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Abstract

We study the flatland (two dimensional) linear transport equation, under an angular 2π periodicity assumption both on particle
density functionψ(x, y, θ) and on the differential scattering σs(θ). We consider the beam problem, with a forward peaked source on
phase-space, and derive P1 approximation with a diffusion coefficient of 1/2σtr, (versus 1/3σtr of the three dimensional problem),
where σtr is the transport cross section. Further assumptions as peaked σs(θ) near θ = 0 (small angle of scattering), and small
angle of flight (θ ≈ 0) yield Fokker–Planck and Fermi approximations with the diffusion coefficients σtr (rather than σtr/2 of
the three dimensional case). We discretize the problem using four different Galerkin schemes and justify the results through some
numerical examples.
c© 2007 Elsevier Ltd. All rights reserved.

Keywords: Linear transport equation; Flatland; Fokker–Planck; Fermi; Standard Galerkin; Characteristic method; Streamline- and semi streamline
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1. Introduction

This note is devoted to the study of the linear flatland transport equation with 2π periodic probability density
function ψ and differential scattering kernel σs :{

ψ(x, y, θ), (x, y) ∈ R2, 0 ≤ θ ≤ 2π,
ψ(θ) = ψ(θ + 2π), σs(θ) = σs(θ + 2π),

(1.1)

ψ ≡ ψ(x, y, θ) is the number of particles in dx about x , dy about y and dθ about θ.
Our objective is to derive the (angular) diffusion approximations for the linear Boltzmann equation in the flatland

(2D with certain assumptions) case, construct some discrete computational algorithms and justify their efficiency and
reliability through implementing some numerical examples. For the beam problem in the flatland case, and under the
same assumptions as in the three dimensional case, we obtain P1, Fokker–Planck and Fermi approximations with
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diffusion coefficients different from those in the three dimensional case derived in, e.g., [1] and [2]. We present a
formal approach reducing the 3D transport equation to the “flatland” transport equation. Starting from the “flatland”
transport equation we derive the usual balance equation and a variational form underlying derivation of a beam
problem as well as Fokker–Planck and Fermi developments. For other kinds of diffusion approximation for transport
processes see, e.g. [3]. Finally we reformulate the equation as a model problem in a bounded domain associated
with homogeneous mixed inflow boundary conditions, and product of Dirac δ functions as the incident data. The
model problem is then discretized by means of four different Galerkin schemes: Standard Galerkin (SG), Semi
Streamline Diffusion (SSD), Characteristic Galerkin (CG) and Characteristic Streamline Diffusion (CSD) methods.
We implement these schemes in some numerical examples and justify the convergence in various norms as well as
the impact of a modified L2 projection, introduced e.g. in [4], in improving the qualitative behavior of the schemes
regarding both formation of boundary layers and also the oscillatory behavior due to non-smooth data.

The “flatland” type transport equations are considered, e.g., in modelling the wave scattering in the marginal ice
zone [5], where the ice floes have a small relative stiffness: ice floes tend to form with thicknesses of ∼ 1 m and of a
size of ∼100 m (1/2 or 1/4 of wavelengths). The corresponding, large scale, equations (for energy, not displacement)
are governed by scattering theory. There are two approaches to scattering theory, multiple scattering, and the transport
equation. The flatland presents a model for the latter process. See [5] for the details. The “flatland” transport equations
also presents a model for the wave transport along a surface with random impedance, see, e.g. [6].

Our motivation in this study is to get an insight about the fully three dimensional problem in heterogeneous media
with anisotropic scattering: A model which is of interest in radiation oncology, see, e.g. [7–14].

As some basic application domains for the transport type equations one can mention, e.g. nuclear engineering,
medical physics (radiation therapy), atmospheric physics and astrophysics. Both in atmospheric and astrophysics,
radiative transfer (of photons) is crucial. For a recent monograph on radiative transfer for atmospheric physics see
Marshak and Davis (eds) [15]. Radiative transfer also is important in certain aspects of mechanical engineering.
Thermal radiative transfer is crucial in the study of flames and furnaces.

In nuclear engineering the study is focusing on certain “isotropy aspects” and homogeneous, “shape-regular”,
physical domains, and is based on rigorous mathematical development, see, e.g. [16]. On the other hand the radiation
therapy application, dealing with biological objects, has started using empirical clinical approaches and advanced
to the study of model problems considering media heterogeneity and anisotropic scatterings in complex geometric
configurations, viz [7–13,17,14,18]. The mathematical aspects, in this application, are yet to be developed.

A heuristic approach uses asymptotic expansions to transfer the transport integral operator to a diffusion
Fokker–Planck operator. A development which requires small angular scattering (σs(θ) is peaked about θ = 0). Yet,
assuming small angle of flight (θ ≈ 0), another asymptotic expansion would yield the Fermi equation, see, e.g. [19–
23,1,2,24–26]. Numerical algorithms have been mostly based on Monte Carlo simulations for electron, and partially
photon, beams, see, e.g. [27–29,31,30,32,33]. The finite element schemes, based on the idea of the exact transport +

projection in [34] are considered in [35,4,36,37]. Finally a paraxial approximation for space charged dominated beams
is considered in [38].

An outline of this paper is as follows: In Section 2 we give a formal derivation of the “flatland” transport equation
from the 3D transport equation. In Section 3, using the 2π periodicity we derive a canonical form of the linear flatland
equation and its zeroth (the balance equation), first and second order angular moments. Section 4 is devoted to the
beam problem where we give an approximation for the transport cross-section σtr. In Section 5 we obtain the P1
approximation, as well as the Fokker–Planck and Fermi developments. In Section 6 we formulate a model problem in
bounded medium. In Section 7 we introduce four discretization algorithms. And finally in our concluding Section 8
we give examples of numerical implementations of the discrete problems. Throughout the report, C will denote an
absolute constant not necessarily the same at each occurrence, unless otherwise explicitly stated.

2. A formal derivation of the “flatland” transport equation

Let us consider the one-group, 3-D transport equation with isotropic scattering:√
1 − µ2 cos γ

∂ψ

∂x
(x, y, z, µ, γ )+

√
1 − µ2 sin γ

∂ψ

∂y
(x, y, z, µ, γ )

+µ
∂ψ

∂z
(x, y, z, µ, γ )+ Σtψ(x, y, z, µ, γ )
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=
Σs

4π

∫ 2π

0

∫ 1

−1
ψ(x, y, z, µ′, γ ′) dµ′ dγ ′

+
1

4π
Q(x, y, z),

(x, y, z) ∈ V 3, − 1 ≤ µ ≤ 1, − π < γ ≤ π. (2.1)

Here V 3 is a convex 3-D system, µ is the cosine of the angle between the direction of flight and the direction of the
positive z-axis, and γ is the (azimuthal) angle between the projection of the direction of flight onto the x, y-plane and
the direction of the positive x-axis.

We assume that the system and boundary conditions are such that the solution is independent of z and a symmetric
(even) function of µ:

ψ(x, y, z, µ, γ ) = ψ(x, y, µ, γ ) = ψ(x, y,−µ, γ ) ≡
1
2
Ψ(x, y, µ, γ ). (2.2)

The factor 1/2 is included so that

Ψ(x, y, µ, γ ) = 2ψ(x, y, µ, γ ) = ψ(x, y, µ, γ )+ ψ(x, y,−µ, γ ). (2.3)

Then Eq. (2.1) simplifies to:√
1 − µ2 cos γ

∂Ψ
∂x
(x, y, µ, γ )+

√
1 − µ2 sin γ

∂Ψ
∂y
(x, y, µ, γ )+ ΣtΨ(x, y, µ, γ )

=
Σs

2π

∫ 2π

0

∫ 1

0
Ψ(x, y, µ′, γ ′) dµ′ dγ ′

+
1

2π
Q(x, y),

(x, y) ∈ V 2, 0 ≤ µ ≤ 1, − π < γ ≤ π. (2.4)

Here V 2 is a convex 2-D system. Eq. (2.4) is equivalent to the standard x, y-geometry transport equation, which has
a slightly different definition of the angular variables.

To obtain the “flatland” transport equation, we make the S2 approximation in µ in Eq. (2.3), but we do not make
any approximation in γ . The simplest way to do this is to set µ = 1/

√
3 in Eq. (2.4) and assume:

Ψ(x, y, µ, γ ) ≈ Ψ
(

x, y,
1

√
3
, γ

)
≡ Ψ̂(x, y, γ ) 0 ≤ µ ≤ 1. (2.5)

Eq. (2.4) becomes:√
2
3

(
cos γ

∂Ψ̂
∂x
(x, y, γ )+ sin γ

∂Ψ̂
∂y
(x, y, γ )

)
+ Σt Ψ̂(x, y, γ )

=
Σs

2π

∫ 2π

0
Ψ̂(x, y, γ ′) dγ ′

+
1

2π
Q(x, y), (x, y) ∈ V 2, − π < γ ≤ π. (2.6)

If the factor
√

2/3 were replaced by unity, (2.6) would become the “flatland” transport equation. (The reason for the
non-unity value of this factor is that particles travel in the polar directions µ = ±1/

√
3 rather than µ = 0.) If we

rescale the cross sections and source by:

Σ̂t ≡

√
3
2
Σt , Σ̂s ≡

√
3
2
Σs, Q̂(x, y) ≡

√
3
2

Q(x, y), (2.7)

then Eq. (2.6) directly reduces to the “flatland” transport equation:

cos γ
∂Ψ̂
∂x
(x, y, γ )+ sin γ

∂Ψ̂
∂y
(x, y, γ )+ Σ̂t Ψ̂(x, y, γ ) =

Σ̂s

2π

∫ 2π

0
Ψ̂(x, y, γ ′) dγ ′

+
1

2π
Q̂(x, y),

(x, y) ∈ V 2, −π < γ ≤ π. (2.8)
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3. The flatland linear Boltzmann equation

Using some identifications, e.g. ψ(·, θ) = Ψ̂(·, γ ), and the 2π periodicity, the Flatland linear Boltzmann equation
(FLB) (2.8) can be written as:

Ω · ∇ψ + σ̄aψ =

∫ 2π

0
σs(θ − θ ′)[ψ(θ ′)− ψ(θ)] dθ ′

+ q(x, y, θ), (3.1)

where Ω := (cos θ, sin θ) and ∇ = (∂/∂x, ∂/∂y). Introducing the scattering cross section

σ̄s :=

∫ 2π

0
σs(θ − θ ′)dθ, (3.2)

and letting v = θ−θ ′, by the 2π periodicity of σs ,
∫ 2π

0 σs(θ−θ ′)dθ =
∫ 2π

0 σs(v)dv. Thus the Eq. (3.1) can be written
as

Ω · ∇ψ + σ̄aψ =

∫ 2π

0
σs(θ − θ ′)ψ(θ ′) dθ ′

− σ̄sψ + q. (3.3)

Now we define the total cross section

σ̄t := σ̄a + σ̄s, (3.4)

and rewrite the Eq. (3.1) as

Ω · ∇ψ + σ̄tψ =

∫ 2π

0
σs(θ − θ ′)ψ(θ ′) dθ ′

+ q, (3.5)

where σ̄t ≥ σ̄s (=only if σ̄a = 0). Integrating (3.5) over θ ∈ [0, 2π ] we get

∇ · J + σ̄tΨ =

∫ 2π

0
σ̄sψ(θ

′) dθ ′
+ Q0 = σ̄sΨ + Q0, (3.6)

where

J =

∫ 2π

0
Ωψ dθ, Ψ =

∫ 2π

0
ψ dθ, and Q0 =

∫ 2π

0
q dθ. (3.7)

Now rearranging the terms in (3.6) we get the usual balance equation:

∇ · J + σ̄aΨ = Q0. (3.8)

We recall that for the differential scattering σs(θ):|θ | < π/2 : corresponds to forward scattering
|θ | = π/2 : means “void” scattering region
|θ | > π/2 : corresponds to backward scattering.

(3.9)

The symmetry condition:

σs(θ) = σs(−θ), (3.10)

yields an even Fourier series expansion for σs(θ) viz,

σs(θ) =

∞∑
n=0

σsn

π
(cos nθ) , (3.11)

where

σs0 = σ̄s, and σsm =

∫ 2π

0
σs(θ) cos mθ dθ. (3.12)
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Multiply (3.5) by Ω , integrate over θ , and change the order of integrations to get∫ 2π

0
Ω(Ω · ∇ψ) dθ + σ̄t J =

∫ 2π

θ=0
Ω

[∫ 2π

θ ′=0
σs(θ − θ ′)ψ(θ ′) dθ ′

]
dθ + Q1

=

∫ 2π

θ ′=0
ψ(θ ′)

[∫ 2π

θ=0
Ωσs(θ − θ ′)dθ

]
dθ ′

+ Q1. (3.13)

Further using (3.11) and the orthogonality of the trigonometric functions we have∫ 2π

θ=0
Ω σs(θ − θ ′)dθ =

∫ 2π

θ=0
(cos θ, sin θ)

∞∑
n=0

σsn

π
cos n(θ − θ ′) dθ

=

∫ 2π

θ=0
(cos θ, sin θ)

∞∑
n=0

σsn

π
[cos nθ cos nθ ′

+ sin nθ sin nθ ′
] dθ

=

∫ 2π

θ=0

(
cos2 θ cos θ ′, sin2 θ sin θ ′

) σs1

π
dθ

=
(
π cos θ ′, π sin θ ′

) σs1

π
= σs1(cos θ ′, sin θ ′) = σs1Ω ′. (3.14)

Inserting (3.14) in (3.13) we thus obtain∫ 2π

0
Ω(Ω · ∇ψ) dθ + σ̄t J = σs1

∫ 2π

θ ′=0
ψ(θ ′)Ω ′ dθ ′

+ Q1 = σs1 J + Q1, (3.15)

where

Q1 =

∫ 2π

0
Ωq dθ. (3.16)

Now we define the transport cross-section viz,

σtr = σ̄t − σs1 = σ̄a + σ̄s − σs1 = σ̄a + (σs0 − σs1). (3.17)

Thus we have∫ 2π

0
Ω(Ω · ∇ψ) dθ + σtr J = Q1. (3.18)

4. A beam problem

Now let us consider a beam problem, with σ̄a = 0 (i.e. σ̄t = σ̄s = σs0), and:

q(x, y, θ) = δ(x)δ(y)δ(θ). (4.1)

Then the Eq. (3.5) would become

Ω · ∇ψ + σs0ψ =

∫ 2π

0
σs(θ − θ ′)ψ(θ ′) dθ ′

+ δ(x)δ(y)δ(θ). (4.2)

We assume that ψ is compactly supported in R2: i.e., that

lim
x→±∞

ψ(x, ·) = lim
y→±∞

ψ(·, y) = 0, (4.3)

and transverse integrate (4.2) over y ∈ R. Now if ψ̂ =
∫
ψ dy, then it follows that

cos θ
dψ̂
dx

+ σs0ψ̂ =

∫ 2π

0
σs(θ − θ ′)ψ̂(θ ′) dθ ′

+ δ(x)δ(θ). (4.4)
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Next, we integrate (4.4) over θ ∈ [0−, 2π ], change the order of integration on the right hand side and use the fact that∫ 2π
0 σs(θ − θ ′) dθ = σ̄s = σs0, to obtain

d
dx

∫ 2π

0
(cos θ)ψ̂ dθ = δ(x). (4.5)

Thus ∫ 2π

0
cos θψ̂(x, θ) dθ =

{
1, x > 0,
0, x < 0.

(4.6)

Now taking the cos θ moment of (4.4) yields

d
dx

∫ 2π

0
cos2 θ ψ̂ dθ + σs0

∫ 2π

0
cos θ ψ̂ dθ =

∫ 2π

0

[∫ 2π

0
σs(θ − θ ′)ψ̂(θ ′) dθ ′

]
cos θ dθ

+

∫ 2π

0
cos θδ(θ) δ(x) dθ

=

∫ 2π

0

[∫ 2π

0
σs(θ − θ ′) cos θ dθ

]
ψ̂(θ ′) dθ ′

+ δ(x), (4.7)

where using the 2π -periodicity of σs , (3.10) and (3.11) we have that∫ 2π

0
σs(θ − θ ′) cos θ dθ =

∫ 2π−θ ′

−θ ′

σs(α) cos(α + θ ′) dα

=

∫ 2π

0
σs(α) cos(α) cos(θ ′) dα −

∫ 2π

0
σs(α) sin(α) sin(θ ′) dα

= cos(θ ′)σs1. (4.8)

Hence, inserting (4.8) in (4.7) it follows that

d
dx

∫ 2π

0
cos2 θψ̂ dθ + σs0

∫ 2π

0
cos θψ̂ dθ = σs1

∫ 2π

0
cos θψ̂ dθ + δ(x), (4.9)

or more concisely,

d
dx

∫ 2π

0
cos2 θψ̂ dθ + σtr

∫ 2π

0
cos θψ̂ dθ = δ(x). (4.10)

Now subtracting the Eq. (4.5) from the (4.10) we get

d
dx

∫ 2π

0
(cos θ − 1) cos θ ψ̂ dθ + σtr

∫ 2π

0
cos θψ̂ dθ = 0. (4.11)

Thus, for x > 0, using (4.6) we have

σtr =

d
dx

(∫ 2π
0 (1 − cos θ)(cos θ ψ̂) dθ

)
∫ 2π

0 (cos θψ̂) dθ
≈

d
dx

(∫ 2π
0

θ2

2 (cos θ ψ̂) dθ
)

∫ 2π
0 (cos θψ̂) dθ

=
1
2

d
dx

〈θ2
〉.

Hence

σtr ≈
1
2

d
dx

〈θ2
〉. (4.12)

This is the same result as in the three dimensional case, see [20,1,2].
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5. The P1 approximation

Recalling (3.7) we have the following averaging approximations:

ψ(x, y, θ) ≈
1

2π
[Ψ(x, y)+ 2Ω · J (x, y)] . (5.1)

It is easy to check that
∫ 2π

0 (ΩΩ)Ω · J (x, y) dθ = 0. Thus we may write∫ 2π

0
ΩΩψ dθ =

∫ 2π

0
ΩΩ

1
2π

[Ψ(x, y)+ 2Ω · J (x, y)] dθ

≈
Ψ
2π

∫ 2π

0
Ω Ω dθ =

Ψ
2π

∫ 2π

0
(cos θ, sin θ)(cos θ, sin θ) dθ

=
Ψ
2π

∫ 2π

0

[
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

]
dθ = Ψ

(
1
2

I

)
. (5.2)

Plugging (5.2) in the Eq. (3.18) we get

∇Ψ
(

1
2

I

)
+ σtr J = Q1, i.e.,

1
2
∇Ψ + σtr J = Q1, (5.3)

and consequently,

J = −
1

2σtr
∇Ψ +

1
σtr

Q1. (5.4)

Inserting (5.4) in the Eq. (3.8) it follows that

−∇ ·

(
1

2σtr
∇Ψ

)
+ σ̄aΨ = Q0 − ∇ ·

(
1
σtr

Q1

)
. (5.5)

Thus in flatland (2-D) the diffusion coefficient is 1
2σtr

, while in x, y-geometry (3-D transport with 1-D symmetry) the

diffusion coefficient is 1
3σtr

!!

5.1. The Fokker–Planck and Fermi developments

Let us return to Eq. (3.1). Assume that σs(θ) is very peaked near θ = 0 (that is: we have very small angular
scattering). We let first q ≡ 0 and Taylor expand ψ(θ ′), on the right hand side of (3.1), about θ , viz,

Ω · ∇ψ + σ̄aψ ≈

∫ 2π

0
σs(θ − θ ′)×

[
ψ(x, y, θ)+ (θ ′

− θ)
∂ψ

∂θ
(x, y, θ)

+
1
2
(θ ′

− θ)2
∂2ψ

∂θ2 (x, y, θ)− ψ(x, y, θ)

]
dθ ′

≈

[
1
2

∫ 2π

0
σs(θ − θ ′)(θ − θ ′)2 dθ ′

]
∂2ψ

∂θ2 , (5.6)

where in the last approximation we use 2π periodicity of σs together with the small angular scattering assumption
(α ≈ sinα) to write,∫ 2π

0
σs(θ − θ ′)(θ − θ ′)dθ ′

=

∫ 2π

0
σs(α)α dα ≈

∫ 2π

0
σs(α) sinα dα = 0,
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Fig. 1. The Dirac function σs (θ).

where in the last step we use the orthogonality and (3.11). A further approximation of the last integral yields, using
2π periodicity, that:

1
2

∫ 2π

0
σs(θ − θ ′)(θ − θ ′)2 dθ ′

=
1
2

∫ 2π

0
σs(θ)(θ)

2 dθ =

∫ 2π

0
σs(θ)

[
1 −

(
1 −

θ2

2

)]
dθ

≈

∫ 2π

0
σs(θ)[1 − cos θ ] dθ = σs0 − σs1 = σtr.

Hence we have the following development:

Ω · ∇ψ + σ̄aψ = σtr
∂2ψ

∂θ2 + q. (5.7)

We point out that the three dimensional correspondence to this development ends up with the angular diffusion
coefficient σtr/2, see, e.g. [1,2,25]. The Eq. (5.7) is the Fokker–Planck approximation. To this approach we assumed
small angular scattering, see Fig. 1 below where σs is highly peaked about θ = 0. To get The Fermi approximation,
we also assume small angle of flight (beam): So in Eq. (5.7) we take q = 0, cos θ ≈ 1 and sin θ ≈ θ , (see, e.g. [10]),
to get

∂ψ

∂x
+ θ

∂ψ

∂y
+ σ̄aψ = σtr

∂2ψ

∂θ2 , −π < θ < π. (5.8)

Once again we point out that the three dimensional version of the Fermi equation has the diffusion coefficient
σtr/2, rather than σtr in here. Now let us see if we can adopt Pomraning’s [24] derivation of the three dimensional
Fokker–Planck operator:

Lψ(θ) =

∫ 2π

0
σs(θ − θ ′) ψ(θ ′) dθ ′

− σs0ψ(θ). (5.9)

Recalling (3.12) we use the following approximation procedure:

σsn =

∫ 2π

0
σs(θ) cos nθ dθ ≈

∫ π

−π

σs(θ)

[
1 −

n2θ2

2

]
dθ

=

∫ π

−π

σs(θ)

{
1 − n2

[
1 −

(
1 −

θ2

2

)]}
dθ

≈

∫ π

−π

σs(θ)
{

1 − n2 [1 − cos θ ]
}

dθ = σs0 − n2(σs0 − σs1). (5.10)
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Thus the differential cross section, see (3.11), is approximated viz,

σs(θ) =

∞∑
n=0

σsn

π
(cos nθ) ≈

∞∑
n=0

1
π

[
σs0 − n2(σs0 − σs1)

]
cos nθ, (5.11)

and hence we have∫ 2π

0
σs(θ − θ ′) ψ(θ ′) dθ ′

≈

∞∑
n=0

1
π

∫ 2π

0
[σs0 − n2(σs0 − σs1)] cos n(θ − θ ′)ψ(θ ′) dθ ′

= σs0

[
1
π

∞∑
n=0

∫ 2π

0
cos n(θ − θ ′)ψ(θ ′) dθ ′

]

+ σtr

[
−

1
π

∞∑
n=0

n2
∫ 2π

0
cos n(θ − θ ′)ψ(θ ′) dθ ′

]

=

(
σs0 + σtr

∂2

∂θ2

)
Φ(θ),

where, changing the order of integration in cos k(θ − θ ′) moment, we have

Φ(θ) :=
1
π

∞∑
n=0

∫ 2π

0
cos n(θ − θ ′)ψ(θ ′)dθ ′

≡ ψ(θ). (5.12)

Now recalling (5.9) it follows that

Lψ(θ) ≈ σs0ψ(θ)+ σtr
∂2

∂θ2ψ(θ)− σs0ψ(θ) = σtr
∂2

∂θ2ψ(θ). (5.13)

Once again we have confirmed the angular diffusion coefficient σtr for the flatland case, versus the σtr/2 of the 3-D
case. Pomraning’s approach in [24] can be viewed as an angular peaking of a Gaussian e−θ2

from an algebraic fall off
to an exponential one as in Figs. 1 and 2.

6. A model problem for the current

The Eqs. (5.7) and (5.8) are formulated for the fluxψ , a measure of interest to nuclear engineers. In medical physics
the quantity of interest: dose (energy deposited per unit mass, see [17,8–13]) is related to the current function

φ = (cos θ)ψ. (6.1)

Assuming forward peakedness (−π/2 ≤ θ ≤ π/2), and using the scaling substitution

z = tan(θ), θ ∈ (−π/2, π/2), (6.2)

we introduce the scaled current function ϕ as

ϕ(x, y, z) ≡
φ(x, y, tan−1 z)

(1 + z2)
. (6.3)

Note that now z corresponds to the angular variable θ . Below, we shall keep θ away from the poles ±π/2, and
correspondingly formulate a problem for the current function ϕ, in the bounded domain Q ≡ Ix × Iy × Iz :=

[0, L] × [−y0, y0] × [−z0, z0]:
ϕx + zϕy = εA ϕ, (x, x⊥) ∈ Q,
ϕz(x, y,±z0) = 0, (x, y) ∈ Ix × Iy,

ϕ(x,±y0, z) = 0, on Γ̃−

β̃
\ {supp f },

ϕ(0, x⊥) = f (x⊥),

(6.4)
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Fig. 2. The closed form exact solution at x = 20.

where Γ̃−

β̃
:= {(x, x⊥) ∈ ∂Q : β̃ · n < 0}, β̃ = (1, z, 0), and x⊥ ≡ (y, z) is the transversal variable, n := n(x, x⊥)

is the outward unit normal to Γ̃ at (x, x⊥) ∈ Γ̃ . Further we use ε := σtr(x, y), and we have replaced the product of
δ-functions at the boundary by a L2-function f (source term). The diffusion operator in (6.4) is{

A = ∂2/∂z2, Fermi,
A· = ∂/∂z[a(z)∂/∂z(b(z)·)], Fokker–Planck,

(6.5)

where a(z) = 1+ z2 and b(z) = (1+ z2)3/2. In the following section we give four Galerkin type numerical algorithms
for the Fermi case. Detailed numerical analysis for these schemes, for both equations, can be found in [35,4,36,37].

The Fermi equation is modeling the penetration (in the direction of the x-axis) of a narrowly focused pencil beam,
incident at the transversal boundary of an isotropic slab, entering to the domain at the point (x, y, z) = (0, 0, 0). The
three dimensional Fermi equation is one of the basic equations of medical physics behind radiation therapy.

Mathematically, our model problem corresponds to a forward–backward (z changes the sign), convection
dominated (ε is small), convection–diffusion equation of the degenerate type (convection in x, y and diffusion in z).

7. The discretization algorithms

The semidiscrete schemes. In this part we consider two semidiscrete schemes where the problem Eq. (6.4) is
discretized in the variable x⊥ := (y, z) by the Standard Galerkin (SG) and the Semi-Streamline Diffusion (SSD),
finite element methods.

Because of the structure of the equation, the penetrating variable x is interpreted as a time variable and treated
by usual time discretization schemes, such as backward Euler and Crank–Nicholson, leading to the fully discrete
schemes.

We emphasis that the SSD method is performed only on the x⊥ variable, whereas the usual streamline diffusion
(SD) finite element method is applied for the whole (x, x⊥) domain, see, e.g. [37].

7.1. Standard Galerkin

We discretize in x⊥ = (y, z) using a finite element approximation based on a quasi-uniform triangulation of the
domain I⊥ = Iy × Iz with a mesh size h. We also consider adaptive meshes with refinements in the center. We let
β = (z, 0) and define the inflow (outflow) boundary as

Γ−(+)
β := {x⊥ ∈ Γ := ∂ I⊥ : n(x⊥) · β < 0 (>0)}, (7.1)



Author's personal copy

M. Asadzadeh, E.W. Larsen / Mathematical and Computer Modelling 47 (2008) 495–514 505

where n(x⊥) is the outward unit normal to the boundary Γ at x⊥ ∈ Γ . Now, we introduce a discrete, finite dimensional,
function space Vh,β ⊂ H r

β(I⊥) with,

H r
β(I⊥) = {v ∈ H r (I⊥) : vz(±z0) = 0 and v = 0 on Γ−

β }, (7.2)

where H r (I⊥) is the space of all L2(I⊥) integrable functions having their first r partial derivatives in L2(I⊥). An
example of such Vh,β is the set of sufficiently smooth piecewise polynomials P(x⊥) of degree ≤ r , satisfying the
boundary conditions in Eq. (6.4). We then seek ϕh ∈ Vh,β , such that{

(ϕh,x , χ)⊥ + (zϕh,y, χ)⊥ + (εϕh,z, χz)⊥ = 0, ∀χ ∈ Vh,β ,

ϕh(0, x⊥) = fh(x⊥),
(7.3)

where fh is a finite element approximation of f and the mesh size h is chosen as:

h2
≤ ε ≤ h. (7.4)

Here,

(u, v)⊥ =

∫
I⊥

u(x⊥)v(x⊥) dx⊥, and ‖u‖L2(I⊥) = (u, u)1/2
⊥
.

With these assumptions and ϕ and ϕh being the solutions of (6.4) and (7.3), respectively, we can drive the (continuous
and discrete) stability estimate, viz

max

(
sup
x∈Ix

‖ϕ(x, ·)‖L2(I⊥), sup
x∈Ix

‖ϕh(x, ·)‖L2(I⊥)

)
≤ ‖ f ‖L2(I⊥). (7.5)

For ϕ ∈ H r (Ω) and ε ∼ h the corresponding convergence rate is given by,

‖ϕ − ϕh‖L2(Ω) ≤ Chr−1
‖ϕ‖r , (7.6)

where C = C(Ω , f ), and ‖ · ‖s , with s being a positive integer, denotes the Sobolev norm of functions that are square
integrable along with all their partial derivatives of order ≤ s. For the details and proofs, see, [35].

7.2. A semi streamline diffusion method

Basically, the Streamline Diffusion method is designed for generating artificial-diffusion (smoothing) for problems
with small or no diffusion. Below, we construct a semi Streamline Diffusion (SSD) scheme with diffusion generating
test functions in the y and z directions. This scheme is strongly stable, its smoothing behavior can be seen in the
implementation section. The convergence rates are at least as good as in the SG scheme, see, e.g. [37].

Using the SSD we obtain a non-degenerate type convection dominated convection–diffusion, equation with
somewhat improved regularity. The test functions having the form v + δvβ automatically add up the extra diffusion
term δ(vβ , vβ) to the variational formulation, which combined with (v,−εvzz) = (εvz, vz) leads to a non-degenerate
fully diffusive equation (x is interpreted as a time variable). If δ ≥ ε the diffusion term is of order ε. We assume that
δ ∼ h ≥ ε, β = (z, 0), vβ = β · ∇⊥v and ∇⊥ = (∂/∂y, ∂/∂z), and v satisfies the boundary conditions in Eq. (6.4).
Multiplying the equation in (6.4) by v + δvβ and integrating over I⊥ we get the SSD scheme,

(ϕx + ϕβ − εϕzz, v + δvβ)⊥ = (ϕx , v)⊥ + δ(ϕx , vβ)⊥ + (ϕβ , v)⊥

+ δ(ϕβ , vβ)⊥ + (εϕz, vz)⊥ + δ(εϕz, (vβ)z)⊥ = 0. (7.7)

With a symmetry assumption on the transversal plane viz,

‖ε1/2ϕz‖I⊥ ∼ ‖ε1/2ϕy‖I⊥ , (7.8)

the scheme (7.7) satisfies the following stability estimate:
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Lemma 7.1. Assuming (7.8) and with δ > ε we have that

‖ϕ(L , ·)‖2
L2(I⊥) + δ‖ε1/2ϕz(L , ·)‖

2
L2(I⊥) ≤ ‖ f ‖

2
L2(I⊥) + δ‖ε1/2 fz‖

2
L2(I⊥). (7.9)

The fully discrete problem. In this section we derive an algorithm which combines the SSD scheme for I⊥ with the
backward Euler (BE) method for Ix . In this way, we consider the penetration variable x as a time variable in similar
time dependent problems. We split the SSD variational formulation (7.7) as follows:

a(ϕ, v) := (ϕβ , v)I⊥ + δ(ϕβ , vβ)I⊥ + (εϕz, vz)I⊥ + δ(εϕz, (vβ)z)I⊥ , (7.10)

b(ϕ, v) := δ(ϕ, vβ)I⊥ + (ϕ, v)I⊥ , (7.11)

and rewrite the problem as: find a solution ϕ ∈ H1
β (I⊥) such that

b(ϕx , v)+ a(ϕ, v) = 0, ∀v ∈ H1
β (I⊥). (7.12)

We use the finite dimensional subspace, Vh,β of H1
β (I⊥) and replace the discrete solution ϕh with the “space–time-

discrete” ansatz

ϕh(x, y, z) =

M∑
j=1

ξ j (x)ζ j (y, z), (7.13)

where M ∼ 1/h. We insert (7.13) into the semidiscrete counterpart of (7.12) and replace v by ζi for i = 1, . . . ,M .
This gives the discretization scheme

M∑
j=1

ξ ′

j (x)b(ζi , ζ j )+

M∑
j=1

ξ j (x)a(ζi , ζ j ) = 0, i = 1, . . . ,M,

with the matrix form,

BΞ ′(x)+ AΞ (x) = 0 (7.14)

where B = (bi j ) with entries bi j = b(ζi , ζ j ), A = (ai j ) with entries ai j = a(ζi , ζ j ) and Ξ = (ξ j ). Now we use
backward Euler to discretize in x and get the fully discrete scheme:

B(Φn
h − Φn−1

h )+ kn AΦn
h = 0. (7.15)

Other fully discrete schemes can be obtained depending on the choice of the discretization method in x , e.g. Crank
Nicholson, or discontinuous Galerkin.

Characteristic schemes for non-degenerate problem. The main feature in this part is the idea of exact
transport+ projection, see [34]. To illustrate this idea, we consider a homogeneous infinite slab, Q̃ = (x, y, z) of
thickness L , (0 < x < L , y, z ∈ R). Let {xn} be an increasing sequence of discrete points and for each n, {Vn} a
sequence of piecewise polynomial space on mesh {Tn} on the transversal domain I⊥. Given the approximate solution
ϕh,n

∈ Vn at the collision site xn , solve the pencil beam equation exactly on the interval (xn, xn+1)with the data ϕh,n to
give the solution ϕh,n+1

− at xn+1. This is an exact transport procedure. Now, one may compute ϕh,n+1
= Pn+1ϕ

h,n+1
− ,

with Pn+1 being a projection into Vn+1. One may interpret ϕh,n+1 as the post collision solution at (the other face of
collision) xn+1. In this way, we have an algorithm of type exact transport+projection. More precisely:

The domain Q := Ix × Iy × Iz is subdivided into slabs Sn := I n
x × Iy × Iz , with I n

x := (xn−1, xn], n = 1, 2 . . . , N .
Each slab Sn has its own incident-transversal finite element mesh T̂n . Consequently, at each xn we have two transversal

meshes ˆT −
n = T̂n|xn and ˆT +

n = ˆTn+1|xn . In general ˆT −
n 6=

ˆT +
n and the passage of information from one slab to the

next is performed through a modified L2-projection. Again, as in the previous section, x is treated like a time variable.
To proceed, we recall that our model problem (6.4) is a, forward–backward, convection dominated

convection–diffusion equation of degenerate type. A corresponding non-degenerate equation reads

L(ϕ) := ϕx + β · ∇⊥ϕ − ε1⊥ϕ = 0, (7.16)

where 1⊥ := ∂2/∂y2
+ ∂2/∂z2 is the transversal Laplacian and β ≡ (z, 0).
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We introduce the change of coordinates (x, x̄⊥) = (x, x⊥ − xβ) and set ϕ̄(x, x̄⊥) = ϕ(x, x⊥). The we may
reformulate (7.16) as

ϕ̄x − ε1⊥ϕ̄ = 0, in [0, L] × Iy × Iz, ϕ̄(0, x̄⊥) = f (x⊥). (7.17)

Since ∂ϕ̄
∂x =

∂
∂x ϕ(x, x̄⊥ + xβ) =

∂ϕ
∂x + β · ∇⊥ϕ, for ε = 0, the solution of (7.17) is

ϕ̄(x, x̄⊥) = f (x⊥ − xβ). (7.18)

The characteristics of Eq. (7.17), in the case of ε = 0 are given by x̄⊥ + xβ > 0, and in this case the solution ϕ(x, x̄⊥)

is constant along the characteristics.

7.3. Characteristic Galerkin

In this part we let {xn}, n = 0, 1, . . . , N , be an increasing sequence of x values with x0 = 0, and for each 0 ≤ n ≤

N , let {Tn} be the corresponding sequence of triangulations Tn of {xn} × Iy × Iz into triangles K . Furthermore we let
Vn be the space of continuous piecewise linear functions on Tn , i.e. Vn = {v ∈ C(Iy × Iz) : vlinear on K , K ∈ Tn},
where C(D) denotes the set of continuous functions on domain D.

Now we consider a pure convection case (ε = 0). Then the characteristic Galerkin (CG) is formulated as follows:
For n = 1, 2 . . . , N : find ϕh,n

∈ Vn such that:∫
Iy×Iz

ϕh,n(x⊥)v(x⊥) dx⊥ =

∫
Iy×Iz

ϕh,n−1(x⊥ − h̄n β)v(x⊥) dx⊥, (7.19)

where h̄n = xn − xn−1 and uh,0
= f . In other words

ϕh,n
= PnTnϕ

h,n−1, (7.20)

where Pn : L2(Iy × Iz) → Vn is the L2 projection defined by (Pnw, v) = (w, v), v ∈ Vn , (·, ·) is the inner product
in L2(Iy × Iz), and Tnη(x⊥) = η(x⊥ − h̄n β).

7.4. Characteristic streamline diffusion

The Characteristic Streamline Diffusion (CSD) method is a special case of the Streamline Diffusion (SD) method
obtained with oriented phase-space mesh elements. We start constructing a SD mesh: For n = 1, . . . , N , let T̃n = {K̃ }

be a finite element subdivision of the slab Sn = I n
x × Iy × Iz , I n

x = (xn−1, xn), into elements K̃ . Let Ṽn be a
space of piecewise polynomials (continuous in x⊥, and with possible discontinuities at the collision sites xn) on T̃n
of degree at most k. For k = 1 and small ε, the SD-method may be formulated as follows: For n = 1, . . . , N , find
ϕ̃h

≡ ϕ̃h
|Sn ∈ V̂n such that∫

Sn

(β̃ · ∇ϕ̃h)(v + δ(vx + β · ∇⊥v)) dxdx⊥ +

∫
Sn

ε∇⊥ϕ̃
h

· ∇⊥v dxdx⊥ +

∫
I⊥
ϕ̃

h,n
+ vn

+ dx⊥

=

∫
I⊥
ϕ̃

h,n
− vn

+ dx⊥, ∀v ∈ Ṽn,

where vn
±(x⊥) = lim1x→0 v(xn ±1x, x⊥), δ(vx + β · ∇⊥v) is the streamline diffusion modification, and δ ∼ h. In

the presence of shock the ε term has a rather involved shock-capturing modification, see [4]
The CSD is obtained making a special choice of the finite element subdivision T̂n = {K̂ } of Sn given by the

prismatic elements oriented along the characteristics

K̂n = {(x, x̄⊥ + (x − xn)β) : x̄⊥ ∈ K ∈ Tn, x ∈ I n
x },

where Tn = {K } is a triangulation of I⊥ given above, and now V̂n is defined by

V̂n = {v̂ ∈ C(Sn) : v̂(x, x⊥) = v(x⊥ − (x − xn)β), v ∈ Vn},
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with Vn the space of continuous piecewise linear functions on Tn . So V̂n consists of the continuous functions v̂(x, x⊥)

on Sn such that v̂ is constant along characteristics x⊥ = x̄⊥ + xβ parallel to the sides of the prismatic elements K̂n .
With this choice, we notice that if v̂ ∈ V̂n , then v̂x + β · ∇⊥v̂ = 0, (β̃ · ∇ϕ̃h

= 0). The SD-method is then reduced to
the following: For n = 1, . . . , N , find ϕ̂h

∈ V̂n such that∫
Sn

ε̂∇⊥ϕ̂
h

· ∇⊥v dxdx⊥ +

∫
I⊥
ϕ̂

h,n
+ vn

+ dx⊥ =

∫
I⊥
ϕ̂

h,n
− vn

+ dx⊥, ∀v̂ ∈ V̂n, (7.21)

where in simple cases ε̂ = ε and in the presence of shock it involves a shock-capturing modification as ε̂ =

max(ε,F(hα(|[ϕ̂h
]|/ h̄n))/Mn), with F(w) being the element-wise average of w, [vn

] = vn
+ − vn

−, 0 < α < 2,
and Mn = maxx⊥

|ϕ
h,n
+ (x⊥)|. Further h(x, x⊥) = hn(x⊥ − (x − xn)β); hn(x⊥) gives the local element size of Tn , see,

e.g. [34] for details. If ε is small, then (7.21) can be stated as:∫
I⊥
ε̂∇⊥ϕ̂

h,n
+ · ∇⊥v dx⊥ +

∫
I⊥
ϕ̂

h,n
+ v dx⊥ =

∫
I⊥
ϕ̂

h,n
− v dx⊥, ∀v̂ ∈ Vn . (7.22)

Writing ϕ̂h,n
+ = ϕh,n , since ϕ̂h,n

− = Tnϕ
h,n−1, then ε̂ = F(hαn |ϕh,n

− Tnϕ
h,n−1

|)/Mn , and we can restate (7.22) as
follows: For n = 1, . . . , N , find ϕh,n

∈ Vn such that∫
I⊥
ε̂∇⊥ϕ

h,n
· ∇⊥v dx⊥ +

∫
I⊥
ϕh,nv dx⊥ =

∫
I⊥

Tnϕ
h,n−1v dx⊥, ∀v̂ ∈ Vn, (7.23)

where ϕh,0
= f . We introduce the operator P̂n : L2(I⊥)

⋂
L∞(I⊥) → Vn defined by

(P̂nw, v)+ (ε̂∇⊥P̂nw,∇⊥v) = (w, v), ∀v ∈ P̂n, (7.24)

where ε̂ = F(hαn |P̂nw − w|/max |P̂nw|), and (·, ·) denoting the L2(I⊥)m inner product with m = 1, 2. Now we can
reformulate (7.22) as

ϕh,n
= P̂nTnϕ

h,n−1. (7.25)

Hence P̂n may be viewed as a modification of the usual L2 projection, obtained by adding the artificial viscosity term
with coefficient ε̂ as defined above.

8. Implementations

We have used the following implementations: To justify the results for SG and SSD, we first discretize the domain
I⊥ = Iy × Iz using the cG(1) method: continuous Galerkin approximation with piecewise linears, and then step
advance in x using the Backward Euler (BE) method. As for the characteristics schemes CG and CSD, we allow
jump discontinuities in x : we discretize I⊥ using cG(1) and we step advance in x using discontinuous Galerkin
approximation with piecewise constants: dG(0).

Let ε = ε(x), then the problem (6.4) has the closed form exact solution, see [10],

ϕ(x, y, z) =

√
3

πεx2 e−2(3(y/x)2−3(y/2)z+z2)/(εx). (8.1)

This allows us to compare the computed solution with the exact one and derive errors in various norms. However,
the throughout comparisons are limited because of the following two reasons: (i) the closed form exact solution (8.1)
displays singularities near the origin. (ii) the initial condition used to derive (8.1), being a Dirac δ function, is not
numerically realizable. For comparison purposes, we have considered three types of, numerically providable, initial
conditions that approximate the Dirac δ function in the L1 sense: Maxwellian, Hyperbolic, and modified Dirac.

8.1. Mesh

The meshes used in the numerical experiments are shown in Fig. 3. The finest mesh used has a step size of
h = 0.0625 in the y and z variables, and k = 0.005 in the x variable, corresponding to 8198 nodes in two dimensions.
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Fig. 3. Meshes used: symmetric refinements (the 2 top figures). Non-symmetric refinements (the remaining 2 “down” figures).

Fig. 4. Closed form exact solution at x = 1.

8.2. Computed solutions

The computational parameters used rely on the theoretical assumptions in the previous sections: h2 < ε < h, and
δ ∼ h. For the computed solutions in the figures we use the values ε = 0.002, and h = 0.175 (h = 0.0625 in the
finest mesh). In SSD and CSD we have chosen δ = h/2. The norms are calculated at x = 1 and over I⊥(for the exact
solution at x = 1 see Fig. 4).

The computed solutions in Figs. 5 and 6 are for CSD and SSD, respectively, where we used the modified Dirac
initial data. In the characteristic schemes, x is interpreted as time, with a step chosen as k = 0.01. While in the fully
discrete schemes, it was set to k = 0.005.

The SG method produces layers and the CG has oscillatory behavior, whereas, in most cases, SSD and CSD seem
to be more stable. Layers and oscillatory behaviors are eliminated using modified L2 projections derived in Section 6:
Figs. 7 and 8 show the formation of layer for Maxwellian initial data and the oscillatory behavior in the case of
a hyperbolic initial condition, respectively. Fig. 9 shows the improved (boundary layer is removed) solution with
the Maxwellian initial data, obtained after performing 3 step of modified L2 projections. The formation of layers
can also be avoided using small steps in the penetration direction. Even the oscillating behavior can be removed
using the modified L2 projections. For further implementation results of these types, see [40]. The whole numerical
computations are performed using DOLFIN code implemented in C++, viz [39].

Tables 1–3, show the L∞, L1, and L2 norms of the errors between the “exact” and computed solutions for the
three initial conditions at x = 1. L2 is the most natural norm for the finite element approaches, because variational
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Fig. 5. Computed solution at x = 1 with Dirac Init.cond. using CSD.

Fig. 6. Computed solution at x = 1 with Dirac Init.cond. using SSD.

Fig. 7. Formation of layers in a solution with Maxwellian i.c. at x = 0.66.

formulation can be interpreted as a scalar product. Therefore even in this limited study we observe the superiority of
the L2 estimates as well as the slight improvements in the L2 norm due to use of SSD and CSD (see Table 3). L̃2
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Fig. 8. Oscillatory behavior of a solution with hyperbolic i.c.

Fig. 9. Computed solution with Maxwellian initial condition (three projections have been performed).

supplies further improvement, basically, for Dirac and Maxwellian initial data. To calculate the L1 and L2 errors we
use the vertex quadrature of the form:∫

K
g(x) dx ≈

3∑
j=1

g(a j
K )

|K |

3
,

where a j
K denotes the vertices of a triangle K , and |K | denotes the area of K . Therefore

‖w‖L1 ≈
1
3

∑
K

|K |

3∑
j=1

w(a j
K ), and ‖w‖L2 ≈

(
1
3

∑
K

|K |

3∑
j=1

(w(a j
K ))

2

)1/2

.

We also use the midpoint quadrature formula to get a weighed L̃2 norm:

‖w‖L̃2
≈

(
1
3

∑
K

|K |

∑
1<=i< j<=3

(w(ai j
K )

2)

)1/2

,

where ai j
K denotes the midpoint of the side connecting the vertices ai

K and a j
K . The errors in the L̃2 norm are shown

in Table 4.
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Table 1
The L∞ based norm for the errors between the “exact” and computed solutions

L∞ Dirac Hyperbolic Maxwellian

CSD 47.6325 0.6878 0.6521
SSD 48.2734 0.6135 0.6521
CG 47.2871 0.6046 0.623

Table 2
The L1 based norm for the errors between the “exact” and computed solutions

L1 Dirac Hyperbolic Maxwellian

CSD 32.5463 0.1378 0.2912
SSD 33.4347 0.1535 0.2821
CG 36.1862 0.1546 0.3234

Table 3
The L2 based norm for the errors between the “exact” and computed solutions

L2 Dirac Hyperbolic Maxwellian

CSD 27.1325 0.1176 0.2031
SSD 27.1488 0.1135 0.2087
CG 31.9271 0.6036 0.2247

Table 4

The L̃2 based norm for the errors between the “exact” and computed solutions

L̃2 Dirac Hyperbolic Maxwellian

CSD 11.4339 0.1138 0.1342
SSD 11.2743 0.1155 0.1373
CG 12.7643 0.1264 0.1422

9. Summary and conclusions

We have given a formal derivation of the linear flatland transport equation and derived P1, Fokker–Planck and
Fermi approximations of a pencil beam model associated with this flatland model problem. We have considered
four different deterministic algorithms for a pencil beam model based on the Fermi development. The algorithms
are derived for a Standard Galerkin (SG)-, a Semi-Streamline Diffusion (SSD)-, a Characteristic Galerkin (CG)- and
a Characteristic Streamline Diffusion (CSD)-method. Only the necessary qualitative behaviors of the schemes are
quoted from the literature.

We carried out implementations to illustrate the applicability of the algorithms using different types of initial data
approximating the Dirac δ function. To begin with, SSD and CSD are more stable and accurate than the SG and CG for
all the three canonical forms of the initial data. As for the convergence: solutions with modified Dirac initial condition
are suited in both CS and SSD. However, Maxwellian initial conditions produce accurate results in the CSD scheme,
whereas the hyperbolic initial conditions produce more accurate results in the SSD scheme.

The oscillatory behavior, while considering non-smooth initial data, can be eliminated by modifying the L2-
projection. The formation of layers can be avoided taking small steps in the penetration variable. However, a better
approach to deal with this phenomenon is through adaptive refinement. In order to keep this presentation simple, we
did not address the adaptive algorithms here.

In general, for problems that are similar to our model problem (convection dominated convection–diffusion
problems of degenerate type), streamline diffusion approaches such as SSD and CSD are more stable and accurate
than the other related Galerkin schemes in the L2-based norms.
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Comments and future work

• A closely related study would be to consider the interesting question of seeing how the derivation in Section 2, and
consequently the following sections, works looking at the special case of linearly anisotropic scattering. (This will
require the full use of the spherical harmonic functions.) Specifically: how does the “flatland” differential scattering
cross section relate to the original 3-D scattering cross section?

• The derivation in Section 2 shows that the “flatland” equation (2.8) is a “polar S2” approximation to the x, y-
geometry transport equation (2.4). It is most likely that the scaled flatland equation (2.6) will more accurately
model diffusive problems in 3-D x, y-geometry (2.4). In other words, the flatland transport equation should be a
good approximation to the 3-D transport equation for x, y-geometry diffusive problems.

• The approximation (2.6) raises an interesting question: what happens if, instead of an S2 approximation to the
µ-variable, we make an S4 approximation? Then, we will get two equations of the form of Eq. (2.6), which will
be coupled in the scattering term. This result should be more accurate than the Eq. (2.8). One may extend this idea
to SN in µ with N > 4. If there are transport problems in which the dependence of ψ on γ is more complicated
than the dependence of ψ on µ, then the flatland approach could have practical merit. Otherwise a 2-D diffusion
equation (with no angular variable) would be just as accurate.

• Intuitively, the diffusion coefficient in a general n-dimensional universe seems to be ∼ (1/n)Σtr. Then, the
customary “3” that we usually see occurs because we live in a 3-D universe. Planar-geometry problems have
the factor 3 because these problems describe 3-D transport with 1-D symmetry. In a 2-D (flatland) universe, n = 2.
In a 1-D universe (the rod model), n = 1.

• In the above derivations the scattering parameters, Σt , Σs, σt and σs , can be dependent on x and y.
• Finally a more realistic model should include energy dependence in the derivations described above and invoke

numerical algorithms with adaptivity procedures.
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