 0 0
0 164.6863 0 0
0 0 76.291 0
0 0 0 55.3135









,

Vk =

































−0.236 −0.186 0.339 0.117
−0.231 −0.230 0.307 0.112
−0.233 −0.216 0.314 0.070
−0.238 −0.216 0.317 0.034
−0.263 −0.219 0.251 −0.235
−0.373 0.217 −0.283 0.625
−0.367 0.434 −0.010 −0.471
−0.389 0.314 −0.022 −0.381
−0.370 0.319 0.030 0.361
−0.387 −0.579 −0.670 −0.158

































.

(101)

CalculatingAk = UkSkV
T
k now gives

(102)




























65.707 64.423 64.463 65.310 65.548 62.788 58.344 65.824 69.962 63.063
63.812 62.367 62.750 63.858 66.289 64.469 67.238 73.526 72.457 66.073
68.013 60.785 62.694 64.343 71.513 192.761 199.242 194.181 195.863 192.121
67.463 69.248 67.907 68.478 71.068 107.979 63.281 78.233 87.714 49.529
66.202 168.102 66.524 66.821 67.082 96.157 48.500 63.912 77.312 135.940
72.198 68.973 69.844 71.171 73.947 190.277 98.761 102.587 102.403 64.588
68.092 69.134 69.897 72.151 85.919 84.692 93.782 103.648 81.175 146.667
65.885 65.446 66.744 69.134 83.513 96.270 113.956 120.204 69.547 133.947
63.996 62.855 64.446 66.889 81.163 93.056 117.597 121.943 97.289 119.852





























.

From these matrices, we can see thatAk is almost equal toA. The size of the image
(matrix) is large, in practice, say1024 × 768 matrix. For a larger matrix we may choose
relatively smaller value ofk. Hence the compression ratio will become very large. For
example, ifk = 100, the compression degree is77% for a 1024 × 768 matrix. Normally,
the image can be compressed to80− 90% of the original one, and the distortion is still not
serious.

There are several reasons why the SVD has become so popular. First, it is very stable.
Small change in the inputA result in small change in the singular matrixS, and vice versa.
Second, the singular valuesσi provide an easy way to approximateA.
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2.4. Error Estimates. In order to measure the quality of image compression, we choose
three methods to calculate the difference in distortion. Suppose thatf(x, y) represents the
original image, andg(x, y) is the compressed image,both of size areM×N . Then we will
have the following formulas.

Average absolute difference:

(103) Daad = 1/NM
M−1
∑

x=0

N−1
∑

y=0

|g(x, y) − f(x, y)|

Lp-norm:

DLp
= ‖f(x, y) − g(x, y)‖p = {1/NM

M−1
∑

x=0

N−1
∑

y=0

|g(x, y) − f(x, y)|p}1/p

where we will use p = 2.

(104)

Note the p = 1 gives Daad.
Signal-to-noise ratio:

(105) DSNR =

∑M−1
x=0

∑N−1
y=0 f2(x, y)

∑M−1
x=0

∑N−1
y=0 [g(x, y) − f(x, y)]2

In these three norms, we can compare the effect of different compression methods more
accurately. The average absolute difference and SNR can be understood easily.

In image processing, the SNR of an image is usually defined as the ratio of the mean
pixel value to the standard deviation of the pixel values. Related measures are the ”contrast
ratio” and the ”contrast-to-noise ratio”.

3. Coding Methods

3.1. Fourier Transform. For gray picture, first we load the data, and set the thresholdof
compression. Then we use the commendblkproc in MATLAB.

As the help of MATLAB describes, the commend

(106) B = blkproc(A, [mn], fun)

processes the image A by applying the functionfun to each distinct m by n (here we use
8-by-8) block of A, padding A with 0’s if necessary.fun is a function handle that accepts
an m by n matrix,x, and returns a matrix, vector, or scalary, i.e.

(107) y = fun(x).

blkproc does not require that y be of the same size as x. However, B is ofthe same size as
A only if y is of the same size as x. Here we use ’dct2’ as thefun, which represents the
two-dimensional discrete cosine transform.
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Now we get the image in Fourier domain. As the major information of an image relies
on the low frequency part, we set a threshold and remove the high frequency part, which
contains mostly details and noises. We do this also by m by n blocks (here we use 8-by-8).

We reconstruct the image again by the commendblkproc, but with thefun asidct2,
which returns the two-dimensional inverse discrete cosinetransform of the threshold data.

To get the error rate, we calculate the difference between the original image and the
compressed image by subtraction. Then in order to make different compressed images
comparable, we calculate theL2-norm of the difference matrix and normalize it with the
L2-norm of the original image. The result is the error rate of the image compression.

For pictures with color, we first divide the picture into three layers: red, green and blue.
Then we process the three layers respectively as the method we used for gray pictures.
After we get 3 compressed layers, we combined them back into asingle color picture.

3.2. Wavelet Transform. For gray pictures, first we load the data, and set the threshold
and the level of Wavelet compression. We use thewavedec2 commend in MATLAB:

(108) [C, S] = wavedec2(X,N,′ wname′)

As the MATLAB help describes,wavedec2 is a two-dimensional wavelet analysis func-
tion. The function returns the wavelet decomposition of thematrix X at level N, using
the wavelet named in string ’wname’ (here we are using Haar wavelet). Outputs are the
decomposition vector C and the corresponding book keeping matrix S, see Figure 13.
The vector C is organized as

(109)
C = [A(N)|H(N)|V (N)|D(N)|...H(N − 1)|V (N − 1)|D(N − 1)|...|H(1)|V (1)|D(1)]

where A, H, V, D, are row vectors with entries described as follows:

• A = approximation coefficients
• H = horizontal detail coefficients
• V = vertical detail coefficients
• D = diagonal detail coefficients

The matrix S is such that

S(1, :) = size of approximation coefficients (N),

S(i, :) = size of detail coefficients (N-i+2) for i = 2, ...N+1,

S(N + 2, :) = size(X)

(110)

Now we take the firstS(1, 1) ∗ S(1, 2) elements in the decomposition vector C, which
contain the coarsest approximation. Then we threshold these elements to get the com-
pressed data.

To inverse the Wavelet Transform back to image, we use the MATLAB command

(111) X = waverec2(C, S,′ wname′)

which performs a multilevel wavelet reconstruction of the matrixX based on the wavelet
decomposition structure [C,S]. Use the same ’wname’ as in thewavedec2.
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FIGURE 13. The structure of S

As we did before in Fourier Transform, we calculate the difference between the original
image and the compressed image by subtraction. Then we calculate theL2-norm of the dif-
ference matrix and normalize it with theL2-norm of the original image, to make different
compressed images comparable. The result is the error rate of the image compression.

For pictures with color, we first divide the picture into three layers: red, green and blue.
Then we process the three layers respectively with the method used for gray pictures. After
that we get 3 compressed layers and we combined them back intoa single colorful picture.

3.3. Singular Value Decomposition. In order to get a better understanding of the coding
method for SVD, it is necessary to include a discussion abouthow MATLAB constructs
images. Normally, each entry in the matrix corresponds to a small square of the image.
The value of the entry corresponds to a color. We can get the color spectrum easily in
MATLAB.

≫ A = 1 : 64;≫ image(A);

FIGURE 14. Colour spectrum and blocked image
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The right figure shows a 3× 3 matrix of random integers which has 9 square blocks
comprising one large block. The code we used is

≫ A = randint(3, 3);≫ image(A);

According to our previous theory, any matrixA can be approximated using a smaller
number of iterations (singular values) when calculating the approximate SVD ofA. These
images we can get by ourSV D code. We choose three iterations images with three dif-
ferent parameters ofσk :σ1,σ2,σ3, and the number of iterations equals the rank of the
approximate SVD matrixAk.

FIGURE

15. One
iteration

FIGURE

16. Two
iterations

FIGURE

17. Three
iterations

Through the figures, we can see that the original image does not appear until the third
iteration. Note that a more detailed imageAwhich is anm×nmatrix, can be approximated
using the same techniques.

For another example, letA be a15 × 20 matrix of random integers ranging from−64
to 64, with rank 12. So the original image should be represented bythe twelfth iteration.
But for human vision, it is possible to get a good quality approximation in ten iterations.
Here we use the MATLAB commands

≫ A = randint(15, 20, 64);≫ [U, S, V ] = svd(A);

and compute the approximateAk by Ak = UkSkV
T
k for different values of k (itera-

tions).
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FIGURE 18. Five iterations FIGURE 19. Ten iterations

FIGURE 20. Twelve iterations FIGURE 21. Original image

For the actual random matrix withr = 12, A12 is an exact copy of the original matrix
A. The ten iteration imageA10 has a good enough quality for human vision, see Figure
19.

Now we use a real nature image which is represented by512× 512 matrix for analysis,
the group images of vegetables. As we can see, after 10 iterations we can already make
out what the image is, see Figure 24. By 25 iterations the figure is much clear and with
75 iterations the figure is mostly the same as the original one. The compression degree for
this image is1 − (512+512)×75

512×512 = 71%.
Our project coding command computes the matrix singular value decomposition, it pro-

duces a diagonal matrixS of the same dimension asA, with nonnegative diagonal elements
in decreasing order, and orthogonal matricesU andV so thatA = USV T . When we get
the decomposed matrices, it means that we choose a valuek for image compression. The
value ofk decides the content of compressed image which combines by three new matrices.
In MATLAB-code this reads

(112) Ak = U(:, 1 : k) ∗ S(1 : k, 1 : k) ∗ V (:, 1 : k)′
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The difference between the original image and the compressed one is calculated by the
L2-norm,‖A − Ak‖2 = σk+1. For the colorful image, at the first step we always divide
the image into three layers (red green and blue). For each layer, we process the matrix as
above, decompose them and compress them separately. Finally to get a colorful figure, we
combine three compressed matrices together.
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FIGURE 22. Original image FIGURE 23. 2 iterations

FIGURE 24. 10 iterations FIGURE 25. 25 iterations

FIGURE 26. 50 iterations FIGURE 27. 75 iterations
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4. Result

4.1. The processed figures.We apply the MATLAB methods described above to the cho-
sen pictures. First we set the threshold of Wavelet and Fourier Transform. The level of
Wavelet is set as 3 to be comparable to Fourier Transform. Then we choose different com-
pression ratios: about80%, 90% and98.5%, and according these compressions choose the
singular value of SVD. We can get three different quality levels of the compressed figures:
A+: recognizable from original one,A: acceptable,A-: can’t be accepted.

We compress all the images in five methods with three quality levels, and calculate their
compression ratios and error ratios. The order of the methods is FFT, SVD, Wavelet(db1),
Wavelet(db2), Wavelet(db4).

In this way, there are three figures for each method, and five methods for each image,
which means there are fifteen figures for each image. We processed seven different kinds
of images, so there are one hundred and five figures in all. There are abbreviations some
used in this part: CR means compression ratio, ER means errorratio, FP means Finger
Print.
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Fourier Compression Ratio = 0.77659  ; Error Ratio = 0.0029535   ||    Threshold = 0.6%  ; 0.056483

FIGURE 28. A+, FP, FFT, CR = 0.77659, ER = 0.0029535

Fourier Compression Ratio = 0.94727  ; Error Ratio = 0.0107   ||    Threshold = 3%  ; 0.28241

FIGURE 29. A, FP, FFT,CR = 0.94727, ER = 0.0107

Fourier Compression Ratio = 0.98207  ; Error Ratio = 0.031263   ||    Threshold = 10%  ; 0.94138

FIGURE 30. A-, FP, FFT, CR = 0.98207, ER = 0.031263
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SVD Compression Ratio = 0.79427  ; Error Ratio = 0.0089942

FIGURE 31. A+, FP, SVD, CR = 0.79427, ER = 0.0089942
SVD Compression Ratio = 0.95573  ; Error Ratio = 0.024261

FIGURE 32. A, FP, SVD, CR = 0.95573, ER = 0.024261
SVD Compression Ratio = 0.98177  ; Error Ratio = 0.030756

FIGURE 33. A-, FP, SVD, CR = 0.98177, ER = 0.030756
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Wavelet Compression Ratio = 0.775  ; Error Ratio = 0.0050185   ||    Threshold = 1%  ; 0.093593

FIGURE 34. A+, FP, Haar, CR = 0.775, ER = 0.0050185

Wavelet Compression Ratio = 0.94222  ; Error Ratio = 0.016428   ||    Threshold = 2.9%  ; 0.27142

FIGURE 35. A, FP, Haar, CR = 0.94222; ER = 0.016428

Wavelet Compression Ratio = 0.98172  ; Error Ratio = 0.032037   ||    Threshold = 8%  ; 0.74875

FIGURE 36. A-, FP, Haar, CR = 0.98172, ER = 0.032037
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FIGURE 37. A+, FP, db2, CR = 0.7791, ER = 0.004197

Wavelet Compression Ratio = 0.94745  ; Error Ratio = 0.013493   ||    Threshold = 3%  ; 0.29177

FIGURE 38. A, FP, db2, CR = 0.94745, ER = 0.013493

Wavelet Compression Ratio = 0.98206  ; Error Ratio = 0.034217   ||    Threshold = 10%  ; 0.97256

FIGURE 39. A-, FP, db2, CR = 0.98206, ER = 0.034217
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Wavelet Compression Ratio = 0.7597  ; Error Ratio = 0.0030893   ||    Threshold = 0.6%  ; 0.056831

FIGURE 40. A+, FP, db4, CR = 0.7597, ER = 0.0030893

Wavelet Compression Ratio = 0.94488  ; Error Ratio = 0.011193   ||    Threshold = 3%  ; 0.28416

FIGURE 41. A, FP, db4, CR = 0.94488, ER = 0.011193

Wavelet Compression Ratio = 0.98207  ; Error Ratio = 0.036155   ||    Threshold = 20%  ; 1.8944

FIGURE 42. A-, FP, db4, CR = 0.98207, ER = 0.036156
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Fourier Compression Ratio = 0.84666  ; Error Ratio = 0.0022608   ||    Threshold = 0.6%  ; 0.049068

FIGURE 43. A+, Wood, FFT, CR = 0.84666, ER = 0.0022608

Fourier Compression Ratio = 0.96577  ; Error Ratio = 0.014464   ||    Threshold = 4%  ; 0.32712

FIGURE 44. A, Wood, FFT, CR = 0.96577, ER = 0.014464

Fourier Compression Ratio = 0.98318  ; Error Ratio = 0.033584   ||    Threshold = 10%  ; 0.8178

FIGURE 45. A-, Wood, FFT, CR = 0.98318, ER = 0.033584
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SVD Compression Ratio = 0.84766  ; Error Ratio = 0.0062032

FIGURE 46. A+, Wood, SVD, CR = 0.84766, ER = 0.0062032

SVD Compression Ratio = 0.96875  ; Error Ratio = 0.026804

FIGURE 47. A, Wood, SVD, CR = 0.96875; ER = 0.026804

SVD Compression Ratio = 0.98438  ; Error Ratio = 0.035328

FIGURE 48. A-, Wood, SVD, CR = 0.98438, ER = 0.035328
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Wavelet Compression Ratio = 0.84341  ; Error Ratio = 0.0042611   ||    Threshold = 0.85%  ; 0.066713

FIGURE 49. A+, Wood, Haar, CR = 0.84341; ER = 0.0042611

Wavelet Compression Ratio = 0.96779  ; Error Ratio = 0.02145   ||    Threshold = 4%  ; 0.31394

FIGURE 50. A, Wood, Haar, CR = 0.96779, ER = 0.02145

Wavelet Compression Ratio = 0.98321  ; Error Ratio = 0.034436   ||    Threshold = 10%  ; 0.78485

FIGURE 51. A-, Wood, Haar, CR = 0.98321, ER = 0.034436
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Wavelet Compression Ratio = 0.84547  ; Error Ratio = 0.005229   ||    Threshold = 0.74%  ; 0.06869

FIGURE 52. A+, Wood, db2, CR = 0.84547, ER = 0.005229

Wavelet Compression Ratio = 0.96733  ; Error Ratio = 0.021788   ||    Threshold = 3.5%  ; 0.32488

FIGURE 53. A, Wood, db2, CR = 0.96733, ER = 0.021788

Wavelet Compression Ratio = 0.98364  ; Error Ratio = 0.0442   ||    Threshold = 80%  ; 7.4259

FIGURE 54. A-, Wood, db2, CR = 0.98364; ER = 0.0442
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Wavelet Compression Ratio = 0.84466  ; Error Ratio = 0.0044818   ||    Threshold = 0.85%  ; 0.073038

FIGURE 55. A+, Wood, db4, CR = 0.84466, ER = 0.0044818

Wavelet Compression Ratio = 0.96446  ; Error Ratio = 0.020858   ||    Threshold = 4%  ; 0.34371

FIGURE 56. A, Wood, db4, CR = 0.96446, ER = 0.020858

Wavelet Compression Ratio = 0.98211  ; Error Ratio = 0.040336   ||    Threshold = 40%  ; 3.4371

FIGURE 57. A-, Wood, db4, CR = 0.98211, ER = 0.040336
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Fourier Compression Ratio = 0.87371  ; Error Ratio = 0.0051129   ||    Threshold = 0.6%  ; 0.062334

FIGURE 58. A+, Fungus, FFT, CR = 0.87371, ER = 0.0051129

Fourier Compression Ratio = 0.95946  ; Error Ratio = 0.013982   ||    Threshold = 2%  ; 0.20778

FIGURE 59. A, Fungus, FFT, CR = 0.95946, ER = 0.013982

Fourier Compression Ratio = 0.98294  ; Error Ratio = 0.028869   ||    Threshold = 8%  ; 0.83112

FIGURE 60. A-, Fungus, FFT, CR = 0.98294, ER = 0.028869
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SVD Compression Ratio = 0.875  ; Error Ratio = 0.027916

FIGURE 61. A+, Fungus, SVD, CR = 0.875, ER = 0.027916

SVD Compression Ratio = 0.95703  ; Error Ratio = 0.054683

FIGURE 62. A, Fungus, SVD, CR = 0.95703, ER = 0.054683

SVD Compression Ratio = 0.98438  ; Error Ratio = 0.10515

FIGURE 63. A-, Fungus, SVD, CR = 0.98438, ER = 0.10515
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Wavelet Compression Ratio = 0.87827  ; Error Ratio = 0.0075554   ||    Threshold = 0.8%  ; 0.083349

FIGURE 64. A+, Fungus, Haar, CR = 0.87827, ER = 0.0075554

Wavelet Compression Ratio = 0.95797  ; Error Ratio = 0.0161   ||    Threshold = 1.9%  ; 0.19795

FIGURE 65. A, Fungus, Haar, CR = 0.95797, ER = 0.0161

Wavelet Compression Ratio = 0.98256  ; Error Ratio = 0.028536   ||    Threshold = 7%  ; 0.7293

FIGURE 66. A-, Fungus, Haar, CR = 0.98256, ER = 0.028536
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Wavelet Compression Ratio = 0.87409  ; Error Ratio = 0.0067255   ||    Threshold = 0.73%  ; 0.073549

FIGURE 67. A+, Fungus, db2, CR = 0.87409, ER = 0.0067255

Wavelet Compression Ratio = 0.9579  ; Error Ratio = 0.015683   ||    Threshold = 1.9%  ; 0.19143

FIGURE 68. A, Fungus, db2, CR = 0.9579, ER = 0.015683

Wavelet Compression Ratio = 0.9825  ; Error Ratio = 0.028368   ||    Threshold = 8%  ; 0.80602

FIGURE 69. A-,Fungus,db2,CR=0.9825,ER=0.028368
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Wavelet Compression Ratio = 0.87559  ; Error Ratio = 0.0070514   ||    Threshold = 0.8%  ; 0.075805

FIGURE 70. A+, Fungus, db4, CR = 0.87559, ER = 0.0070514

Wavelet Compression Ratio = 0.95654  ; Error Ratio = 0.015324   ||    Threshold = 2%  ; 0.18951

FIGURE 71. A, Fungus, db4, CR = 0.95654, ER = 0.015324

Wavelet Compression Ratio = 0.98206  ; Error Ratio = 0.043639   ||    Threshold = 20%  ; 1.8951

FIGURE 72. A-, Fungus, db4, CR = 0.98206, ER = 0.043639
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Fourier Compression Ratio = 0.80042  ; Error Ratio = 0.0021607   ||    Threshold = 0.4%  ; 0.031394

FIGURE 73. A+, MRI, FFT, CR = 0.80042, ER = 0.0021607

Fourier Compression Ratio = 0.95477  ; Error Ratio = 0.01124   ||    Threshold = 2%  ; 0.15697

FIGURE 74. A, MRI, FFT, CR = 0.95477, ER = 0.01124

Fourier Compression Ratio = 0.98438  ; Error Ratio = 0.069299   ||    Threshold = 40%  ; 3.1394

FIGURE 75. A-, MRI, FFT, CR = 0.98438, ER = 0.069299



COMPUTATIONAL ASPECTS OF MATHEMATICAL MODELS IN IMAGE COMPRESSION 59

SVD Compression Ratio = 0.80469  ; Error Ratio = 0.011546

FIGURE 76. A+, MRI, SVD, CR = 0.80469, ER = 0.011546

SVD Compression Ratio = 0.96875  ; Error Ratio = 0.05091

FIGURE 77. A, MRI, SVD, CR = 0.96875, ER = 0.05091

SVD Compression Ratio = 0.98438  ; Error Ratio = 0.08565

FIGURE 78. A-, MRI, SVD, CR = 0.98438, ER = 0.08565
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Wavelet Compression Ratio = 0.80277  ; Error Ratio = 0.0049436   ||    Threshold = 0.6%  ; 0.046318

FIGURE 79. A+, MRI, Haar, CR = 0.80277, ER = 0.0049436

Wavelet Compression Ratio = 0.95078  ; Error Ratio = 0.014788   ||    Threshold = 2%  ; 0.15439

FIGURE 80. A, MRI, Haar, CR = 0.95078, ER = 0.014788

Wavelet Compression Ratio = 0.98434  ; Error Ratio = 0.067778   ||    Threshold = 20%  ; 1.5439

FIGURE 81. A-, MRI, Haar, CR = 0.98434, ER = 0.067778
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Wavelet Compression Ratio = 0.80977  ; Error Ratio = 0.0042916   ||    Threshold = 0.53%  ; 0.041193

FIGURE 82. A+, MRI, db2, CR = 0.8098, ER = 0.0042916

Wavelet Compression Ratio = 0.95767  ; Error Ratio = 0.013892   ||    Threshold = 2%  ; 0.15545

FIGURE 83. A, MRI, db2, CR = 0.95767, ER = 0.013892

Wavelet Compression Ratio = 0.98364  ; Error Ratio = 0.050141   ||    Threshold = 80%  ; 6.2178

FIGURE 84. A-, MRI, db2, CR = 0.98364, ER = 0.050141



62 W. CHEN AND W. DUAN

Wavelet Compression Ratio = 0.80346  ; Error Ratio = 0.0039866   ||    Threshold = 0.5%  ; 0.037416

FIGURE 85. A+, MRI, db4, CR = 0.8035, ER = 0.0039866

Wavelet Compression Ratio = 0.95575  ; Error Ratio = 0.012429   ||    Threshold = 2%  ; 0.14966

FIGURE 86. A, MRI, db4, CR = 0.95575, ER = 0.012429

Wavelet Compression Ratio = 0.98211  ; Error Ratio = 0.045417   ||    Threshold = 80%  ; 5.9865

FIGURE 87. A-, MRI, db4, CR = 0.98211, ER = 0.045417



COMPUTATIONAL ASPECTS OF MATHEMATICAL MODELS IN IMAGE COMPRESSION 63

Fourier Compression Ratio = 0.92738  ; Error Ratio = 0.024011   ||    Threshold = 0.45% 

FIGURE 88. A+, bird, FFT, CR = 0.92738, ER = 0.024011

Fourier Compression Ratio = 0.97652  ; Error Ratio = 0.024908   ||    Threshold = 2% 

FIGURE 89. A, bird, FFT, CR = 0.97652, ER = 0.024908

Fourier Compression Ratio = 0.98231  ; Error Ratio = 0.028418   ||    Threshold = 6% 

FIGURE 90. A-, bird, FFT, CR = 0.98231, ER = 0.028418
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SVD Compression Ratio = 0.92593  ; Error Ratio = 0.012252

FIGURE 91. A+, bird, SVD, CR = 0.92593, ER = 0.012252

SVD Compression Ratio = 0.97957  ; Error Ratio = 0.032357

FIGURE 92. A, bird, SVD, CR = 0.97957, ER = 0.032357

SVD Compression Ratio = 0.98467  ; Error Ratio = 0.038124

FIGURE 93. A-, bird, SVD, CR = 0.98467, ER = 0.038124



COMPUTATIONAL ASPECTS OF MATHEMATICAL MODELS IN IMAGE COMPRESSION 65

Wavelet Compression Ratio = 0.92214  ; Error Ratio = 0.003742   ||    Threshold = 0.45% 

FIGURE 94. A+, bird, Haar, CR = 0.92214, ER = 0.003742

Wavelet Compression Ratio = 0.97567  ; Error Ratio = 0.0092727   ||    Threshold = 2% 

FIGURE 95. A, bird, Haar, CR = 0.97567, ER = 0.0092727

Wavelet Compression Ratio = 0.98284  ; Error Ratio = 0.019097   ||    Threshold = 6% 

FIGURE 96. A-, bird, Haar, CR = 0.98284, ER = 0.019097
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Wavelet Compression Ratio = 0.92618  ; Error Ratio = 0.0035689   ||    Threshold = 0.4% 

FIGURE 97. A+, bird, db2, CR = 0.92618, ER = 0.0035689

Wavelet Compression Ratio = 0.97816  ; Error Ratio = 0.0089658   ||    Threshold = 2% 

FIGURE 98. A, bird, db2, CR = 0.97816, ER = 0.0089658

Wavelet Compression Ratio = 0.98299  ; Error Ratio = 0.017445   ||    Threshold = 6% 

FIGURE 99. A-, bird, db2, CR = 0.98299, ER = 0.017445
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Wavelet Compression Ratio = 0.9279  ; Error Ratio = 0.0037105   ||    Threshold = 0.4% 

FIGURE 100. A+, bird, db4, CR = 0.9279, ER = 0.0037105

Wavelet Compression Ratio = 0.97743  ; Error Ratio = 0.0088242   ||    Threshold = 2% 

FIGURE 101. A, bird, db4, CR = 0.97743, ER = 0.0088242

Wavelet Compression Ratio = 0.98225  ; Error Ratio = 0.03381   ||    Threshold = 80% 

FIGURE 102. A-, bird, db4, CR = 0.98225, ER = 0.03381
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Fourier Compression Ratio = 0.76069  ; Error Ratio = 0.027834   ||    Threshold = 0.6% 

FIGURE 103. A+, coil, FFT, CR = 0.76069, ER = 0.027834

Fourier Compression Ratio = 0.84303  ; Error Ratio = 0.027919   ||    Threshold = 1% 

FIGURE 104. A, coil, FFT, CR = 0.84303, ER = 0.027919

Fourier Compression Ratio = 0.98308  ; Error Ratio = 0.039847   ||    Threshold = 8% 

FIGURE 105. A-, coil, FFT, CR = 0.98308, ER = 0.039847
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SVD Compression Ratio = 0.76686  ; Error Ratio = 0.011497

FIGURE 106. A+, coil, SVD, CR = 0.76686, ER = 0.011497

SVD Compression Ratio = 0.84795  ; Error Ratio = 0.014587

FIGURE 107. A, coil, SVD, CR = 0.84795, ER = 0.014587

SVD Compression Ratio = 0.98986  ; Error Ratio = 0.053735

FIGURE 108. A-, coil, SVD, CR = 0.98986, ER = 0.053735
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Wavelet Compression Ratio = 0.84929  ; Error Ratio = 0.0053452   ||    Threshold = 1% 

FIGURE 109. A+, coil, Haar, CR = 0.84929, ER = 0.0053452

Wavelet Compression Ratio = 0.91974  ; Error Ratio = 0.0098579   ||    Threshold = 2% 

FIGURE 110. A, coil, Haar, CR = 0.91974, ER = 0.0098579

Wavelet Compression Ratio = 0.98337  ; Error Ratio = 0.026396   ||    Threshold = 8% 

FIGURE 111. A-, coil, Haar, CR = 0.98337, ER = 0.026396
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Wavelet Compression Ratio = 0.75725  ; Error Ratio = 0.00324   ||    Threshold = 0.6% 

FIGURE 112. A+, coil, db2, CR = 0.75725, ER = 0.00324

Wavelet Compression Ratio = 0.92111  ; Error Ratio = 0.01364   ||    Threshold = 2% 

FIGURE 113. A, coil, db2, CR = 0.92111, ER = 0.01364

Wavelet Compression Ratio = 0.98324  ; Error Ratio = 0.041773   ||    Threshold = 8% 

FIGURE 114. A-, coil, db2, CR = 0.98324, ER = 0.041773



72 W. CHEN AND W. DUAN

Wavelet Compression Ratio = 0.768  ; Error Ratio = 0.0032312   ||    Threshold = 0.6% 

FIGURE 115. A+, coil, db4, CR = 0.768, ER = 0.0032312

Wavelet Compression Ratio = 0.84852  ; Error Ratio = 0.0056264   ||    Threshold = 1% 

FIGURE 116. A, coil, db4, CR = 0.84852, ER = 0.0056264

Wavelet Compression Ratio = 0.9831  ; Error Ratio = 0.037662   ||    Threshold = 10% 

FIGURE 117. A-, coil, db4, CR = 0.9831, ER = 0.037662
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Fourier Compression Ratio = 0.89921  ; Error Ratio = 0.010955   ||    Threshold = 0.6% 

FIGURE 118. A+, Duan, FFT, CR = 0.89921, ER = 0.010955

Fourier Compression Ratio = 0.93891  ; Error Ratio = 0.011219   ||    Threshold = 1% 

FIGURE 119. A, Duan, FFT, CR = 0.93891, ER = 0.011219

Fourier Compression Ratio = 0.98452  ; Error Ratio = 0.042725   ||    Threshold = 10% 

FIGURE 120. A-, Duan, FFT, CR = 0.98452, ER = 0.042725
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SVD Compression Ratio = 0.8372  ; Error Ratio = 0.0084477

FIGURE 121. A+, Duan, SVD, CR = 0.8372, ER = 0.0084477

SVD Compression Ratio = 0.93929  ; Error Ratio = 0.021755

FIGURE 122. A, Duan, SVD, CR = 0.93929, ER = 0.021755

SVD Compression Ratio = 0.98344  ; Error Ratio = 0.068952

FIGURE 123. A-, Duan, SVD, CR = 0.98344, ER = 0.068952
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Wavelet Compression Ratio = 0.88565  ; Error Ratio = 0.0038646   ||    Threshold = 0.6% 

FIGURE 124. A+, Duan, Haar, CR = 0.88565, ER = 0.0038646

Wavelet Compression Ratio = 0.93062  ; Error Ratio = 0.0059593   ||    Threshold = 1% 

FIGURE 125. A, Duan, Haar, CR = 0.93062, ER = 0.0059593

Wavelet Compression Ratio = 0.9842  ; Error Ratio = 0.034342   ||    Threshold = 20% 

FIGURE 126. A-, Duan, Haar, CR = 0.9842, ER = 0.034342
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Wavelet Compression Ratio = 0.88475  ; Error Ratio = 0.0028814   ||    Threshold = 0.5% 

FIGURE 127. A+, Duan, db2, CR = 0.88475, ER = 0.0028814

Wavelet Compression Ratio = 0.93998  ; Error Ratio = 0.0052047   ||    Threshold = 1% 

FIGURE 128. A, Duan, db2, CR = 0.93998, ER = 0.0052047

Wavelet Compression Ratio = 0.98347  ; Error Ratio = 0.032203   ||    Threshold = 80% 

FIGURE 129. A-, Duan, db2, CR = 0.98347; ER = 0.032203
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Wavelet Compression Ratio = 0.89977  ; Error Ratio = 0.0029361   ||    Threshold = 0.5% 

FIGURE 130. A+, Duan, db4, CR = 0.8997, ER = 0.0029361

Wavelet Compression Ratio = 0.93342  ; Error Ratio = 0.0043167   ||    Threshold = 0.8% 

FIGURE 131. A, Duan, db4, CR = 0.93342, ER = 0.0043167

Wavelet Compression Ratio = 0.98243  ; Error Ratio = 0.031897   ||    Threshold = 80% 

FIGURE 132. A-, Duan, db4, CR = 0.98243, ER = 0.031897
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4.2. Data Analysis. These eight images almost include all different kinds of image types,
gray, color, texture, animal, human face, detail, rough. Inthis way, we can analysis the
data more professionally and more persuasively. In this section, we will do some study in
different interesting perspectives, and we can see a quite interesting result.

4.2.1. Comparison of different compression methods.In order to feel more directly
the effects of different compression methods, we gathered the characteristic curves of all
the methods in one graph for each compressed image. Finding some phenomena of each
image. The plots are shown after these paragraphs.

Fingerprint
There are lots of curve texture in finger print image. In this figure we can see that
1. As a whole, FFT is the best method for the image. At the same compression degree,
FFT always has the lower error ratio.
2. SVD does not work very well, the error ratio is higher than the others.
3. Among the wavelets way, db4 is the best one, and Haar wavelet is the worst.
4. With the raising of the compression degree, the error ration for all the methods raise
very quickly. Wavelet and FFT can’t compress the image beyond a certain compression
degree, but SVD continue compressing.

Wood
There are lots of vertical texture in wood image. In this figure we can see that
1. As a whole, FFT is the best method for Wood image. At the samecompression degree,
FFT always has the lower error ratio.
2. SVD does not work very well, the error ratio is higher than the others.
3. The effects of three wavelet methods are quite similar to each others.
4. With the raising of the compression degree, the error ration for all the methods raise
very quickly. Wavelet and FFT can’t compress the image beyond a certain compression
degree, but SVD continues compressing.

Fungus
There are some clear objects in fungus image. In this figure wecan see that
1. As a whole, FFT is still the best one, but the difference is not so clear now. FFT and
wavelet are quite similar to each others.
2. SVD does not work very well, the error ratio is much higher than the others.
3. The effects of three wavelet methods are almost the same.
4. Wavelet and FFT stop compressing the image beyond a certain compression degree, but
SVD still can compress a lot.

MRI
MRI is a gray scale image here. In this figure we can see that
1. As a whole, FFT is still the best one, but now the differenceis not obvious. FFT and
wavelet are quite similar to each others.
2. SVD does not work very well, the error ratio is much higher than the others.
3. The effects of three wavelet methods are almost the same.
4. Wavelet and FFT stop compressing the image at a certain compression degree, but SVD
still can compress a lot.
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Bird
This is a color image with a lot of blue color. In this figure we can see that
1. With the compression ratio≤ 0.9675, wavelet is much better than FFT and SVD, the
FFT is the worst. For the compression ration> 0.9675, FFT turns out to be better than
SVD.
2. With raising compression degree SVDs behavior becomes poorer
3. The effects of three wavelet methods are almost the same.
4. Wavelet and FFT stop compressing the image at a certain compression degree, but SVD
still can compress a lot.

Coil
This image combines two parts: a color one and a gray one. In this figure we can see that
1. Wavelet is better than both FFT and SVD. Now the FFT is performance the worst. The
error ratio in FFT hardly changes.
2. SVD works better, when the compression degree is raising.
3. The effects of three wavelet methods are almost the same.
4. Wavelet and FFT stop compressing the image beyond a certain compression degree, but
SVD still can compress a lot.

Duan
’Duan’ is a common photo of Wei Duan with true colors. In this figure we can see that
1. As a whole, wavelet is the best method, SVD is the worst one.FFT is in the middle and
doesn’t change a lot when the compression degree is lower than a certain value.
2. SVD does not work very well, the error ratio is quite higherthan the other methods.
3. The effects of three wavelet methods are similar, but the db4 seems to be the best one,
the second best is db2, then comes the Haar wavelet in the lastplace.
4. Wavelet and FFT stop compressing the image beyond a certain compression degree, but
SVD still can compress a lot.
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FIGURE 133. Five compressed methods of bird

0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.01

0.02

0.03

0.04

0.05

0.06

Compression Degree

E
rr

or
 R

at
io

Wood

 

 
Fourier
Haar
DB4
DB2
SVD

FIGURE 134. Five compressed methods of Wood
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FIGURE 135. Five compressed methods of Fungus
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FIGURE 136. Five compressed methods of MRI
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FIGURE 137. Five compressed methods of bird
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FIGURE 138. Five compressed methods of Coil
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FIGURE 139. Five compressed methods of Duan

4.2.2. The effect of compressed gray image versus color image.Through compressing
the ’bird’ images, we found that even using the same methods to compress, the effect of
gray one is different from the color one.

Below we start considering thegraybird
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Fourier Compression Ratio = 0.92396  ; Error Ratio = 0.023294   ||    Threshold = 0.4%  ; 0.029724

FIGURE 140. A+, graybird, FFT, CR = 0.92396, ER = 0.023294

Fourier Compression Ratio = 0.97081  ; Error Ratio = 0.02342   ||    Threshold = 1%  ; 0.07431

FIGURE 141. A, graybird, FFT, CR = 0.97081, ER = 0.02342

Fourier Compression Ratio = 0.9828  ; Error Ratio = 0.024201   ||    Threshold = 6%  ; 0.44586

FIGURE 142. A-, graybird, FFT, CR = 0.9828, ER = 0.024201
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SVD Compression Ratio = 0.92337  ; Error Ratio = 0.012332

FIGURE 143. A+, graybird, SVD, CR = 0.92337, ER = 0.012332

SVD Compression Ratio = 0.9719  ; Error Ratio = 0.026432

FIGURE 144. A, graybird, SVD, CR = 0.9719, ER = 0.026432

SVD Compression Ratio = 0.98467  ; Error Ratio = 0.037873

FIGURE 145. A-, graybird, SVD, CR = 0.98467, ER = 0.037873
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Wavelet Compression Ratio = 0.92738  ; Error Ratio = 0.0025672   ||    Threshold = 0.4%  ; 0.029571

FIGURE 146. A+, graybird, Haar, CR = 0.92738, ER = 0.0025672

Wavelet Compression Ratio = 0.97265  ; Error Ratio = 0.004665   ||    Threshold = 1.3%  ; 0.096104

FIGURE 147. A, graybird, Haar, CR = 0.97265, ER = 0.004665

Wavelet Compression Ratio = 0.98257  ; Error Ratio = 0.010394   ||    Threshold = 4%  ; 0.29571

FIGURE 148. A-, graybird, Haar, CR = 0.98257, ER = 0.010394
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Wavelet Compression Ratio = 0.9262  ; Error Ratio = 0.0023367   ||    Threshold = 0.35%  ; 0.027552

FIGURE 149. A+, graybird, db2, CR = 0.9262, ER = 0.0023367

Wavelet Compression Ratio = 0.9723  ; Error Ratio = 0.0037908   ||    Threshold = 1%  ; 0.078719

FIGURE 150. A, graybird, db2, CR = 0.9723, ER = 0.0037908

Wavelet Compression Ratio = 0.98265  ; Error Ratio = 0.0089934   ||    Threshold = 4%  ; 0.31488

FIGURE 151. A-, graybird, db2, CR = 0.98265, ER = 0.0089934



88 W. CHEN AND W. DUAN

Wavelet Compression Ratio = 0.92652  ; Error Ratio = 0.0021438   ||    Threshold = 0.35%  ; 0.02786

FIGURE 152. A+, graybird, db4, CR = 0.92652, ER = 0.0021438

Wavelet Compression Ratio = 0.97244  ; Error Ratio = 0.0038031   ||    Threshold = 1%  ; 0.079599

FIGURE 153. A, graybird, db4, CR = 0.97244, ER = 0.0038031

Wavelet Compression Ratio = 0.98225  ; Error Ratio = 0.020159   ||    Threshold = 40%  ; 3.184

FIGURE 154. A-, graybird, db4, CR = 0.98225, ER = 0.020159



COMPUTATIONAL ASPECTS OF MATHEMATICAL MODELS IN IMAGE COMPRESSION 89

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99
0

0.01

0.02

0.03

0.04

0.05

0.06

Compression Degree

E
rr

or
 R

at
io

Bird

 

 
Fourier Gray
Fourier Color
Haar Gray
Haar Color
DB4 Gray
DB4 Color
DB2 Gray
DB2 Color
SVD Gray
SVD Color

FIGURE 155. Five compressed methods of color bird and gray bird

In Figure 155 we can see that
1. The rough trends of the two images’ methods are similar.
2. Mostly, the compression methods work better for the gray one then the color one.
3. SVD has an opposite behavior, it works better for the colorimage than for the gray one.



90 W. CHEN AND W. DUAN

4.2.3. Comparison of various parameters.Up to now, we have calculated the compres-
sion degree and error ratio of three-level images for different methods. These two param-
eters can only show how deep we can compress the image. For human vision, in reality, a
high quality image is demanded. Now a natural question is: How can one judge the quality
of an image? MSE and PSNR answer to this question easily.

In statistics, the mean squared error,i.e. theL2-error squared, see page 27, of an estima-
tor is one of many ways to quantify the amount by which an estimator differs from the true
value of the quantity being estimated. For a loss function,L2 is called squared error loss.
L2 measures the average of the square of the ”error.” The error is the amount by which
the estimator differs from the quantity to be estimated.L2 is one of the ways to get the
difference between compressed image and original one.

It is most easy to define PSNR: the peak signal-to-noise ratio, by the mean squared
error.

(113) PSNR = 20 · log10(
MAXI

L2
)

Here,MAXI is the maximum possible pixel value of the image. In our project, the pixels
are represented from 0 to 1, so this value is 1 here. The PSNR ismost commonly used as
a measure of quality of reconstruction of lossy compressions, such as image compression.
The signal here is the original image, and the noise is the error introduced by compression.
When comparing compression codes PSNR is used as an approximation to human percep-
tion of reconstruction quality, therefore in some cases onereconstruction may appear to
be closer to the original than the another, even though it hasa lower PSNR. Normally, a
higher PSNR would indicate that the reconstruction is of higher quality. One has to pay
extra attention to the range of validity of this metric. It isonly conclusively valid when it
is used to compare results from the same content.

Typical values for the PSNR in compressed image are between 30 and 50 dB, where
higher is better. Acceptable values for wireless transmission quality loss are considered to
be about 20 dB to 25 dB. When the two images are identical the MSE will be equal to zero,
resulting in an infinite PSNR.

Now we get some figures and tables to show the data of seven images in different meth-
ods, and in this way we can get the point ofL2 and PSNR directly. In the pictures we use
the notation MSE (mean square error) for theL2-error squared.
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FIGURE 156. MSE-bird-Color
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FIGURE 157. MSE-bird-Gray
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FIGURE 158. MSE-bird-Gray and Color
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FIGURE 159. MSE-Coil
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FIGURE 160. MSE-Duan
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FIGURE 161. MSE-Fungus
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FIGURE 162. MSE-FingerPrint
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FIGURE 163. MSE-MRI
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FIGURE 164. MSE-Wood
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FIGURE 165. PSNR-bird-C
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FIGURE 166. PSNR-bird-G
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FIGURE 167. PSNR-bird-Gray and Color
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FIGURE 168. PSNR-Coil
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FIGURE 169. PSNR-Duan
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FIGURE 170. PSNR-Fungus
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FIGURE 171. PSNR-FingerPrint
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FIGURE 172. PSNR-MRI



100 W. CHEN AND W. DUAN

0.7 0.75 0.8 0.85 0.9 0.95 1
20

22

24

26

28

30

32

34

36

38

40

Compression Degree

P
S

N
R

Wood

 

 
Fourier
Haar
DB4
DB2
SVD

FIGURE 173. PSNR-Wood
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CD ≈ 0.923 FFT Haar wavelet(db2) wavelet(db4) SVD
PSNR(Finger Print) 27.073 24.969 25.472 26.625 21.896

PSNR(Wood) 29.804 28.809 27.820 28.208 26.024
PSNR(Fungus) 33.155 31.171 31.828 32.295 23.220
PSNR(MRI) 30.146 28.889 29.507 29.967 35.652

PSNR(Bird-gray) 37.089 41.920 42.0877 42.381 36.682
PSNR(Bird-color) 35.508 40.275 39.974 40.004 37.770

PSNR(Coil) 24.409 25.719 25.310 25.288 25.112
PSNR(Duan) 34.691 33.841 34.608 34.572 34.22

TABLE 2. PSNR for images whose compression degrees are all around 0.923

CD ≈ 0.984 FFT Haar wavelet(db2) wavelet(db4) SVD
PSNR(Finger Print) 18.147 18.147 18.296 18.340204 17.875

PSNR(Wood) 20.717 20.717 21.025 21.125 20.323
PSNR(Fungus) 21.56 21.570 22.189 22.442 17.201
PSNR(MRI) 22.733 22.733 24.038 24.344 25.992

PSNR(Bird-gray) 28.038 30.836 31.575 31.979 30.571
PSNR(Bird-color) 25.128 27.015 27.990 28.436 28.806

PSNR(Coil) 18.363 18.135 18.436 18.487 23.643
PSNR(Duan) 23.253 23.690 24.801 24.898 27.981

TABLE 3. PSNR for images whose compression degrees are all around 0.984

4.2.4. Integrating all methods. PSNR and compression degree are two most important
parameters to measure the quality and efficiency of compressed images. Now we inte-
grate the images with different methods to see what happens to the PSNR value if we set
compression degree to a constant (Tables 2 and 3). For each group of tables, the PSNR
of three quality levels of images (A+, A and A-) will be compared together and for all
compression methods having the same compression ratio. In this way, we see how the
compressed images look like when they occupy similar amountof storage. In the tables,
CD = Compression Degree.

Subsequently, we integrate the images with different methods to see what happens to
the compression degree if PSNR is set to as a constant (Tables4 and 5). For each group
of tables, the compression degree of three quality levels ofimages (A+, A and A-) is
compared together for all compression methods with the samePSNR. In this way, we see
how much storage the compressed images occupy.

5. Discussion

5.1. Comparisons between Fourier Transform, Wavelet Transform, and SVD. From
our experiments, we got a series of graphs to compare all five methods on each image. In
this way we can easily predict the characteristic effects ofcompression methods. In those
graphs, the x-axis is set as the compression degree and the y-axis is set as the error ratio.
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PSNR≈ 32.608 FFT Haar wavelet(db2) wavelet(db4) SVD
CD(Finger Print) 0.819 0.733 0.779 0.814 0.794

CD(Wood) 0.895 0.8634 0.882 0.864 0.895
CD(Fungus) 0.916 0.905 0.909 0.901 0.914
CD(MRI) 0.955 0.951 0.958 0.956 0.836

CD(Bird-gray) 0.982 0.983 0.983 0.981 0.946
CD(Bird-color) 0.977 0.976 0.978 0.977 0.941

CD(Coil) 0.688 0.713 0.684 0.694 0.911
CD(Duan) 0.939 0.930 0.940 0.946 0.912

TABLE 4. Compression Degree for images whose PSNR are all around 32.608

PSNR≈ 28.038 FFT Haar wavelet(db2) wavelet(db4) SVD
CD(Finger Print) 0.923 0.898 0.922 0.923 0.922

CD(Wood) 0.938 0.925 0.941 0.928 0.938
CD(Fungus) 0.959 0.961 0.961 0.957 0.938
CD(MRI) 0.975 0.975 0.976 0.974 0.865

CD(Bird-gray) 0.984 0.984 0.984 0.982 0.985
CD(Bird-color) 0.983 0.983 0.983 0.982 0.957

CD(Coil) 0.843 0.849 0.839 0.849 0.937
CD(Duan) 0.966 0.965 0.968 0.969 0.926

TABLE 5. Compression Degree for images whose PSNR are all around 28.038

The roughly trend of those graphs are curves, showing how theerror ratio is raised with
growing compression degree.

Finger print, Fungus, MRI and wood are gray images. For theseimages DCT compres-
sion provides lowest error ratio among our considered the compression methods. Whereas,
the outcome is different for color images: Bird, coil and Duan. Wavelet including Haar,
db2, db4 work well in different images. Among all the wavelets we used, the performance
of compression does not necessarily gets better with the raise of filter length. For example,
in the color image coil, Haar is better than db2 and db4. The reason for this is that the
longer the length a the wavelet filter is, the more details canbe kept. The performance of
SVD is as good as the first two methods. The error ratio of SVD compression is often ex-
ceeding the other two, except for Bird image. With the same compression degree, mostly,
DCT and wavelet have lower error ratio than SVD. But they (DCTand wavelet) always
stuck at certain compression degrees and can not compress the image any further. SVD
method compresses the image more than DCT and wavelet. This can be explained easily
according to the SVD theory: the compression degree is decided by the number of terms
in the truncated SVD sum and this number can be very small. ForBird image, certain
compression degrees, SVD even works better than DCT.

5.2. Gray images versus Color images.In the graphs comparing the compressed Bird
images with gray and color scales, it is easily seen that the error ratio of the gray one is
lower than the color one, except for the SVD case. The error ratio differences between



COMPUTATIONAL ASPECTS OF MATHEMATICAL MODELS IN IMAGE COMPRESSION 103

wavelet compressed gray image and color image are especially obvious. The reason for
these differences is based on the pixels of the images. The gray image has only one layer,
whereas the color image has three layers to represent tricolor: red, green and blue (RGB).
When the color image is compressed, all three layers are compressed simultaneously. This
means that there is a risk of increasing error as the effect ofaccumulated layer errors.

Note that in the Figures 158 and 167 we have used different points than in the Figures
156 and 165, repectively. This is the resason for discripecies appearing in the correspond-
ing figures.

5.3. The relationship in parameters. The graphs above show the rough trend of MSE
and PSNR. While MSE becomes smaller with the decrease of the compression degree, the
PSNR grows larger. This inverse relationship between MSE and PSNR is in accordance
with the Equation of PSNR. Furthermore, MSE is just another way to check the quality of
the compressed image, which is similar to error ratio. So thetrends of MSE and error ratio
are correlated. They also have some similar characteristics. For example, in those MSE
graphs, DCT method provides the gray images with the lowest mean square error, except
for the Bird image. For the wavelet methods, the images also get low errors. SVD is still
not good here but images can be compressed further than in theprevious two methods.

5.4. Different methods fit different images. Through the tables on PSNR and compres-
sion degree, we get some ideas about the compression methodsthat are suitable for each
kind of image. Through the tables, we can see that the values of PSNR for image Bird,
is obviously larger than others: over 35db for high compression level and over 25db for
low compression level. Images Duan and MRI seem to work well too. This means that
normally, for the common three layers color pictures, the quality of the compressed images
are better than those of the corresponding gray one. With same compression degree, three
layers image can provide more information than in the gray case, so that human vision will
be more satisfied.

There is one case that we should pay a particular attention to: as the DCT has directional
property, for the texture image with a similar directional pattern, such as the Wood image,
DCT method has a much better performance than in the other images such as Finger print
and Fungus. Its error ratio is much lower than the other two compression methods, and its
PSNR is much higher.

Wavelet has a higher PSNR while the compression degree is good enough for the color
images. SVD is good at a kind of image compression which can sacrifice the quality of
the picture but on the other hand compresses up to the contour. For example, in medical
image processing, sometimes the doctors just want to know the shape of tumor rather than
the quality of the image. For this purpose, SVD will compressthe images to a very high
degree and save a huge amount of memory.
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6. Conclusions

In this paper we focused on three image compression methods:Fourier, wavelet and
singular value decomposition (SVD). Applying these methods to the selected gray and
color images from different application fields, we comparedthem in terms of compression
ratio, error ratio, peak signal-to-noise ratio (PSNR).

Discrete cosine transform (DCT) compression provides the gray images with the lowest
error ratio, lowest MSE and the highest PSNR in all three compression ways, except for
the gray image of the Bird. It does not perform as good as wavelet for Bird, Coil and Duan,
but if performs better than SVD. As the DCT has directional property, the performance for
the texture image with a similar directional pattern is muchbetter and the error ratio is
much lower than for the other two compression methods, and the PSNR is much higher.

Wavelet provides a high PSNR and its compression degree is sufficiently good for both
gray and color images. Considering the very same image with the same compression
degree, MSE and PSNR of the three wavelets used Haar, db2 and db4 in here are close to
each others. In most cases, with the raise of filter length, the performance of compression
gets better. But this rule breaks down for the color image of coil.

The performance of SVD is not as good as the other two compression methods. To get
the same compression degree, the MSE error is much higher andPSNR is much lower than
the results of the other two compression methods. However, SVD can compress the image
much further while Fourier and Wavelet have a limitation of the maximal compression
degree. In the application where only the contour matters while image quality is not so
significant, SVD is a good choice. In the SVD case, compared tothe other two methods,
the image have somewhat low quality. On the other hand, the error ratio in SVD is much
lower than the other two cases. Further SVD is more stable than DCT transform and
wavelet transform.
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