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TRANSPORT THEORY AND STATISTICAL PHYSICS, 26(3), 319-340 (1997) 

STREAMLINE DIFFUSION METHODS FOR 
F E W 1  AND FOKKERPLANCK EQUATIONS 

MOHAMMAD ASADZADEH 

1991 Mathematics Subject Classification. Primary 65M15. 65M60. 
Key words and phrww. Fermi equation, Fokker-Plan& equation, particle beam, streamline diffusion, 

discontinuous Galerkin. 

ABSTRACT. We derive error eatimates in certain weighted Lz-norms for the streamline diffu- 
sion and discontinuous Galerkin finite element methods for steady state, energy dependent, 
Fermi and Fokker-Plan& equations in two space dimensions, giving error bounds of order 
O(hkC'lz), for the weighted current function J, as in the convection dominated convection- 
diffusion problems, with J E H'+'(n) and h being the quasi-uniform meah size in triangu- 
lation of our three dimensional phase-space domain tl = I, x I, x I,, with z corresponding 
to the velocity variable. Our studies, in this paper, contain a priori error estimates for Fermi 
and Fokker-Planck equations with both piecewise continuous and piecewise discontinuous (in 
z and zy-directions) trial hnctiona. The malym are based on stability estimates which 
relay on an angular symmetry (not isotropy!) assumption. A continuation of this paper, the 
a posteriori error estimates for Fermi and Fokker-Plan& equations, is the subject of a future 
work. 

0. Introduction. This is the first part in a series of two papers on the streamline 
diffusion finite element methods for degenerate type convection dominated convection- 
diffusion problems arise, e.g., in asymptotic expansion of particle transport for narrowly 
focussed pencil beams. In a pencil beam the mean direction change of beam particles 
is assumed to be small. This assumption, which is realistic for photon transport and 
certain electron transport problems is referred to as forward-peakedness of the scattering. 
Under certain assumptions, including strong forward-peakedness of the scattering, the 
transport equation can be well approximated by the Fokker-Planck equation. Formally, 
the equation is obtained by approximating the particle transport equation so that the 
scattering kernel associated with the total cross section give rise, after an asymptotic 
expansion, to  a diffusion term with respect to the angular variable. The Fermi equation 
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320 ASADZADEH 

is obtained either as an asymptotic limit of the Fokker-Planck equation as ctr --+ 0 or as 
an asymptotic limit of the transport (linear Boltzmann) equation as u:, -+ 0 and ct + ca 
(the mean scattering angle is assumed to be small, PO x 1, and the large-angle scattering 
is negligible). For details in derivations of Fermi and Fokker-Planck equations we refer to 
[5] and [lo]. For our model problem a complete derivation of Fermi and Fokker-Planck 
equations in "Flatland" is given in [3]. 

There are some points of concern with these type of problems: The Fermi and Fokker- 
Planck equations considered in this paper are degenerate in both convection and diffusion 
terms in the sense that the intersection of differentiation variables in drift and diffusion 
terms is empty, especially no complete drift, in all directions, is expected and the diffusion 
term has a very small coefficient, i.e., a:,. Furthermore, the Fermi case, corresponds to a 
problem of describing a pencil beam of particles normally incident on a slab, 0 < < L, 
with the particles entering at a single point, say at (t, y) :1 (0, 0), in the direction of the 
positive z-axis. This problem will have a boundary data in form of a b function which 
is not suitable for the numerical considerations involving LJ-norms, we have therefore 
considered model problems with somewhat smoother data. We study the physically more 
relevant cze :  estimations in L1 norm, in a future work. Moreover, in spite of the as- 
sumption of no back-scattering, i.e., the scattering angle -7i/2 5 8 5 x / 2 ,  we still need to 
restrict the range of 8, through focussing or filtering, and avoid small intervals in vicinity 
of the endpoints fn /2  in order to get, after scalings, bounded domain for our numerical 
studies 

Fermi equation has closed form solutions for atr being constant or only a function of I. 
Analytic solutions of the Fokker-Planck equation can be found in i) one dimensional case, 
ii) linear drift and constant diffusion tensor case, iii) under detailed balance condition and 
in some very special cases. However, in general it is difficult to  obtain analytic solutions 
for the Fokker-Planck equation especially in higher dimensional cases or if no separation 
of variables is possible. 

The subject of this paper is error estimates for the stationary (steady statej, energy 
dependent, two space dimensional Fermi and Fokker-Planck equations. In the present 
setting we have transformed and scaled the variables so that the z-direction, the direction 
of penetration of the beam, being perpendicular to  the slab, may also be interpreted as 
the direction of the time variable so that the methods in here will be adequate even for 
the non-stationary case giving local in time estimates. To justify elimination of large- 
angle scatterings one needs to consider only small %-values corresponding to  first few 
collisions. For large z-values the particles, undergoing several collisions, will have a large 
mean direction change. Therefore when the time variable replaces z, the results are only 
for small time values, this is relevant because the distribution gets almost immediately 
steady state. After scaling, the present technique treats all the variabls as components of 
a multi-dimensional space variable. One could study other approaches, where no scaling 
is used. 

In a forthcoming paper [2], we shall study a posteriori error estimates for these equations 
and also present numerical implementations for a variety of combined spatial and angular 
discretizations. 

General theory of the Fokker-Planck equation, together with some solution techniques, 
can be found in [12]. Our methods in this paper will extend the results in [l] for the 
Vlasov-Poisson equation to a degenerate case. Here are some application areas for Fermi 
and Fokker-Planck equations: Cosmic rays penetrating the atmosphere, ion beams used to 
modify the properties of material, and electron or photon beams used for cancer therapy, 
(see the references in [5]). 
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STREAMLINE DIFFUSION METHODS 321 

Fokker-Planck equation is widely studied either in combination with Vlasov or other 
transport type equations or in the form of the forward Kolmogorov equation, see Risken 
[12]. In our knowledge, convergence rates and error analyses using the streamline diffusion 
finite element methods for these degenerate type problems are not considered elsewhere. 

The method of our discretization; the streamline-diffusion method (SD-method) is a 
generalized form of the Galerkin method for the hyperbolic problems which gives good 
stability and high accuracy. The SP-method, used for our purpose in this paper, is ob- 
tained by modifying the test function through adding a multiple of the hyperbolic operator 
involved in the equation. This gives a weighted least square control of the residual of the 
finite element solution. See [l] and the references therein for further details in the SD- 
methods. 

An outline of this paper is as follows: In Section 1, we introduce the continuous model 
problems and some notation. In Section 2 ,  we give a priori error estimates for a discrete 
Fermi equation with utr = utr(z,y). In Section 3, we extend results of section 2 to the 
corresponding two space dimensional Fokker-Planck equation. Section 4 is devoted to  a 
SD-method for both equations, where we treat discontinuities in the z-direction. Finally 
in our concluding Section 5 we extend the results of Section 4 to  a discontinuous Galerkin 
finite element method with trial functions being discontinuous in both z and y directions. 

1. The Continuous Model  Problem. The two dimensional model problem for the 
pencil beam transport (ua = 0) can be formulated by the following intego-differential 
equation: 

We use dimensionless spatial variables, scaled so that the slab width is 1. u, > 0 is the 
differential cross section defined as 

with pn being the nth Legendre polynomial and u: = s,, u,(w) & is the total cross 
section. Here we have followed the conventional representation, otherwise the orthogonal 
cosine polynomials would be the most natural bases functions for this model case, see [3]. 
For a neutron travelling with a given speed through a given medium the probability of a 
collusion per unit path length is a constant and ut is this constant. The slab width in the 
units of mean free paths is ucl, see Davison [7] for details. Further, V = (a /&,  a/&) 
and 

(1.4) 5'' = { p  E Rz : 1p1= l}, p E (pl ,p2)  = (cosO,sin@), 0 5 0 < 27r. 

The Fokker-Planck approximation to this transport problem, which is also given in [3], 

For 0 < z < 1 and -w < y < w, find $Fp = lLFP(z, y, 8) such that 
[4], [5], [lo] and [12], can be formulated in the following way: 

(1.5) p .  wFP = u ~ ~ & ~ ,  e E (-n/2,  ~ / 2 ) ,  
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322 ASADZADEH 

where. utr = u1{> - u.1 is the transport cross section, 5: = { p  E S' : p1 > 0) and 
S' = S' \ s:. 

Based on physical properties of the pencil beams, in the time dependent case the distri- 
bution gets *'almost immediately" steady state, this motivates our study of the stationary 
problems in this paper, extension of the techniques presented in here to the non-stationary 
case, as stated in the introduction, is straightforward. 

We introduce the current 

(1.8) j = (cos8) p. 
LJsing the scaling substitution .z = tan 0, 0 E ( - x / 2 ,  x / 2 ) ,  and the obvious relation 

(1.9) 

we gat the Fokker-Pianck equation for the current j :  

( 1 . i O )  

where w e  have used q F P  = j. Now we consider the identification 

dy dz  = / J(x,  y, z)  dy dz, 
:= JJ-iG---- j ( z ,  y, tag-' z )  

and defim the function J as 

(1.11) 
j (s ,  y, tan-' x )  J(., y, 2)  =- -- 1+z2 . 

Then (1.10) is equivalent to write 

(1.12) 

In this paper we consider the general case of Otr = utr(z, y ) ,  (actually at, = q,[E(x, y ) ]  
is indicating the energy dependent character of the problem), and study the following model 
problem for two dimensional Fermi and Fokker-Planck equations on a bounded polygonal 
phase-space domain R C with the homogeneous "inflow" boundary conditions and the 
data  f E &(Ro), with RO = R n {z = 0); 

(1.13) 
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STREAMLINE DIFFUSION METHODS 323 

where we assumed ycut-offs" in y and 0 directions as, -yo 5 y 5 yo and - x / 2  < -81 5 
6 5 81 < r/2 corresponding to bounded positive yo and ro values, respectively. Observe 
that in our model problem we have replaced the incident boundary condition, i.e., the 
product of two 6 functions; 6(y)6((-- l)/(m)) by a smoother function f -  For 
the Fermi equation, due to defining stretch variables asymptotic expansion will lead to; 
(see [41), 

(1.18) 

while for the Fokker-Planck equation 

(1.19) A J  = - a(%)-(b(r)J)  , aaz [ aa* 1 
with a(%) -- (1 + r Z )  and b(r) = (1 + z ' )~/ ' .  

Here are some frequently used notation: Throughout the paper C will denote a general 
constant not necessarily the same at each occurrence, mostly depending 011 the size of the 
domain R and independent of the parameters h, E ,  /3 and n, unless otherwise specifically 
specified. We denote by (-,.) and 11 - 11 the usual L2-inner product and L2-norm, respec- 
tively, H a ,  for s positive integer, is the usual Sobolev space with the norm 11.  lls and the 
seminorm I . l a ,  with the maximal available derivatives: 

Moreover 
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324 ASADZADEH 

v h  = {U H'(ft) : u1K E pr(fL'f, YfL' E c h } ,  

r- = {x E r = an : n(x) . p  < 0}, 

where I' = 89 is the boundary of the domain R, n(x) is the outward unit normal to I? 
at the phase-space point x = (2, y,z) E r, ,B = ( l ,z ,  0) in our cases, and I'+ = I? \ r-. 
Further Ch = { K }  is a family of quasiuniform triangulation of R = I, x Iy x Z, satisfying 
the minimal angle condition with h = diam(K) as the mesh parameter and Pr(K) is the 
set.of all polynomials in.z, y and z of degee a t  most r on K. Finally Ii,.(R) and V l  will 
denote the subsets of Id'' and v h  vanishing on r. Let vp = B-V,u with v, := (g, 6, g), 
we will frequently use the Green's formula 

(2.20) 
1 
2 (UD. u )  = - < u, 11 >, 

which is a consequence of the divergence theorem J, div(!Pli) dx = J,(!P. n) ds, applied to  
P = (uw, 0,O) and I = (0, zuw, 0) i.e. 

where (21, z2j := (z, y), (a l ,  02) = (1, z)  and n; are components of the outward unit normal 
n. Adding the above formula for i = 1 and 2 and letting w = u we obtain (1.20). Finally 
we shall need the following Angular Balance Condition : 

(1.21) 

This in a symmetry condition which is natural, e.g., in the case of a radially symmetric 
and compactly suppoited, positive, source term having, for each z E I,, a fixed value C, 
on each circle C,(z, 0,O) C Zy x I ,  x { t} with centre a t  the point (z, 0,O) and radius r.  
Observe that the source term is cnisotropic, hovever, the distribution of the intesity of 
the beam is symmetric about the z-axis and, of c o m e ,  decreases as the scattering angle 
bifurcation of the beam from the z-axis and the value of I increase. By 7t:o(R), s positive 
integer, we mean the set of all functions u E H'(R) satisfying the boundary conditions 
(1.14)-(1.15) of J, for all 2: values (not only for z =- 0) and the angular balance condition 

2. Discre te  Fermi equation. For utr constant or cttr = qr(z) one can obtain closed 
form analytic solutions for the Fermi equation. The idea is to use scaling in order to 
have both y and the angular variable vary over the entire real line and then take Fourier 
transforms with respect to y and z ,  (see 141 for the exact solution and the corresponding 
variable scalings in three dimensions). Below we use a variational formulation, with the 
test functions consisting of the s u m  of a trial function u E v h  and an extra streaming 
term: sup, where K is a small coefficient, i.e., we use test functions different from the trial 
functions, therefore we are dealing with a kind of "Petrov-Galerkin" method. We prove 
a stabiliby Lemma for the continuous problem in general two dimensional case, i.e., with 
btr = gtr(z, y), using also the corresponding discrete variational formulation we derive our 
first a priori error estimate. Now we write the equation (1.13) as 

(1.21). 
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STREAMLINE DIFFUSION METHODS 325 

Equation (2.1) combined with the boundary condition (1.17) gives rise to the variational 
formulation 

(2.2) (Jp,u+.up)-(EJzz,u+.up)- < J , u > - = - < < , u > - ,  v u E H ’ ( n )  

where we shall choose K 2 CminKhK/IPI with h~ being the local mesh size in the 
triangulation C h  and c is sufficiently small (see proof of Lemma 2.1 below.) Introducing 
the bilinear form 

(2.3) B(W,U) = ( W p , V  + .Up) - ( E I U z z , V +  .Up)- < W , V  >-, 

and the linear form 

(2-4) L ( U )  = - < f , u  >-, 

we may write (2.2) as 

(2.5) B(J, u )  = L(u),  vu E H’(R). 

Stability Lemma 2.1. There i s  a constont C = C(n) such that 

Proof. We have using Green’s formula (1.20) and the condition (1.21), that 

2 1  

2 1  2 

B(u, u)  = Il.’/2upll + - < u, u > -(€Uzz, u + .up)- < v, u >- (2.6) 2 

= 11.1’2~pll + 2lUl2 + ll€1/2uzII - ()(Euz.z,up), 

where we use the notation IuI = see Section 1. Observe that, in the assertion of 
Lemma, we require a low regularity on v, Le., u E N ’ ( n ) ,  while the equation in (2.6) 
contains uzr. Therefore, (2.6) should be interpreted as a weak formulation where an 
integration by parts is performed for the terms involving uzz. This works for the worst 
term: (uLz, up), because /3 has zero %-component. We assume u E H’(R), mainly because 
of the numerical considerations we want to have as general continuous variational test 
function u as possible. Now since E = uttr is independent of the scaled angular variable 
z = tan 0, we may use the inverse estimate to obtain 
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326 ASADZADEH 

the last inequality is a consequence of the fact that c is assumed to be sufficiently small, 
so that 

This together with 

completes the proof. 0 

Remark 2.1. Lemma 2.1 is a somewhat “weak stability” result. Here are some features 
of problem (2.1): (i) The lack of pure current term for the beam problem, i.e., no absorption 
on the left hand side of the equation, will lead to stability inequalities with no explicit 
Lz-norm control. Besides, the semi-norms, (Lz-norms of partial derivatives), appear 
with small coefficients of order O(E‘/’) and O(K’/’), i.e., of order O ( 4 ) .  Usually, the 
Poincare-Friedricks inequality: 

is used to  include &-norms on the left hand side of such stability results as Lemma 2.1. 
However, our test functions are not vanishing on the whole boundary of R (they are not 
in the space Hi(R1). Below, in Lemma 2.2, we shall assume that the test functions are in 
R:,,(R), and prove a similar result as (2.9) with these new boundary conditions (see defi- 
nition of Rio(R) at the end of section 1). Combining Lemmas 2.1 and 2.2, the Coefficients 
E and n will appear in the &-norm estimates as well. Therefore, in implementations, one 
should expect an actual rate of convergence of order O(hk),  i.e., a reduced rate of order 
h’/’, compared to  the theory. This is in the nature of the problem and cannot be avoided. 

The stability estimates for the pencil beam problems gain an obvious advantage of the 
fact that the source term is an incoming flow from only a part of the i d o w  boundary 
and although the stability constant, in Lemma 2.1, depends on the size of the domain 
R (this R dependence appears in definition of K and since R is bounded, in some of our 
estimates throughout the paper, the stability constant is replaced by l), the stability norm 
on the right hand side will, inevitably, be only over a part of the boundary: Here, over 
Ro := R n (z = 0). This gives a more desirable result, when R is not very large and also 
provided that f has the required regularity. We could use the trace inequality: 

and obtain an estimate involving H’ norm of u on the right hand side. However, again 
because of the lack of absorption in the equation, the H1 norm of u can not be hidden 
in the seminorms on the left hand side and therefore the result remains less sharp in this 
case. In Lemma 4.2, below, we demonstrate another way of including improved Lz-norm 
control in stability estimates using somewhat more involved norms. See also Remark 4.1. 
0 

Lemma 2.2. There is a constant C = C(w, R) such that 

llull 5 C ( W ,  R)lvl,, vu E H‘(R), uly = 0, 
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STREAMJJNE DIFFUSION METHODS 327 

where w = r;; u r$,, , with 

rg ={x=(z,y,z)~l?:y=y~ and z<O}, 

r:; = {x = (zlYlz) E r : = -yo and z > o 1. 
We may replace w by any subset of Xl with a positive Lebesgue measure. 

Proof. Suppose that the assertion of the Lemma is false. Then, there is a sequence of 
functions {vn} converging to v such that 

lvnll + 0, as n --+ 00, while llvll = 1. 

Thus, (u,} is bounded in H' and hence there is a subsequence of {v,,} called, for simplicity, 
again {v,,} such that 

v,, --LV in H' and u,, - i u  in L2, 

where "-" denotes weak convergence. Hence, we have using the lower semicontinuity 

Therefore, v is constant and since uI, = 0, thus, u EZ 0. This is in contradiction with 
llull = 1 and the proof is complete. 0 

Now recall that o w  continuous variational problem is: Find .7 E H'(R), s integer, s > 1, 
such that 

(2.10) B(J,u) = - < f l u  >-, Vv E H'(R). 

A more desirable situation is to use the same interpretation as in the proof of Lemma 2.1 
and consider J E H'(R). This is mainly because in this case both J and the continuous 
variational test functions will be in the same function space. However, dealing with con- 
vergence rates, we need higher regularity assumptions on J and therefore we shall consider 

The corresponding discrete variational formulation reads as: Find Jh  E vh such that 
J E H'(R), s > 1. 

where (., .)K is the &-product over K. We get from (2.10) and (2.11) that 

(2.12) B(e ,v)  = 0, Vv E V,, 

where e = J - J h  is the error. We shall also need the following interpTlation error estimates, 
see Ciarlet [6]: Let J E Hr+'(n) then there exists an interpolant J h  E vh such that 

(2.13) llJ - jh l l  I Chr+lllJIIr+l> 
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(2.14) 

(2.15) 

AS ADZADEH 

Now our main result in this section is: 

Theorem 2.1. There is a constant C = C(n) such that for J and Jh sntisfrjing in (2.10) 
and (2.11), respectively, and J, = J," = 0 on we have 

where 

Proof. Let jh E 6 be an interpolant of J satisfying (2.13)-(2.15). We write qh = J- 3" 
and eh = Jh - jh. Using the bilinear form B(u,u)  with u = c -- .I - Jh, the relation 
B ( e , e h )  -- o (since eh E Vh), oiu assumption: J, = J," = O, on r*zo a.nd (2.8), we have 
that 

11.11; <We, e )  = B(e ,  v") - B(e,  eh) = B(e, 'I") 

=(ep,v") i- (q, $1 + ( ~ e , , ' 1 3  - (~e,,'~~)[::f-',, - ~(=, , .&~--  < e, 'I" >- 

I ~ I I ~ ~ I I ~  + ~ I I V ~ I I '  + ; W / ~ * ~ I I '  + +;II' + g/la'/zezll 

K 
1 1 1 2 

1 2 1 
8 

+ ~ Z I I ~ $  + - ~ ~ & 1 ' 2 e z ~ ~  -t ~ ~ ~ 2 ~ - 2 1 1 ~ ~ 1 1 2  + 41el2 + /Vhla- 

Where, in (-, . ) l ~ ~ ~ z o ,  the integratiori is over z,y-variables and vanishes because of oiir 
assumption. We now use (2.13)-(2.15), E; < Ch,  Z < h and a standard kick-back argument 
and obtain the desired result. 

3. The Fokker-Planck equation. Recall the scaled Fokker-Planck equation in two 
space dimensions 

(3.1) J p  - EA J = 0, 

where Aisas in  (1.19), Jp =p .V,J ,wi thp= ( l , r , O )  a n d x =  ( z , y , r )  isthephase-space 
variable. Further, r- denotes the inflow boundary defined in Section 1 so that 

0 

with r$, and rz, defined as in Lemma 2.2. For this problem we define a moditied 
variational formulation as: Find J E H1(R) such that 

(3.2) ( J g , b v + ~ ~ p ) - ( ~ A J , b v + t ~ u p ) - <  J , b v > - + < J , ~ h ( % ~ ) ~ > r ~ . ~ =  
= - < f, bv >- + < f ,  fA(Zo)U >r*,o, 
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STREAMLINE DIFFUSION METHODS 329 

where b = b(z)  = (1 + z 2 ) 3 / 2 ,  A(z0) = 6zo(l + z , ’ )~  and the terms of the form ( J , , , u )  
and ( J x I , u p )  are considered after performing an integration by parts with respect to z 
variable as in the case for u E H’(Q) in the proof of Lemma 2.1. The term involving 
the parameter A(z0) is for cancelling a negative rkIo boundary term in the proof of the 
stability inequality, i.e., Lemma 3.1 below. We now introduce the corresponding bilinear 
form 

(3.3) B(w,u)  = ( w , y , h  + ~ u g )  - (EAW,bu+ K U , ~ ) -  < ~ , b t ~  >- + < w , E ~ ( z ~ ) u  >r+,, . 

Ths ,  by (3.2) 

(3.4) B(J, u )  = L(uj, vu E H’(0)  

where 
L(u) = - < j ,  bu >- + < j ,  ~ A ( z o ) u  >r+.o 

Lemma 3.1. There U a constant c = c(n) such that 

B(IJ,U) 2 c(Qjll~lI;,b, vu E x:,(n) 
where 

Proof. 
on u as 

We use (3.3) with the same interpretation of the terms having higher derivatives 
in the proof of Lemma 2.1 and write 

2 
B(u.  U) =(up, bu) + I j ~ ” ~ ~ , y l l  - (EAu,  bv) - (EAu, K U ~ ) -  

- < v ,  bu >- + < U, EA(ZO)U >I-*,,,=: 
6 

T,. 
;=I 

Below, we estimate each T; separately. By a Green’s formula approach, since p = ( l , z ,  0), 
and 6 = b(z) = (1 + z2)3 /2  is independent of z and y-\ariables, we have that 

(ua,bu) = j r b u 2 ( n - P ) d s -  (up,bu)  = < u , b u >  -(ua,bv). 

Thus, 

1 
(UP, bu) = - < U, h > . Ti (3.5) 2 

Further, since E = utr(z, y) does not depend on I we use partial integration and write 
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330 ASAD W E H  

Here, u E 
consequently since u and b are even and b‘ is an  odd function of I we get 

(we could Bssume, instead, that  we have uZ(-zo) = U,(ZO) = 0) and 

1 

IZ = a(zo)b:(s)b(zo)/ d Z / Y O  E ( Z ~ Y ) [ U ~ ( % Y ~ ~ O )  + u 2 ( ~ , y , - z o ) ] ~ ~  
0 --M 

ulr2.0. 
2 3 112 = 3z0(1 + 20) IE 

Hence 

u(z) dx - - . i ( z o ) l e ’ / * ~ l f ~ ~ ~  1 
(3.6) 2 

Finally, using the inverse inequality and interpreting the (.,-) as a sum of integrals over 
the elements 

where a, = maxa(z) = 1 + 2;. Thus, 

B 2  (bu)] U ( Z )  dx - ~h-2iSo,,lltc1/2up112. 
2 T4 -- - ( € A t ,  K U ~ )  2 -- I E ’ ” - - .  : I  a z  

Moreover 

1 1 1 1 2  Ti + Ts = - < u,bu > - < ~ , b v  >-= - < u,bv >+ -I-- < U , b v  >- - < ~ , h  >-= - I U I ~ ,  2 2 2 2 

and -12  t T6 = fT6. Hence, summing up we get 

B(u,  u )  2 ;1u1:+(1- fh-2Tto,,)lJ~C‘/2up)J 2 + - h ( z o ) l E 1 / z u l ~ + l o  2 - k i  1 ) E ‘ / ~ z  

Now assuming Ph-2iSa,, < 1, i.e., for Clh < ii. < C& and P < h, we have the desired 
stability estimate. 0 

We recall that, the presence of the constant C(R) in Lemma 3.1 is to emphasize the 
R dependence in the definition of the parameter K .  We define the trial function space 

1 2 1  a 2  
(bull 4z). 

vc c ?la, as 

vp = { u  E vh : u satisfies the angda r  balance condition (1.21)}. 

The finite element formulation of our variational problem, this time, would be: Find 
J h  E VT such that  with B defined as in (3.3), 

(3.7) 

Subtracting (3.7) from its continuous counterpart (3.4) we get the equation for the error 
e =  J -  J h ,  

B ( J h , u )  = - < f : b u  >- + < f,aA(zo)u >rkz0, Vv E V?. 
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STREAMLINE DIFFUSION METHODS 33 1 

(3.8) B ( e , v )  = 0, Vv E V , .  

Our convergence theorem is as follows: 

Theorem 3.1. There is a constant C = C(n)  such that for J E 'tlz," satisfying (1.13)- 
(1.15) and solving (3.1) and J h  E Vc solving (3.7), we have 

llJ - Jhll,,O I C(~)h'+'/211JII,+l. 

Proof. Let Jh be an interpolant of J satisfying (1.21) and (2.13)-(2.15), (i.e., in particular, 
f h  E V,), where the Fermi solution is replaced by the Fokker-Planck solution. We write 
as in the previous section qh = J - j h  and eh = Jh  - jh .  Using (1.14) we have that 
e212=-20 = 0, thus, JrsXrv E a ( z ) ~ ( b e ) ( b ~ h ) l : ~ * - 0 2 0  = < e,EA(t.o)tlh >rfXo. Hence, using 
Lemma 3.1, 

(3.9) 

2=10 

IIeIIb2,a 5 B(e ,  e )  = W e ,  $1 - B(e, eh) = B(e, ah) 
a a 1 

= ( e a , b A )  + ( ~ e p , $ )  + ( 4 z ) z ( b e ) ,  z ( b q h ) )  - ;i < e,eA(tb)qh >r*.o 

- (tvzAe, 7;)- < e, hh >- + < e, cA(zo)qh . 
Thus, by a similar argument as in the proof of Theorem 2.1, using the inverse estimate 
and combiriing some of the terms we have 

+ flqh12 + 2h-'R2FL Iqj l 'a(z) + i l e l i  1 + lqhli, 

where 5 = mimh K. Hiding the e terms from the right hand side in Ilell$a we get 

11e11b2,a 5 ~ ( 0 )  x [E-~WII~ + RIIV~$ + FIIV$ + Fllrlhli2 + ~ h - 2 ~ 2 ~ ~ v ~ ~ ~ 2  + I V ~ I ~ ]  , 
where C(n) = Cmax(b2a,bb'a). Thus, for C h  < u < & and f < h and using the 
interpolation errors (2.13)-(2.15), we get the desired error estimate. 0 

Recall that the crucial step in this argument is that we have considered the problem in 
a bounded domain especially in the t-direction. In the remaining Sections: 4 and 5 ,  some 
analyses similar to those in [l] are not carried out in full details. Interested reader is asked 
to see Sections 3 and 4 in [l]. 
4. Streamhe diffusion with discontinuity in x. In order t o  study the distribution 
of the particle beams in a certain depth, e.g., z = 2 4 ,  a reasonable initial guess would 
be obtained using the information in some previous distinct depths z = z;, i = I , . . . ,n  
with zi < zi+l. One may assume having various filters instalated in different depths in 
order to control or adjust the beam intensity. This corresponds considering discontinuities 
in z-direction. (Observe that, to deal with the diffusion term -€JZ2,  the trial functions 
should be continuous in the r-variable). In this section we consider a method where the 
trial functions are continuous in y and z-directions and discontinuous in the z-direction, 
based on a %iangulation" of each phase-space slab, with quasiuniform triangular bases 
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332 ASADZADEH 

in yz and heights h, .- z,+~ - zn, being equal to the corresponding slab's width. We 
let also the maximum of the sides of the triangular bases of the elements in yx in all slab 
levels to be h N max,h,.,. To define such a method let 0 = zo < 21 < ... < XN = L,  
be a quasiuniform subdivision of the interval [0, L], (scaling in 2-variable, we may choose 
L = l ) ,  and introduce the strips 

S, = I: x I, x I,, 
I: = {z: zn-l < z < zn}, 

n = 1 , 2  ,..., N ,  
n = 1,2 ,..., N .  

For each n, let W" be a finite element subspace of H'(S,) based on the triangulation 
ch of the strip S, with the elements of size h > E. (Because of the relation between the 
parameters h and n, in this Section, we only include the index h in the discrete function 
spaces and hence in our discrete functions.) Let Th be a triangulation of 1, x I,, with 
elements T E Th, and define 

N 

w h  == {U E ??io : UIK E pk(T) X %(I:);VK = 7 X I,' E ch}, here, ??in = IT ?f:,(s,). 
n-1 

If we now apply the streamline diffusion method successively on each strip S, for the Fermi 
problem given by (1.14)-(1.18) and impose the boundary conditions at the points z = zn-l 
weakly, we obtain the following method Find J h  E wh such that for n = 1,2, ..., N ,  

+ < J: ,U+  >,--I - < J:,u+ >r;=< J! ,V+ >,-I, VV E w h ,  

where the term with J,", is again interpreted after that a partial integration on L is per- 
formed and where we have used the following notation: 

J! = f, 

n=l n=l 

with the discrete counterpart, where all J's are replaced by Jh. The corresponding linear 
form is: 

D
ow

nl
oa

de
d 

by
 [

C
ha

lm
er

s 
U

ni
ve

rs
ity

 o
f 

T
ec

hn
ol

og
y]

 a
t 0

1:
14

 2
8 

Ja
nu

ar
y 

20
15

 



STREAMLINE DIFFUSION METHODS 333 

L(u) =< f, v+ >o= Lo f u ds. 

Thus, we have 

( 4 4  B(J ,v )  = L(v) ,  vu E wh- 

We shall use a stability estimate for (4.1) in a norm 111 . 111 defined by 

where 

with w(&yo) =: w ( z ,  &yo,%), we use similar convention for the other variables. 

Lemma 4.1. We have that 

B(v, .) L III~III2, vv E %,f 

Proof. We use the definition of B in (4.1) and write 

(4.3) B ( U , ~ )  = llK1/2ua112 + ~ ~ ~ 1 ~ ~ u z ~ ~ 2  - (Envzz,up)- < v+,v+ >r- 
N N-1 

+ Z ( u ~ , v ) n +  C < I V I , ~ +  >n + < v+,v+ >01 
n=l n=l 

where we have used the angular balance condition (1.21) which leads, after summation, to 
the elimination of the third term in the first sum in (4.1). Integrating by parts we have 

and since, for z = z;, (n.p) = 1 while for z = z:-~, (n.P) I-1,  we get 

Thus, rearranging the terms we may write the last three terms in (4.3) as 

N N-I 

n=l n=l 

Further, using the equalities: 
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334 ASADZADEH 

To estimate the term involving u,, we use the same inverse estimate technique as in the 
previous sections to  obtain 

Now (4.3)-(4.6) together with the fact that the parameters are chosen so that EkCZh-2 < 1, 
will give us the desired result. 

Theorem 4.1. There is a constant C = C(n) independent of the mesh size h and the 
pammetere such that forg  < h and with IC and ii satisfying the stability condition of Lemma 
2.1, we have the following error estimate valid for the solution of the Femi equation: 

0 

Proof. The proof is similar to that of Theorem 2.1. Here, we need to control some 
additional jump and boundary terms. Let Jh  E wh be an interpolant of the exact solution 
J so that j t  = J2[f20, and 7 = J - ?. The error term can be written as I*zo 

e := J -  J' = ( J -  P) - (J' - j') 7 - E .  

Now since [ E wh, B(e,<) = 0. Thus, we have using Lemma 4.1, that 

(4.7) 
lll€1ll2 5 B(E, E )  = B(r) - el E )  = Wr), €1 D
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STREAMLINE DIFFUSION METHODS 335 

where, ri. = r+ \ {(x, y, z) E 
for x = L. Thus using the same technique as in the proof of Lemma 4.1, 

: x = L}, is the outflow boundary except the top surface 

Now by standard interpolation theory we have (see Ciarlet IS], p. 123), 

1 ”’ N 

[ h l n I i c  + Il?ll’ + h z I l ~ ~ 1 1 2  f h2117],112 + 10-1; 5 Chk++’llJ1lk+l. 
n=l 

Thus 

(4.10) 111E1112 I ChZk++’, 

and since 111q111, the interpolation error, is of the same order as 111<111, we have the desired 
result. 

Remark 4.1. Once again, we emphasize that even in this Section, as in Section 2, the 
stability Lemma 4.1 will not, explicitly, give a control of the &-norm. We could again use 
a version of the Poincare-Friedricks inequality as in Lemma 2.2 and obtain an estimate 
for the &-norm with the same coefficients as for the semi-norms involved in the weighted 
stability norm, Le., we could add a &-norm with a coefficient of order O(&) to the il.111 
norm in Lemma 4.1. However, a better approach would be through Lemma 4.2 below, 
(see also Lemma 3.2 in [l]), in a situation where jump discontinuities are introduced and 
included in the stability norm ]ll.I1I. This approach improves the &-norm estimate regaining 
the factor h’/’. Therefore, in all of the norms 111. 111, in here and in the following Section, 
we can insert the L2-norm of the function without any small coefficients of order O ( f i ) .  
0 

Lemma 4.2. For any constant C1 > 0, we have f o r  u E %!io, 

Proof. For zn < z < z,+~, we have using Green’s formula and a relation of the type 
(4.5), that 
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336 ASADZADEH 

where, for simplicity, we have used the notation 0, := Iy x I, X {z}, ro := ant, similarl, 
r; := an; and I - Irz, is defined as I . IrJ;yo, with the z-integration over In = [znl z,+1]. 

Thus, Gronwall’s inequality for z, < < xn+l yields 

(4.11) 

Integrating over zn < 
desired result. 0 

logue way: Find Jh E wh such that 

(4.12) 

< zn+l and summing over n = 0,1, ..., N - 1, we obtain the 

The Streamline Diffusion method for the Fokker-Plan& equation is defined in an ana- 

N 

B(Jh,u) = [(Jgh, bu + K V ~ ) , ,  - (cAJh, bu + ‘EW~),] - < J$,bu+ >r- 
n=l 

N-1 

+ < [Jh], h+ >n + < Jh, EA(Z~)U >rise + < J;, bu+ >o 
n=l 

= < f,h+ >o + < f , ~ A ( z o ) v  >r;,ol VU E wh, 

where, r;, := rfru I r m .  We introduce the norm 

n=l 

Then, our stability Lemma is: 

Lemma 4.3. There is a constant C = C(n) such that for w E wh we have 

B(U> u )  I Clll4lla2. 
The convergence theorem is now: 

Theorem 4.2. Let J and Jh be the solutions of the continuous and discrete Fokker-PIanck 
equations satisfying (9.4) and (4.12), respectiuely, further assume that J and Jh satisfy 
the boundary conditions (1.19)-(1.15) and the angular balance condition (1.21), then there 
is a constant C = C(n) such that for suficiently small h and for J E Hk+’(R) we have 

I l l J -  Jhlllb I C ( R ) h L + 1 ’ 2 1 1  JIlk+l* 

The proofi of Lemma 4.3 and Theorem 4.2 are lenghty, however, straightforward com- 
binations of the proofs in here and the previous Section. We omit these tedious details. 

5. Discontinuous Galerkin. Now we m u m e  trial functions with discontinuities in 
both z and y-directions (we cannot impose this condition in zdirection, because of the 
presence of in the operator A ) .  w e  let ch be a family of quasiuniform triangulation of 

D
ow

nl
oa

de
d 

by
 [

C
ha

lm
er

s 
U

ni
ve

rs
ity

 o
f 

T
ec

hn
ol

og
y]

 a
t 0

1:
14

 2
8 

Ja
nu

ar
y 

20
15

 



STREAMLINE DIFFUSION METHODS 337 

R and Vz E 1, let 7; := c h  n { z } .  Then 
I, x Iv x { z }  and we may define for 7 E c, is a family of quasiuniform triangulation of 

= ( ( 2 ,  Y) E a7 : 4 x 7  Y) . P‘ 2 01, 
w h  = {U E Lz(n) : U I K  E q ( K ) ,  VK E Ch} ,  

Wh” = { u  E &(a,) : E Pk(T), v7 E z}, 
where P’ E (1, z). Now, consider the quasiuniform gridpoints z,, i = 1,. . . , m in the 
z-direction, with m chosen so that the three dimensional triangulation c h  remains qua- 
siuniform with the size h. Then supressing the superscript z of TL and interpreting Th 

as triangulations in the z-direction, the discontinuous (in x ,  y) Galerkin finite element 
method for Fermi equation can now be formulated as follows: Find J h  E )$A such that 
Jhlz,ri E Whxi, i = 1,. . .m, and 

here, (., .) = CKECh (., .)K, [Jh] = J$ - J!! and 

J~ - lim ~ ~ ( ( x ,  y, z)  + SP) = lim ~ ~ ( x  + s, 9 + sz, z) .  * - s-rort s-+o* 

Recail that since P = (l,z, 0) is divergent free, n .P is continuous across the inter-element 
boundaries of 7) and thus 3 r * ( P )  is well defined. Problem (5.1) can be formulated as 

where &-(,El)’ = &-(P) \ no. Our stability Lemma for this problem is: 

Lemma 5.1. We have for  B as in (5.2) and n and E as in the proof of Lemma 2.1, 

where 

Proof. The proof is similar to that of Lemma 4.1 and is a consequence of the inequality 
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338 ASADZADEH 

We omit the details. 0 

Our next convergence result is: 

Theorem 5.1. Let J and Jh be as in Theorem 4.1, then f o r  111 . 111 defined as in Lemma 
5.1, we have the following error estimate f o r  the problem (5.1), 

lllJ - Jhlll I C(~)hk+"211JIIk+l. 

Proof. We use the same notation as in the proof of Theorem 4.1 and with B given by 
(5.2), to  write 

where using the same technique as in the proof of Theorem 4.1 we finally need to control 
a term of the form 

lllE11I2 I BE, 0 = B!VI €1, 

T =  [ th+ln.PI.  
,-cTh O S - ( @ ) ' x I *  

Using Cauchy's inequality we have for X > 0, that 

Here, the first sum can be hidden in lllElllZ and we estimate the last one as 

summing over 7 and using the interpolation error 

thus 

and hence 

and the proof is complete 

problem is: Find Jh E wh such that Vv E f i b ,  

0 

The analogue of this 3ethod is valid for the Fokker-Planck equation where the discrete 

D
ow

nl
oa

de
d 

by
 [

C
ha

lm
er

s 
U

ni
ve

rs
ity

 o
f 

T
ec

hn
ol

og
y]

 a
t 0

1:
14

 2
8 

Ja
nu

ar
y 

20
15

 



STREAMLINE DIFFUSION METHODS 339 

Introducing the norm 

we have the following stability and convergence results for the Fokker-Planck equation: 

Lemma 5.2. For B and 111 a 111b as above we have 

Theorem 5.2. For the discontinuous Galerkin solution Jh  for the Fokker-Planck equation 
we have the error estimate 

Ij lJ  - Jhl\lb 5 C(R)hk++'/211Jllk+1. 

The proofs are again straightforward, however, lenghty and similar to those of this and 
the previous Sections and therefore are omitted. 

Conclusion. Our analyses extend the results of [l] to a degenerate type convection- 
dominated convection-diffusion problem with a small and variable diffusion coefficient. The 
results in this paper are affected by the degenerate character of the equation and also by the 
absence of a pure current term in the original problem characterizing the beam, therefore 
the convergence rates are given in different weighted stability norms with no explicit L2- 

norm control. As we mentioned earlier, either using a version of the Poincare's inequality, 
(Lemma 2.2), or a simple estimate as in Lemma 4.2, (relevant for the discontinuous cases), 
we can include &-norms in our stability estimates. However, using Lemma 2.2, would not 
lead to any better covergence rate for the L2-norms than what we have for our weighted 
semi-norms. Lemma 4.2 improves the L2-norm controls in much more involved weighted 
norms. These results are of order O(hk++'l2) and sharp in the sense that omitting any 
power of the diffusion coefficient on the left hand side of our stability norms will cause the 
same amount of reduced convergence rate. 0 
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