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ON CONVERGENCE OF THE STREAMLINE DIFFUSION AND

DISCONTINUOUS GALERKIN METHODS FOR THE

MULTI-DIMENSIONAL FERMI PENCIL BEAM EQUATION

MOHAMMAD ASADZADEH AND EHSAN KAZEMI

Abstract. We derive error estimates in the L2 norms, for the streamline diffusion (SD) and
discontinuous Galerkin (DG) finite element methods for steady state, energy dependent, Fermi
equation in three space dimensions. These estimates yield optimal convergence rates due to the
maximal available regularity of the exact solution. Here our focus is on theoretical aspects of the
h and hp approximations in both SD and DG settings.
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1. Introduction

We study approximate solutions for the three-dimensional Fermi equation using
streamline diffusion (SD) and discontinuous Galerkin (DG) finite element methods.
We prove stability estimates and derive optimal convergence rates for the current
function. This work extends the results in [2]-[3] to the multidimensional case, and
includes the hp approach. The physical problem has diverse applications in, e.g.
astrophysics, material science, electron microscopy, radiation therapy, etc. We shall
consider a pencil beam of particles normally incident on a slab of finite thickness,
entering the slab at a single point, e.g. (0, 0, 0), in the direction of positive x-axis.

Fermi equation is a convection-diffusion equation, obtained as an asymptotic
limit of the Fokker-Planck equation as the transport cross-section (σtr) gets smaller,
see [7]. The equation is degenerate in both convection and diffusion in the sense
that drift and diffusion are taking place in, physically, different domains, and the
problem is convection dominated. Further, the associated boundary conditions are
in the form of product of δ functions, which are not suitable for L2-estimates.
Therefore, we consider model problems with data smoother than Dirac δ-function.

Fermi equation has closed form solutions for σtr being a constant or a function
of only x. In the present setting the direction of penetration of the beam, x, may
also be interpreted as the direction of a hypothetic time variable.

The SD-method is obtained modifying the weak form by adding a multiple of
the ”drift-terms” in the equation to the test function. This yields artificial diffusion
added only in the streamlines direction (motivating for the name: the streamline

diffusion method ) which improves stability in the characteristic direction so that
internal layers are not smeared out while the added diffusion removes oscillations
near boundary layers. The oscillations merge from the lack of stability of standard
Galerkin for convection dominated problems, see, e.g. [14]. While SD may have dis-
continuities in x-direction only, the DG method allows jump discontinuities across
interelement boundaries in order to count for the local effects. We study both h
and hp versions of SD and DG methods. A semi-streamline diffusion for Fermi

Received by the editors June 5, 2012 and, in revised form, January 23, 2013.
1991 Mathematics Subject Classification. 65M15, 65M60.

860



ON CONVERGENCE OF THE SD AND DG METHODS FOR FERMI EQUATION 861

equation has been implemented in [3]. The hp version is considered in a general
setting for a Vlasov-Poisson-Fokker-Planck system in [5].

An outline of this paper is as follows: In Section 2, we introduce the model
problem. Section 3 is devoted to the stability estimates and convergence analysis for
the h and hp streamline diffusion approximations of the Fermi equation. Section 4
is the discontinuous Galerkin counterpart of Section 3, counting for local properties.

2. Model Problem

We consider a model problem for three dimensional Fermi equation on a bounded
polygonal domains Ωx ⊂ R

3, x = (x, y, z) =: (x, x⊥), with velocities v ∈ Ωv ⊂ R
2:

(2.1)





∂f
∂x + v · ∇⊥f = σtr

2 (∆vf), in (0, L]× Ω =: QL,
f(0, x⊥, v) = f0(x⊥, v), in Ω = Ωx⊥

× Ωv,
f(x, x⊥, v) = 0, in (0, L]× ([Γ−

v × Ωv] ∪ [Ωx⊥
× ∂Ωv]),

where f0 ∈ L2(Ω), and for each v ∈ Ωv, the outflow boundary is given by

(2.2) Γ−
v = {x⊥ ∈ ∂Ωx⊥

: n(x⊥).v < 0}.
Here Ω⊥ = {(y, z)}, n(x⊥) is the outward unit normal to ∂Ωx⊥

at the point x⊥ =
(y, z) ∈ ∂Ωx⊥

, v = (v1, v2), ∇⊥ = ( ∂
∂y ,

∂
∂z ) and σtr = σtr(x, y, z).

2.1. Notations and preliminaries. Let T x⊥

h = {τx⊥
} and T v

h = {τv} be finite
element subdivisions of Ωx⊥

and Ωv, into the elements τx⊥ and τv, respectively.
Thus, Th = T x⊥

h × T v
h will be a subdivision of Ω = Ωx⊥

× Ωv with elements
{τx⊥

× τv} = {τ}. Consider a partition Th : 0 = x0 < x1 < . . . < xM = L of
the interval I = (0, L] into subintervals Im = (xm−1, xm], m = 1, ...,M , and let Ch
be the corresponding subdivision of QL := (0, L] × Ω into elements K = Im × τ
with the mesh size hK = diam K. We assume that each K ∈ Ch is the image
under a family of bijective affine maps {FK} of a fixed standard element K̂ into

K, where K̂ is either the open unit simplex or the open unit hypercube in R
5 (in

the hp-analysis, K̂ is the open unit hypercube in R
5). Let Pp(K) be the set of all

polynomials of degree ≤ p on K; in x, x⊥ and v, and define the finite element space

(2.3) Vh = {g ∈ H̃0 : g ◦ FK ∈ Pp(K̂); ∀K ∈ Ch}, where

(2.4) H̃0 =
M∏

m=1

H1
0 (Sm), Sk = Ik × Ω, k = 1, · · · ,M, with

(2.5) H1
0 (Sm) = {g ∈ H1(Sm) : g ≡ 0 on ∂Ωv}.

For piecewise polynomials wi defined on the triangulation C′
h = {K} with C′

h ⊂ Ch
and for Di being some differential operators, we use the notation,

(2.6)
(D1w1, D2w2)Q′ =

∑

K∈C′

h

(D1w1, D2w2)K , Q′ =
⋃

K∈C′

h

K,

where (., .)Q is the L2(Q) scalar product and ‖.‖Q is the corresponding L2(Q)-norm.
Further, for m = 1, 2, . . . ,M , β = (v,0), n = (nx⊥

,nv) and with Γ = ∂(Ωx⊥
×Ωv),

(2.7)

(f, g)m = (f, g)Sm, ‖g‖2m = (g, g)m,
〈f, g〉m = (f(xm, ., .), g(xm, ., .))Ω, |g|2m = 〈g, g〉m,
〈f, g〉Γ− =

∫
Γ− fg(β · n)ds, 〈f, g〉Γ−

m
=
∫
Im

〈f, g〉Γ−ds,

〈f, g〉Γ−

I
=
∫
I 〈f, g〉Γ−ds, Γ− = {(x⊥, v) ∈ Γ : β · n < 0},
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where nx⊥
and nv are outward unit normals to ∂Ωx⊥

and ∂Ωv, respectively. Below
C will denote a constant not necessarily the same at each occurrence and indepen-
dent of the parameters in the problem, unless otherwise specifically specified.

3. Streamline diffusion method

3.1. Streamline diffusion method with discontinuity in x. In this section we
study the h and hp-versions of SD-method for the three dimensional Fermi equation
(2.1) with σ = 1

2σtr(x, y, z). We use continuous trial functions in x⊥ and v with
possible jump discontinuities in x on the nodes of a partition Th of [0, L] with the
jumps in x as

(3.1) [g] = g+ − g−, where

(3.2)
g± = lims→0± g(x+ s, x⊥, v), for (x⊥, v) ∈ Int(Ωx⊥

)× Ωv, x ∈ I,
g± = lims→0± g(x+ s, x⊥ + sv, v), for (x⊥, v) ∈ ∂Ωx⊥

× Ωv, x ∈ I.

Equation (2.1), associated with L2 boundary conditions, gives rise to the variational
formulation: find fh ∈ Vh such that for m = 0, 1, · · · ,M − 1, and for all g ∈ Vh,

∑

K∈Im×Th

[
(fh

x + v · ∇⊥f
h, g + δ(gx + v · ∇⊥g))K + σ(∇vf

h,∇vg)K

−δσ(∆vf
h, gx + v · ∇⊥g)K

]
+ 〈fh

+, g+〉m − 〈fh
+, g+〉Γ−

m
= 〈fh

−, g+〉m.

(3.3)

In the h-version for (2.1), using test functions of the form g+ δ(gx + v · ∇⊥g), with
δ ∼ hα, α ≥ 1, would supply us with an extra diffusion term of order hα in the
streamline direction: (1, v,0). Then, we will be able to control an extra term of the
form h‖gx + v · ∇⊥g‖. In the hp-version, however, the choice of δ is more involved
and depends on optimal choice of the parameters h and p locally. Therefore in
hp-analysis, δ would appear as an elementwise (local) parameter δK .

3.1.1. The h-version of the SD-method. We formulate the SD-approximation
of the Fermi equation (2.1), with jump discontinuities in x. Introducing the bilinear
form

(3.4) B̃(f, g) = B(f, g) +

M−1∑

m=1

〈[f ], g+〉m + 〈f+, g+〉0 − 〈f+, g+〉Γ−

I
,

B(f, g) =
∑

K∈Ch

[
(fx + v · ∇⊥f, g + δ(gx + v · ∇⊥g))QL

+ σ(∇vf,∇vg)K

− δσ(∆vf, gx + v · ∇⊥g)K
]
+ 〈f, g〉0 − 〈f, g〉Γ− ,

(3.5)

and the linear form, viz

L̃(g) = 〈f0, g+〉0,
we may rewrite (3.3) in global form as

(3.6) B̃(fh, g) = L̃(g), ∀g ∈ Vh.

It is easy to see that the adequate triple norm in this case is:

(3.7) [||g||]2 = 1
2

[
|||g|||2 + δ ‖ gx + v.∇⊥g ‖2QL

+

M−1∑

m=1

|[g]|2m

]
with

(3.8) |||g|||2 =
[
σ‖∇vg‖2QL

+ |g|2M + |g|20 +
∫
I×∂Ω g2 | β · n |dvds

]
.
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We shall frequently use the following interpolation error estimates, see, e.g. [10] or

[15]: Let f ∈ Hr+1(Ω) then there exists an interpolant f̃h ∈ Vh of f such that

‖f − f̃h‖s,QL
≤ Chr+1−s‖f‖r+1,QL

, s = 0, 1,(3.9)

‖f − f̃h‖∂QL
≤ Chr+1/2‖f‖r+1,QL

.(3.10)

Below we state the main results of the SD-approach (the proofs are as in [2]-[5]).

Lemma 3.1. The bilinear form B̃ satisfies the coercivity estimate

B̃(g, g) ≥ [||g||]2 ∀g ∈ Vh.

Theorem 3.1. Let f and fh satisfy (2.1) and (3.6), respectively, then

(3.11) [||f − fh||] ≤ Chk+1/2‖f‖k+1,QL
.

3.1.2. The hp-version of the SD-method. In this part we derive error bounds
which are simultaneously optimal, both in the mesh size h and the spectral order

p in a stabilization parameter δ ∼
(

h2

σp4

)
. Below we extend the results of h-version

(global) to hp-version for local case. To this end we consider the bilinear form

B̂δ(f, g) =
∑

K∈Ch

[(fx + v · ∇⊥f, g + δ(gx + v · ∇⊥g))K + σ(∇vf,∇vg)K

−δσ(∆vf, gx + v · ∇⊥g)K ] +

M−1∑

m=1

〈[f ], g+〉m + 〈f, g〉0 − 〈f, g〉Γ−

and the linear functional

L̂δ(g) = 〈f0, g+〉0,
where the non-negative piecewise constant function δ is defined by

δ|K = δK δK = constant for K ∈ Ch.
The precise choice of δ will be discussed below. We now define the local version of
(3.6): find fh ∈ V p

h , the space of all polynomials of degree ≤ p, such that

(3.12) B̂δ(f
h, g) = L̂(g) ∀g ∈ V p

h ,

Note that in the h version of the SD-approach we interpret (., .)QL
as
∑M

m=1(., .)m
and, assuming discontinuities in x, we include jump terms it the x direction. Thus
we estimate the sum of the norms over slabs Sm, as well as the contributions from
the jumps over xm : m = 1, . . . ,M − 1. In the hp-version we have, in addition
to slab-wise estimates, a further step of identifying (., .)m by

∑
K∈Im×Th

(., .)K
counting for the local character of the parameter δK . We also define the norm
[||.||]δ, obtained from (3.7), replacing δ (h) by δK and considering its local effects:

(3.13) [||g||]2δ =:
1

2

[
|||g|||2 +

∑

K∈Ch

δK ‖ gx + v.∇⊥g ‖2K +

M−1∑

m=1

|[g]|2m

]
.

Further, we assume that the family of partitions {Ch}h>0 is shape regular, in the
sense that there is a positive constant C0, independent of h, such that

(3.14) C0h
5
K ≤ ρ(K), ∀K ∈

⋃

h>0

{Ch},

where ρ(K) is the diameter of the five dimensional sphere inscribed in K.
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Lemma 3.2. Assume that the local SD-parameter δK is selected in the range

(3.15) 0 < δK ≤ h2
K

σC2
I p

4
, ∀K ∈ Ch,

where CI is the constant from the standard inverse estimate (see [8], Lemma 4.5.3

and Theorem 4.5.11). Then the bilinear form B̂δ(., .) is coercive on V p
h × V p

h , i.e.

(3.16) B̂δ(g, g) ≥
1

2
[||g||]2δ , ∀g ∈ V p

h .

Proof. The proof is a standard argument followed by the estimate of the δKσ-term:

δKσ(∆vg, gx + v · ∇⊥g)K ≤ 1

2
CIh

−1
K p2

√
σδK

[
σ‖∇vg‖2K + δK‖gx + v · ∇⊥g‖2K

]

≤ 1

2

[
σ‖∇vg‖2K + δK‖gx + v · ∇⊥g‖2K

]
,

where we use Cauchy-Schwarz and inverse inequality and the assumption on δK . �

We shall use the following approximation property: Let g ∈ Hs(K) and ‖.‖s,K
be the Sobolev norm on K; there exists a constant C depending on s and r but
independent of g, hK and p, and a polynomial Πpg of degree p such that (see [6]),

(3.17) ‖g −Πpg‖r,K ≤ C
hµ−r
K

ps−r
‖g‖s,K, for 0 ≤ r ≤ s, µ = min(p+ 1, s).

We shall also require a global counterpart of (3.17) for the finite element space V p
h ,

Lemma 3.3. Let g ∈ H1
0 (QL)∩L2(I,Hr(Ω)), r > 2 such that g |K∈ Hs(K), with

a positive integer s ≥ r and K ∈ Ch. Then, there exists an interpolant Πpg ∈ V p
h

of g which is continuous on Ω such that

(3.18) ‖g −Πpg‖1,K ≤ C
hµ−1
K

ps−1
‖g‖s,K ,

where C > 0 is a constant independent of h and p and µ = min(p+ 1, s).

See, e.g. [12] where a proof is outlined assuming certain regularity. More elabo-
rated proofs can be found in [16] and [8]. We shall also need the trace inequality:

(3.19) ‖η‖2∂K ≤ C(‖∇η‖K‖η‖K + h−1
K ‖η‖2K), ∀K ∈ Ch.

Theorem 3.2. Let Ch be a shape regular mesh on QL and f be the exact solution of
(2.1) that satisfies the assumptions of Lemma 3.3. Let fh be the solution of (3.12)

and assume that 0 < δK satisfies 0 < δK ≤ h2
K

σC2
Ip

4 for each K ∈ Ch. Then,

(3.20) [||f − fh||]2δ ≤ C
∑

K∈Ch

h2µ−1
K

p2s−2

( 1

p2
+

1

p
+ σh−1

K + δKh−1
K +

hK

δKp2

)
‖f‖2s,K .

Proof. We start with the triangle inequality

(3.21) [||f − fh||]δ ≤ [||η||]δ + [||ξ||]δ,
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where η = f−Πpf and ξ = fh−Πpf . Here Πpf ∈ V p
h is the conforming interpolant

in Lemma 3.3. Using Lemma 3.2 and Galerkin orthogonality B̂δ(e, ξ) = 0, we have

1

2
[||ξ||]2δ ≤ B̂δ(ξ, ξ) = B̂δ(η, ξ)− B̂δ(e, ξ) = B̂δ(η, ξ)

= σ(∇vη,∇vξ)QL
− σ

∑

K∈Ch

δK(∆vη, ξx + v · ∇⊥ξ)K

+ (ηx + v · ∇⊥η, ξ)QL
+
∑

K∈Ch

δK(ηx + v · ∇⊥η, ξx + v · ∇⊥ξ)K

+
M−1∑

m=1

〈[η], ξ+〉m + 〈η+, ξ+〉0 − 〈η, ξ+〉Γ−

I
=

7∑

i=1

Ti.

(3.22)

The terms T1 and T3-T7 are easily estimated by standard techniques (see [2]-[5]).
As for the T2 term, using the inverse inequality and assumptions on σ, and δK ,

|T2| ≤ CIδKσp2h−1
K ‖∇vη‖K‖ξx + v · ∇⊥ξ‖K ≤ 2σ‖η‖2K +

δK
8
‖ξx + v · ∇⊥ξ‖2K .

Then, we end up rewriteing the estimate (3.22) concisely (we skip the details) as

(3.23) [||ξ||]δ ≤ C(I1 + I2),

where I1 and I2 are given by

I1 =
∑

K∈Ch

(
δ−1
K ‖η‖2K + δK‖ηx + v · ∇⊥η‖2K + σ‖∇vη‖2

)
,

I2 =
M−1∑

m=1

|η−|2m +

∫

I×∂Ω

η2|β · n|dvds.

To estimate I1 we have, using Lemma 3.3 and assumption on δK , that

(3.24) I1 ≤ C
∑

K∈Ch

h2µ−2
K

p2s−2
(δ−1

K

h2
K

p2
+ δK + σ)‖f‖2s,K .

As, for the term I2, using the trace estimate (3.19), yields

(3.25) I2 ≤
∑

K∈Ch

(
hµ−1
K

ps−1

hµ
K

ps
+ h−1

K

h2µ
K

p2s
)‖f‖2s,K =

∑

K∈Ch

h2µ−1
K

p2s−1
(1 +

1

p
)‖f‖2s,K .

Hence from (3.23)-(3.25) we get

(3.26) [||ξ||]2δ ≤ C
∑

K∈Ch

h2µ−1
K

p2s−2
(
1

p2
+

1

p
+ σh−1

K + δKh−1
K +

hK

δKp2
)‖f‖2s,K .

Finally, the term [||η||]δ can be estimated in the same way, for which we get,

(3.27) [||η||]2δ ≤ C
∑

K∈Ch

h2µ−1
K

p2s−2
(
1

p
+ σh−1

K + δKh−1
K )‖f‖2s,K .

Substituting (3.26)-(3.27) into (3.21), we obtain the desired result. �

Remark 3.1. In Theorem 3.2, we chose δK for all K ∈ Ch when σ is small compared
to hk and 1/p. The parameters are selected in a way that δK satisfies the hypothesis
of Theorem 3.2. This particular choice of δK is motivated by our analysis in the
discretization error (3.20) in [||.||]δ norm, in order to give hp-error bound as,

(3.28) [||f − fh||]2δ ≤ C
∑

K∈Ch

h2µ−1
K

p2s−1
‖f‖2s,K .
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The assumption on σ is crucial for, simultaneous, optimal error bound in h and p.

Remark 3.2. The assumptions of Lemma 3.3, for the global regularity of the solu-
tion, are somehow restrictive, but since we assume our test functions are continuous
in (x⊥, v), so in this framework it is difficult to relax these assumptions. For the
DG counterpart of current analysis we shall substantially ease these requirements.

Remark 3.3. We have not allowed element-by-element local parameters p, or s for
the exact solution f . Our analysis can be extended easily to this case replacing
s by sK and ‖f‖s by ‖f‖s,K , K ∈ Ch. However, to replace p by pK , (although
straightforward for the DG studies below) is an uneasy procedure in the SD case.
Going through this cumbersome procedure for SD, subsequently, in the local ap-
proximation (3.17), µ = min(p+ 1, s) will be replaced by µK = min(pK + 1, sK).

4. Discontinuous Galerkin

4.1. Description of discontinuous Galerkin (DG)-method. Here we assume
trial functions as being polynomials of degree k ≥ 1 on each element K which may
be discontinuous across inter-element boundaries in all variables. We define

∂K±(β̃) = {(x, x⊥, v) ∈ ∂K : β̃ ·n = nx(x, x⊥, v)+nx⊥
(x, x⊥, v) · v ≷ 0}, K ∈ Ch,

where β̃ = (1, v,0) and n = (nx,nx⊥
,nv) is the outward unit normal to ∂K. To

treat the diffusive part of (2.1), using discontinuous trial functions, we introduce
an operator R as defined in, e.g. [4] and [9]. To this end, we first define the spaces

Ṽ =
∏

K∈Ch

H1(K),

Vh = {w ∈ L2(QL) : w |K∈ Pk(K) : ∀K ∈ Ch; w = 0 on ∂Ωv},
Wh = {w ∈ [L2(QL)]

2 : w |K∈ [Pk(K)]2; ∀K ∈ Ch}.

(4.1)

Then, given g ∈ Ṽ we define R : Ṽ → Wh by the following weak formulation

(R(g),w) = −
∑

Im×τx
⊥

∫

Im×τx
⊥

∑

e∈Ev

∫

e

[[g]]nv · (w)0dv, ∀w ∈ Wh.

Here Ev denotes the set of all interior edges of the triangulation T v
h of the domain

Ωh
v and nv is the outward unit normal from element τi to τj , sharing the edge e

with i > j, τi, τj ∈ T v
h . Further, for an appropriately chosen function χ let

(4.2) (χ)0 :=
χ+ χext

2
, [[χ]] := χ− χext,

where χext denotes the value of χ in the element τextv having e ∈ Ev as the common
edge with τv. Hence, roughly speaking, [[χ]] corresponds to the jump and (χ)0

is the average value of χ in the velocity variable. Next for e ∈ Ev we define the
operator re to be the restriction of R to the elements sharing the edge e ∈ Ev, i.e.

(re(g),w)QL
= −

∑

Im×τx
⊥

∫

Im×τx
⊥

∫

e

[[g]]nv · (w)0dv, ∀w ∈ Wh.

One can easily verify that, for any element τv of the triangulation of Ωv,

(4.3)
∑

e⊂∂τv∩Ev

re = R on τv.

As a consequence of this we have the following estimate

(4.4) ‖R(g)‖2K ≤ κ
∑

e⊂∂τv∩Ev

‖re(g)‖2K ,
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where τv corresponds to the element K and κ > 0 is a constant. Now, since the
support of each re is the union of elements sharing the edge e, we evidently have

(4.5)
∑

e∈Ev

‖re(g)‖2QL
=
∑

K∈Ch

∑

e⊂∂τv∩Ev

‖re(g)‖2K .

Hence, the DG method for (2.1) is now formulated as: find fh ∈ Vh such that

(4.6) Bδ,θ(f
h, g) = 〈f0, g+〉0, ∀g ∈ Vh, where

(4.7) Bδ,θ(f, g) = Aδ(f, g) +Dθ(f, g).

The bilinear forms Aδ and Dθ correspond to the convective and diffusive parts viz:

Aδ(f
h, g) =

∑

K∈Ch

(fh
x + v · ∇⊥f

h, g + δK(gx + v · ∇⊥g))K + 〈f+, g+〉0

+
∑

K∈Ch

∫

∂K−(β̃)′
[f ]g+|β̃ · n|, ∂K−(β̃)

′ = ∂K−(β̃)\{0} × Ω,
(4.8)

Dθ(f
h, g) =σ(∇vf

h,∇vg)QL
+ σ(∇vf

h, R(g))QL
+ σ(R(fh),∇vg)QL

+ λσ
∑

e∈Ev

(re(f
h), re(g))QL

−
∑

K∈Ch

θKσ(∆vf
h, gx + v · ∇⊥g)K .(4.9)

Here, [fh] = fh
+ − fh

− where fh
± is defined as in (3.2), δK > 0 is a positive constant

on element K, 0 ≤ θK ≤ δK and λ > 0 is a given constant. We also define the
norms corresponding to (4.8) and (4.9) by

|||g|||2Aδ
=

1

2

[
∑

K∈Ch

δK‖gx + v.∇⊥g‖2K + |g|2M + |g|20 +
∫

I×∂Ω+

g2|v · nx⊥
|

+
∑

K∈Ch

∫

∂K−(β̃)′
[g]2|β̃ · n|

]
,

and

|||g|||2Dθ
=

1

2

[
σ‖∇vg‖2QL

+ 2σ
∑

e∈Ev

‖re(g)‖2QL

]
.

Finally, we define

(4.10) |||g|||2δ,θ = |||g|||2Aδ
+ |||g|||2Dθ

.

Note that, in general [g] is distinct from the jump [[g]], defined by (4.2), in the
sense that the latter depends on element numbering as well. Recall that since the
characteristic β̃ = (1, v,0) is divergent free, (β̃ · n) is continuous across the inter-
element boundaries of Ch and thus ∂K± is well defined. If we chose δK := h, and
θK := h for all K ∈ Ch, then the problem (4.6) can be formulated as

(4.11) B∗(f
h, g) = 〈f0, g+〉0, ∀g ∈ Vh,

(4.12) B∗(f
h, g) = A(fh, g) +D(fh, g).

We shall suppress the indexes δ from Aδ and θ from Dθ, when we set δK := h and
θK := h for all K ∈ Ch. Then, the stability lemma for bilinear forms Aδ and Dθ is:

Lemma 4.1 (Extended coercivity Lemma). Suppose that δK satisfies (3.15) for
all K ∈ Ch and λ > max(2, 2κ), then there is a constant 0 < α < 1/2 such that

Aδ(g, g) +Dθ(g, g) ≥ α(|||g|||2Aδ
+ |||g|||2Dθ

), ∀g ∈ Vh.
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Proof. By the definition of Aδ in (4.8) we have that

Aδ(g, g) =(gx + v · ∇⊥g, g)QL
+
∑

K∈Ch

δK‖gx + v · ∇⊥g‖2K + |g|20

+
∑

K∈Ch

∫

∂K−(β̃)′
[g]g+|β̃ · n|.

(4.13)

Further, using Green’s formula we may write

(gx+v · ∇⊥g, g)QL
=

1

2

∑

K∈Ch

∫

∂K

g2β̃ · n

=
1

2

[
−
∑

K∈Ch

∫

∂K−(β̃)′
g2+|β̃ · n|+

∑

K∈Ch

∫

∂K+(β̃)′
g2−|β̃ · n|

]
.

(4.14)

Hence,

(gx + v · ∇⊥g, g)QL
+
∑

K∈Ch

∫

∂K−(β̃)′
[g]g+|β̃ · n|+ |g|20

=
1

2

[
∑

K∈Ch

∫

∂K−(β̃)′
[g]2|β̃ · n|+

∫

I×∂Ω+

g2|v · nx⊥
|+ |g|20 + |g|2M

]
.

(4.15)

Similarly, by the definition of Dθ and using (4.7), we have also

Dθ(g, g) =σ‖∇vg‖2QL
+ 2σ(∇vg,R(g))QL

+ λσ
∑

K∈Ch

∑

e∈Ev∩∂τv

‖re(g)‖2K

−
∑

K∈Ch

θKσ(∆vg, gx + v · ∇⊥g)K .
(4.16)

Finally, the estimate (4.4), for some 0 < ε < 1
2 , yields

2σ(∇vg,R(g))QL
≤ σ

∑

K∈Ch

[
ε‖∇vg‖2K +

κ

ε

∑

e∈Ev∩∂τv

‖re(g)‖2K

]
.(4.17)

Thus

2σ(∇vg,R(g))QL
+ λσ

∑

K∈Ch

∑

e∈Eh∩∂τv

‖re(g)‖2K

≥ σ
∑

K∈Ch

[
−ε‖∇vg‖2K + (λ− κ

ε
)

∑

e∈Ev∩∂τv

‖re(g)‖2K

]
.

(4.18)

Hence, by an inverse estimate, using θK ≤ δK and assumptions on σ and δK ,

∑

K∈Ch

σθK(∆vg, gx + v · ∇⊥g)QL
≤ 1

2

(
σ‖∇vg‖2QL

+
∑

K∈Ch

δK‖gx + v · ∇⊥g‖2K

)
.

Taking α = min[ 12 − ε, λ − κ
ε ], (> 0 for κ

λ < ε < 1
2 ) we conclude the desired

result. �

Corollary 4.1. For B∗ defined as in (4.12) we have the coercivity estimate

(4.19) B∗(g, g) ≥ α|||g|||2∗, ∀g ∈ Vh,

where |||g|||2∗ =: |||g|||2A + |||g|||2D.
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Suppose now that fh ∈ Wh and f are the solutions of (4.6) and (2.1), respec-

tively, and let f̃h ∈ Vh be the interpolant of the exact solution f . Then, we write

(4.20) e := f − fh = (f − f̃h)− (fh − f̃h) ≡ η − ξ.

Lemma 4.2. There exists a constant C independent of the mesh size h such that
for δK chosen as in (3.15) we have the following estimates

Aδ(η, ξ) ≤
1

8
|||ξ|||2Aδ

+ C
∑

K∈Ch

(δ−1
K ‖η‖K + δK‖∇η‖K)

+
∑

K∈Ch

|[η]|∂K−(β̃)′ + |η|Γ+ + |η|0 + |η|M ,

Dθ(η, ξ) ≤
1

8
|||ξ|||2Aδ

+
1

8
|||ξ|||2Dθ

+ Cσ‖∇vη‖2QL
.

(4.21)

Proof. We proceed as in the SD approach in [5]. Here, we need to control some
additional jump and boundary terms. We have, using the definition of Aδ, that

Aδ(η, ξ) =
∑

K∈Ch

(ηx + v · ∇⊥η, ξ + δK(ξx + v · ∇⊥ξ))K

+ 〈η+, ξ+〉0 +
∑

K∈Ch

∫

∂K−(β̃)′
[η]ξ+|β̃ · n|.

(4.22)

Integrating by parts we end up with

(ηx+v · ∇⊥η, ξ)QL
+ 〈η+, ξ+〉0 +

∑

K∈Ch

∫

∂K−(β̃)′
[η]ξ+|β̃ · n|

= −(η, ξx + v · ∇⊥ξ)QL
−
∑

K∈Ch

∫

∂K−(β̃)′
η−[ξ]|β̃ · n|

+ 〈η−, ξ−〉M +

∫

I×∂Ω+

η−ξ−|β̃ · n|.

(4.23)

Inserting (4.23) in (4.22) and applying Cauchy-schwarz inequality we obtain

Aδ(η, ξ) ≤
1

8
|||ξ|||2Aδ

+ C
∑

K∈Ch

(
δ−1
K ‖η‖2K + δK‖∇η‖2K

)

+
∑

K∈Ch

|[η]|2
∂K−(β̃)′

+ |η|2Γ+
+ |η|20 + |η|2M .

(4.24)

For Dθ we have by the definition,

Dθ(η, ξ) =σ(∇vη,∇vξ)QL
+ σ(∇vη,R(ξ))QL

+ σ(R(η),∇vξ)QL

+ λσ
∑

e∈Ev

(re(η), re(ξ))QL
−
∑

K∈Ch

θKσ(∆vη, ξx + v · ∇⊥ξ)K :=
5∑

i=1

Ti.

Here, T1 and T5 can be estimated by standard techniques. Below we estimate the
terms T2, T3 and T4. Since η is continuous, the definition of operators R and re
yield that T3 = T4 = 0. To estimate T2 we use (4.4) and (4.5) to obtain

|T2| ≤
∑

K∈Ch

σ‖∇vη‖K‖R(ξ)‖K ≤
∑

K∈Ch

(
Cσ‖∇vη‖2K +

σ

C1
‖R(ξ)‖2K

)
.(4.25)

Hence, by Cauchy-Schwarz inequality and assumption on σ we finally get

(4.26) Dθ(η, ξ) ≤
1

8
|||ξ|||2Aδ

+
1

8
|||ξ|||2Dθ

+ Cσ‖∇vη‖2QL
,
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and the proof is complete. �

In the sequel we shall use the following lemma (see, e.g. [4]),

Lemma 4.3. Let u ∈ L2(I × Ωx⊥
, H1(Ωv)) with ∆vu ∈ L2(QL), and let w ∈ Vh.

Then

(4.27)
∑

K∈Ch

∫

Im×τx
⊥

∫

∂τv

w
∂u

∂nv
=

∑

Im×τx
⊥

∫

Im×τx
⊥

∑

e∈Ev

∫

e

[[w]]nv .(∇vu)
0.

Theorem 4.1 (Convergence Theorem). Suppose fh ∈ V h and f are the solutions
of (4.11) and (2.1) respectively, then there exists a constant C independent of the
mesh size h such that we have the following error estimate

(4.28) |||f − fh|||∗ ≤ Chk+1/2‖f‖k+1,QL
.

Proof. Using Lemma 4.1 and (4.20), we have

(4.29) α|||ξ|||2∗ ≤ B∗(ξ, ξ) = B∗(η − e, ξ) = B∗(η, ξ)−B∗(e, ξ).

We may split B∗(e, ξ) as

(4.30) B∗(e, ξ) = A(e, ξ) +D(e, ξ).

Recall that

(4.31) D(e, ξ) = D(f, ξ)−D(fh, ξ).

Hence, by the definition of D and since R(f) = re(f) = 0 we have that

D(f, ξ) =
∑

K∈Ch

∫

Im×τx
⊥

∫

τv

σ∇vf∇vξ − σ
∑

Im×τx
⊥

∫

Im×τx
⊥

∑

e∈Ev

∫

e

[[ξ]]nv.(∇vf)
0

=
∑

K∈Ch

∫

K

−σ(∆vf)ξ + σ
∑

K∈Ch

∫

Im×τx
⊥

∫

∂τv

ξ
∂f

∂nv

− σ
∑

Im×τx
⊥

∫

Im×τx
⊥

∑

e∈Ev

∫

e

[[ξ]]nv.(∇vf)
0 =

∑

K∈Ch

∫

K

−σ(∆vf)ξ,

where in the last equality we have used Lemma 4.3. Thus, the problem (4.11) is
fully consistent and B∗(e, ξ) = 0. Further, we get from (4.29) that

(4.32) α|||ξ|||2∗ ≤ B∗(η, ξ) = A(η, ξ) +D(η, ξ).

We have now using Lemma 4.2, the multiplicative trace inequality (3.19), and the
local interpolation error estimates (3.9)-(3.10) that

(4.33) A(η, ξ) ≤ 1

8
|||ξ|||2A + Ch2k+1‖f‖2k+1,QL

,

and

(4.34) D(η, ξ) ≤ 1

8
|||ξ|||2∗ + Ch2k+1‖f‖2k+1,QL

.

Inserting (4.33) and (4.34) into (4.32) we obtain

(4.35) |||ξ|||2∗ ≤ Ch2k+1‖f‖2k+1,QL
.

Using the interpolation estimates as above we also have

(4.36) |||η|||2∗ ≤ Ch2k+1‖f‖2k+1,QL
.

Then (4.28) is a consequence of (4.35), (4.36) and the triangle inequality. �
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Remark 4.1. Choosing 0 ≤ θK < δK in (4.9), specially θK = 0, i.e., with extra
diffusion in x only for the convective terms, the Galerkin orthogonality would not
hold any longer and this renders the scheme (4.6) as an inconsistent one. The
consistency error introduces an additional term ofO(h3) in the convergence analysis
of the scheme, since

(4.37) Bδ,θ(f − fh, ξ) =
∑

K∈Ch

(δK − θK)σ(∆vf, ξx + v · ∇⊥ξ)K = T6,

and the consistency error bound follows from

(4.38) |T6| ≤ CδKσ2‖∆vf‖2QL
+

1

8
|||ξ|||2δ,θ.

Hence, the scheme cannot be better than third order accurate, no matter how high
the spectral degree k is, and the stabilizing term is therefore non-compatible with
the optimal order guaranteed by the polynomial approximation.

4.2. hp-Discontinuous Galerkin method. In this section we employ the ap-
proach in [17] and derive error bound that is optimal in both h and p. We assume
that the family {Ch} is shape regular in the sense of (3.14) and that every K ∈ Ch is
affine equivalent to the unit hypercube in R

5. We allow the meshes to be 1-irregular,
i.e. elements may contain hanging nodes. Let us first consider the bilinear form

(4.39) D̃δ = Dδ(f, g) +Ds(f, g),

where Dδ is as in (4.9) and the stabilizer Ds is defined by

(4.40) Ds(f, g) = σ
∑

Im×τx
⊥

∫

Im×τx
⊥

∫

Ev

γ(he)[[f ]][[g]].

γ(he) is the discontinuity scaling function below. We introduce the bilinear form

(4.41) B̃δ = Aδ + D̃δ.

Then, the hp-DG for the equation (2.1) reads as follows: find fh ∈ V p
h such that

(4.42) B̃δ(f
h, g) = 〈f0, g+〉0 ∀g ∈ V p

h .

As in subsection 3.1.2, we use V p
h to emphasize the polynomials degree p := k in

(4.1). Note that when γ(he) is set to zero and the SD-parameter δK ≈ h, for all
K ∈ Ch, then (4.42) is identical to the method introduced in (4.11). In the sequel we
assume that the solution f of the equation (2.1) is sufficiently smooth on Ωv: namely
f ∈ L2(I,Ωx⊥

, H1
0 (Ωv)) ∩ L2(I,Ωx⊥

, H2(Ωv)), therefore, f is continuous across
interelement boundaries in Ωv and hence Ds(f, g) = 0 for all g ∈ V p

h . Consequently,

the Galerkin orthogonality B̃δ(f − fh, g) = 0 holds for all g ∈ V p
h .

We shall derive the stability of the method (4.42) in the following norm

(4.43) |||g|||2γ,δ = |||g|||2Aδ
+ |||g|||2Dδ

+ σ
∑

Im×τx
⊥

∫

Im×τx
⊥

∫

Ev

γ(he)[[g]]
2
.

Lemma 4.4. There is a constant C > 0 such that

(4.44) B̃δ(g, g) ≥ C|||g|||2γ,δ, ∀g ∈ V p
h .

Proof. This is a simple observation namely, by (4.41) and (4.39), we have

(4.45) B̃δ(g, g) = Aδ(g, g) +Dδ(g, g) +Ds(g, g),
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with

(4.46) Ds(g, g) = σ
∑

Im×τx
⊥

∫

Im×τx
⊥

∫

Ev

γ(he)[[g]]
2
.

Inserting (4.46) in (4.45), and using Lemma 4.1, we obtain the desired result. �

Before proceeding we state an approximation result for the space V p
h (see, [13]).

We consider Qk(K), the set of all polynomials of degree ≤ k in each variable on K.

Lemma 4.5. Let K ∈ Ch and assume that g ∈ Hs(K) for some integer s ≥ 1.
Then, for any integer µ = min(p+ 1, s), and p ≥ 0, we have that

(4.47) ‖g − Pg‖L2(∂K) ≤ C

(
hK

p+ 1

)µ− 1
2

‖g‖µ,K,

where P : L2(K) → Qp(K) is the usual L2- projection of degree p on K.

We denote by Pv the univariate elementwise L2(τv)-projection onto the polyno-
mials of degree p in the variable v for every τv ∈ T v

h . Local error estimates for
f − Pvf can now be obtained from Lemma 4.5. Actually for K ∈ Ch we have

(4.48) ‖f − Pvf‖L2(Im,τx
⊥
,∂τv) ≤ C

(
hK

p+ 1

)µ− 1
2

‖f‖L2(Im,τx
⊥
,Hµ(τv)).

where K := Im × τx⊥
× τv. We also recall a restatement of Lemma 3.3: suppose

(4.49) f ∈ L2(I,Ωx⊥
, H1

0 (Ωv)) ∩ L2(I,Ωx⊥
, H2(Ωv)),

and assume that for s ≥ 2,

(4.50) f |K ∈ Hs(K), ∀K ∈ Ch,
then, there is an interpolant Πpf ∈ L2(I,Ωx⊥

, H1
0 (Ωv)) which is continuous on Ωv.

Thus, by local interpolation error estimate (3.17), with r = 1, we have

(4.51) ‖f −Πpf‖1,K ≤ C
hµ−1
K

ps−1
‖f‖s,K , µ = min(p+ 1, s).

Theorem 4.2. For he ∈ Ev we define the scaling discontinuity function γ by

(4.52) γ(he) =
p2

he
.

Assume that δK satisfies (3.15) and the solution f satisfies (4.49)-(4.50). Then,
there is a constant C > 0 independent of h and p such that for µ = min(p+ 1, s),

|||f − fh|||2γ,δ ≤ C
∑

K∈Ch

h2µ−1
K

p2µ−1
‖f‖2µ,K

+
∑

K∈Ch

h2µ−1
K

p2s−2

(
1

p2
+

1

p
+ σh−1

K + δKh−1
K +

hK

p2δK

)
‖f‖2s,K.

(4.53)

Proof. We follow the proof of Theorem 4.1, except now we decompose the error as

(4.54) e := f − fh = (f − f̃h) + (f̃h − fh) ≡ η + ξ,

where f̃h ∈ V p
h is hp-interpolant of f satisfying (4.51), i.e. f̃h := Πpf . By virtue

of Lemma 4.4, we have

(4.55) CI |||ξ|||γ,δ ≤ B̃δ(ξ, ξ) = B̃δ(e− η, ξ) = B̃δ(−η, ξ),
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where we use Galerkin orthogonality: B̃δ(e, ξ) = 0 which follows form (4.42) with
g = ξ and the definition of the problem, given the assumed smoothness of f . Thus,

(4.56) CI |||ξ|||γ,δ ≤ |B̃δ(η, ξ)| ≤ |Aδ(η, ξ)| + |D̃δ(η, ξ)|.
Since η ∈ L2(I,Ωx⊥

, H1
0 (Ωv)), we have

(4.57) [[η]] = 0 on Ev,
also

(4.58) R(η) = 0 on Ω, and re(η) = 0 on Ω ∀e ∈ Ev.
Hence,

(4.59) |D̃δ(η, ξ)| ≤ I + II + III,

where

I = σ|(∇vη,∇vξ)QL
|, II = σ|(∇vη,R(ξ))QL

|,
III =

∑

K∈Ch

σδK |(∆vη, ξx + v · ∇⊥ξ)K |.(4.60)

I is estimated as in the Lemma 4.2. The orthogonal projector to L2(QL) yields

σ(∇vη,R(ξ))QL
= σ(∇vη − Pv∇vη,R(ξ))QL

+ σ(Pv∇vη,R(ξ))QL

= σ(∇vη − Pv∇vη,R(ξ))QL
+ σ(∇vη,R(ξ))QL

= T1 + T2.
(4.61)

By the definition of R and the shape regularity of Ch, relating he to hK ,

T1 = σ
∑

Im×τx
⊥

∫

Im×τx
⊥

∑

e∈Ev

∫

e

[[ξ]]nv · (∇vη − Pv∇vη)
0

≤ σ‖√γ[[ξ]]‖Ev
‖γ− 1

2 (∇vη − Pv∇vη)
0‖Ev

≤ Cσ‖√γ[[ξ]]‖Ev




∑

Im×τx
⊥

∑

τv∈Tv
h

p−2hτK‖∇vη − Pv∇vη‖2L2(Im,τx
⊥
,∂τv)




1/2

,

where, in the first inequality, we used the notation

‖g‖Ev
=

∑

Im×τx
⊥

∫

Im×τx
⊥

∑

e∈Ev

∫

e

gdv.

Further, since ∇v(Πpf) ∈ V p
h × V p

h and the L2-projection preserves polynomials,

∇vη − Pv∇vη = ∇vf −∇vΠpf − Pv∇vf + Pv∇vΠpf = ∇vf − Pv∇vf.

Hence,

T1 ≤ Cσ‖√γ[[ξ]]‖Ev




∑

Im×τx
⊥

∑

τv∈Tv
h

p−2hK‖∇vf − Pv∇vf‖2L2(Im,τx
⊥
,∂τv)




1/2

.

Moreover, using (4.4) and (4.5), we estimate the T2 term as

T2 ≤
√
σ‖(∇vη)‖QL

(
σ
∑

e∈Ev

‖re(ξ)‖2QL

)1/2
.

It remains to estimate the term III. By inverse inequality and assumption (3.15),

(4.62) σδK |(∆vη, ξx + v · ∇⊥ξ)K | ≤
√
σδK‖∇vη‖K‖ξx + v · ∇⊥ξ‖K .
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Substituting the above estimates, for T1 and T2, into (4.61) and then using (4.62)
and inserting the estimates for (4.60) into (4.59), Cauchy-Schwarz inequality yields

|D̃δ(η, ξ)| ≤ C1|||ξ|||2γ,δ+Cσ

(
‖(∇vη)‖2QL

+
∑

Im×τx
⊥

∑

τv∈Tv
h

p−2hK‖∇vf − Pv∇vf‖2L2(Im,τx
⊥
,∂τv)

)
,

(4.63)

where, C1 ≤ 1
3CI . As for the term |Aδ(η, ξ)|, using Lemma 4.2 and with C2 ≤ 1

3CI ,

(4.64) |Aδ(η, ξ)| ≤ C2|||ξ|||2γ,δ+C
∑

K∈Ch

(
δ−1
K ‖η‖2K + δK‖ηx + v.∇⊥η‖2K + ‖η‖2∂K

)
.

Substituting (4.63) and (4.64) into (4.56), using a kick back argument and applying
the error estimates (4.51) and (4.48) and trace inequality (3.19) we deduce that

(4.65) |||ξ|||2γ,δ ≤ C
∑

K∈Ch

h2µ−1
K

p2s−2

(
δKh−1

K + σh−1
K +

hK

p2δK

)
‖f‖2s,K+

h2µ−1
K

p2µ−1
‖f‖2µ,K .

Similarly, due to (4.57) and (4.58), for the interpolation error we get

(4.66) |||η|||2γ,δ ≤ C
∑

K∈Ch

(
h−1
K ‖η‖2K + σ‖∇vη‖2K + δK‖ηx + v.∇⊥η‖2K

)
.

Hence, using (4.51) and trace inequality (3.19) we end up with

(4.67) |||η|||2γ,δ ≤ C
∑

K∈Ch

h2µ−1
K

p2s−2

(
δKh−1

K +
1

p2
+

1

p
+ σh−1

K

)
‖f‖2s,K .

Inserting the bound for |||η|||γ,δ and (4.65) in (4.56) we obtain the desired result. �

Remark 4.2. Let, in Theorem 4.2, 2 ≤ s ≤ p + 1 and choose δK =
h2
K

σC2
I
p4 for all

K ∈ Ch, then assuming O( σ
hK

) ∼ 1 for all K ∈ Ch, we deduce from Theorem 4.2

that the discretization error in the norm |||.|||γ,δ, converges as O(h
(µ−

1
2
)

p(µ−1) ). Hence,

the error bound is optimal in both h and p. The parameter δK may be selected as

(4.68) δK = Cδ
hK

p
, ∀K ∈ Ch.

The constant Cδ is chosen subject to the constraint on δK in Theorem 4.2. In this
case the parameter δKh−1

K in (4.53) is equal to 1
p , and the error of the method in

DG-norm is of order O(h
(µ−

1
2
)

p(µ−
1
2
)
), which is again simultaneously optimal in h and p.

Remark 4.3. The choices made for δK in Remark 4.2, are closely connected to
the degeneracy of diffusion term in Fermi equation (2.1). The use of continuous
interpolant in velocity space and the homogeneity of boundary condition on Ωv

cause the suboptimal stabilization terms in the method (4.42) to vanish.

Conclusion: We extend the result in [2]- [3] to the three dimensional problem.
We present an h- and hp-a priori error analysis of both SD- and DG- schemes for
Fermi equation. We show that both schemes are optimally convergent with respect
to the mesh size h and the spectral degree p of approximating polynomial. For DG
method we admit general 1-irregular meshes, it allows less restrictive smoothness
assumptions compared to the SD method. Of course, for given h and p, the number
of degrees of freedom in DG method is higher than in the SD case. The analytic
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solution is non-negative with L1 and L∞ stability properties, see, e.g. [11]. Same
stabilities are achieved for the approximate solutions by the construction. However,
the positivity is guaranteed only for the limit. For positivity of final step approxi-
mate solutions excessive stability assuptions and uniform convergence are required.
As for the computational aspects, the discretized problem being 5-dimensional is
difficult to handle. One remedy would be considering the discrete velocity model of
the Fermi equation combined with backward Euler method for penetration variable.
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[12] P. Houston and E. Süli, Stabilized hp-finite element approximation of partial differential

equations with nonnegative characteristic form, Computing 66 (2001), 99-119.
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