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ON CONVERGENCE OF THE STREAMLINE DIFFUSION AND
DISCONTINUOUS GALERKIN METHODS FOR THE
MULTI-DIMENSIONAL FERMI PENCIL BEAM EQUATION

MOHAMMAD ASADZADEH AND EHSAN KAZEMI

Abstract. We derive error estimates in the Lo norms, for the streamline diffusion (SD) and
discontinuous Galerkin (DG) finite element methods for steady state, energy dependent, Fermi
equation in three space dimensions. These estimates yield optimal convergence rates due to the
maximal available regularity of the exact solution. Here our focus is on theoretical aspects of the
h and hp approximations in both SD and DG settings.

Key words. Fermi equation, particle beam, streamline diffusion, discontinuous Galerkin, stabil-
ity, convergence

1. Introduction

We study approximate solutions for the three-dimensional Fermi equation using
streamline diffusion (SD) and discontinuous Galerkin (DG) finite element methods.
We prove stability estimates and derive optimal convergence rates for the current
function. This work extends the results in [2]-[3] to the multidimensional case, and
includes the hp approach. The physical problem has diverse applications in, e.g.
astrophysics, material science, electron microscopy, radiation therapy, etc. We shall
consider a pencil beam of particles normally incident on a slab of finite thickness,
entering the slab at a single point, e.g. (0,0,0), in the direction of positive z-axis.

Fermi equation is a convection-diffusion equation, obtained as an asymptotic
limit of the Fokker-Planck equation as the transport cross-section (oy,.) gets smaller,
see [7]. The equation is degenerate in both convection and diffusion in the sense
that drift and diffusion are taking place in, physically, different domains, and the
problem is convection dominated. Further, the associated boundary conditions are
in the form of product of § functions, which are not suitable for Lo-estimates.
Therefore, we consider model problems with data smoother than Dirac J-function.

Fermi equation has closed form solutions for oy, being a constant or a function
of only x. In the present setting the direction of penetration of the beam, x, may
also be interpreted as the direction of a hypothetic time variable.

The SD-method is obtained modifying the weak form by adding a multiple of
the ”drift-terms” in the equation to the test function. This yields artificial diffusion
added only in the streamlines direction (motivating for the name: the streamline
diffusion method ) which improves stability in the characteristic direction so that
internal layers are not smeared out while the added diffusion removes oscillations
near boundary layers. The oscillations merge from the lack of stability of standard
Galerkin for convection dominated problems, see, e.g. [14]. While SD may have dis-
continuities in z-direction only, the DG method allows jump discontinuities across
interelement boundaries in order to count for the local effects. We study both h
and hp versions of SD and DG methods. A semi-streamline diffusion for Fermi
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equation has been implemented in [3]. The hp version is considered in a general
setting for a Vlasov-Poisson-Fokker-Planck system in [5].

An outline of this paper is as follows: In Section 2, we introduce the model
problem. Section 3 is devoted to the stability estimates and convergence analysis for
the h and hp streamline diffusion approximations of the Fermi equation. Section 4
is the discontinuous Galerkin counterpart of Section 3, counting for local properties.

2. Model Problem

We consider a model problem for three dimensional Fermi equation on a bounded
polygonal domains €, C R?, x = (z,y, 2) =: (z, 2, ), with velocities v € Q,, C R?:

Y pv-Vif=2(Af), in (0,L] x Q=: Qr,
(2.1) f(0,21,v) = fo(xy,v), in Q=99 xQ,
flz,zy,v) =0, in (0,L] x ([T x Q] U[Q, x 0Q]),

where fo € La(€2), and for each v € Q,, the outflow boundary is given by
(2.2) Iy ={z,L €09, :n(xy).v<0}.

Here ;. = {(y,2)}, n(zL) is the outward unit normal to 92, at the point z, =

(y,2) € 00y, , v = (v1,v2), VL = (Bu’ aaz) and oy, = oy (x,y, 2).

2.1. Notations and preliminaries. Let T),* = {7, } and T}’ = {7,} be finite
element subdivisions of €2, and €Q,, into the elements 7%+ and 7", respectively.
Thus, T, = T,fL x Ty will be a subdivision of 2 = Q. x €, with elements
{12, X 7w} = {7}. Consider a partition 75, : 0 =29 < 21 < ... < zpy = L of
the interval I = (0, L] into subintervals I, = (Xp—1,Zm], m = 1,..., M, and let Cy,
be the corresponding subdivision of @, := (0, L] x Q into elements K = I, x T
with the mesh size hx = diam K. We assume that each K € C; is the image
under a family of bijective affine maps {Fk} of a fixed standard element K into
K, where K is either the open unit simplex or the open unit hypercube in R® (in
the hp-analysis, K is the open unit hypercube in R%). Let P,(K) be the set of all
polynomials of degree < p on K; in ,x and v, and define the finite element space

(2.3) Vi={g€Ho:goFk € P,(K); VK €Cp,},  where

_ M
(2.4) Ho= ] Hi(Sm),  Sk=IixQ,  k=1,---,M,  with
(2.5) H3(Sm)={9€ H(Sn):9g=0 on dQ,}.

For piecewise polynomials w; defined on the triangulation C; = {K} with C; C Cp,
and for D; being some differential operators, we use the notation,

(2.6) (Dywy, Daws)gr = Z (Dyw1, Dows) i, Q = U K,
Kecy, Kec),

where (.,.)q is the Ly(Q) scalar product and ||.||g is the corresponding Lo (Q))-norm.
Further, form =1,2,...,M, 8 = (v,0), n = (n; ,n,) and with I' = 9(Q,, x Q,),

(fu )m (f7 )Smu ”gH?n = (gug)mu
ory (o= Ut = 0.0he
) < >F*_f1'* fg ) S, >:n_f1
(f.9)r- = [;{f.9) F*:{(xL,)eF ﬁn<0},

I
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where n,  and n, are outward unit normals to 02, , and 0f,, respectively. Below
C will denote a constant not necessarily the same at each occurrence and indepen-
dent of the parameters in the problem, unless otherwise specifically specified.

3. Streamline diffusion method

3.1. Streamline diffusion method with discontinuity in z. In this section we
study the h and hp-versions of SD-method for the three dimensional Fermi equation
(2.1) with o = 10¢-(z,y,2). We use continuous trial functions in z; and v with
possible jump discontinuities in # on the nodes of a partition T3, of [0, L] with the
jumps in x as

(3.1) l9] =9+ —g-,  where

g+ =lims 01 g(z + 8,21, v), for (x1,v) €Int(Qy, ) X Qy, z €1,

(32) g+ =lims 01+ g(z + 8,21 + sv,v), for (z1,v) € 0N, X Qy, z € 1.

Equation (2.1), associated with Lo boundary conditions, gives rise to the variational
formulation: find f* € Vj, such that for m =0,1,--- ,M — 1, and for all g € Vj,

S [+ Vit g+ 69 +v-Vig)k +0(Vof", Vig)k
(3.3) K€l xTh,

=00 (Auf" g +v-Vig) ] + (FL90)m — (FL 90)r. = (2 g1 )m.

In the h-version for (2.1), using test functions of the form g+ (g, +v -V _g), with
0 ~ h®, «a > 1, would supply us with an extra diffusion term of order A% in the
streamline direction: (1,v,0). Then, we will be able to control an extra term of the
form h||gz +v- Vig|. In the hp-version, however, the choice of § is more involved
and depends on optimal choice of the parameters h and p locally. Therefore in
hp-analysis, 6 would appear as an elementwise (local) parameter 0.

3.1.1. The h-version of the SD-method. We formulate the SD-approximation
of the Fermi equation (2.1), with jump discontinuities in z. Introducing the bilinear
form

(3.4) B(f,9) = B(f,9) + Z_: ((Flge)m + (Frog1)o = (frr94)0-

M-1
m=1

B(f, g)= Z [(fm +v-Vif,g+ 6(91 +v- VLQ))QL +0(Vuf, vvg)K
(3.5) KeCy
- 50(Avfu gz +v- VJ_Q)K} + <f7 g>0 - <f7 g)f"u

and the linear form, viz

L(g) = {fo, 9+)o,
we may rewrite (3.3) in global form as

It is easy to see that the adequate triple norm in this case is:

M—-1
(3.7) gl = 3 llllglll2 +6 ) ge+v.Viglh, + I[g]I?n] with

m=1

(38)  glP = [olIVugl?, + 1o + 198+ fypo9? | 5-0lduds] .
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We shall frequently use the following interpolation error estimates, see, e.g. [10] or
[15]: Let f € H™+1(Q) then there exists an interpolant f* € Vj, of f such that

(3-9) ”f - fh| s5,QrL < ChTJrliS”f”H-l,Qu s = 07 17
(3.10) If = fllog. < CR™PY2(| fllrgr,qu-

Below we state the main results of the SD-approach (the proofs are as in [2]-[5]).

Lemma 3.1. The bilinear form B satisfies the coercivity estimate

B(g,9) > [llgll]> Vg € Va.
Theorem 3.1. Let f and f" satisfy (2.1) and (3.6), respectively, then

(3.11) (1 = £ < CRE Y2 fllsr,qu

3.1.2. The hp-version of the SD-method. In this part we derive error bounds

which are simultaneously optimal, both in the mesh size h and the spectral order
p in a stabilization parameter § ~ ( %‘) Below we extend the results of h-version

(global) to hp-version for local case. To this end we consider the bilinear form

Bs(f,9) =Y [(fe+v-Vifig+06(g:+v-Vig)k +0(Vof Vug)k

KeCy
M-—1
—60(Auf, g0 +v-Vig)k]+ D ([ g+)m + (£, 9)0 — (£, 9)r-
m=1

and the linear functional

ﬁ&(g) = <f07.g+>07
where the non-negative piecewise constant function 9 is defined by

0k = Ok 0k = constant for K € Cp,.

The precise choice of § will be discussed below. We now define the local version of
(3.6): find f" € VP, the space of all polynomials of degree < p, such that

(3.12) Bs(f*.9)=L(g) VgeVf,

Note that in the h version of the SD-approach we interpret (.,.)g, as E%:l (4 )m
and, assuming discontinuities in =, we include jump terms it the x direction. Thus
we estimate the sum of the norms over slabs .S,,,, as well as the contributions from
the jumps over x,,, : m = 1,...,M — 1. In the hp-version we have, in addition
to slab-wise estimates, a further step of identifying (.,.)m by D rer wp, (5K
counting for the local character of the parameter dx. We also define the norm
[l]-]l]s, obtained from (3.7), replacing § (h) by dx and considering its local effects:

M-—1
1
(3.13) lglll5 =: 5 [lllalll* + > okl ge+v.Vigli + > Ik
Kecy, m=1

Further, we assume that the family of partitions {Cp}n>0 is shape regular, in the
sense that there is a positive constant Cj, independent of h, such that

(3.14) Coh < p(K), VK € | J{Cu},
h>0

where p(K) is the diameter of the five dimensional sphere inscribed in K.
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Lemma 3.2. Assume that the local SD-parameter di is selected in the range

2

(3.15) 0<dg < VK € Cp,

hK
>~ O'C%p4 )

where Cy is the constant from the standard inverse estimate (see [8], Lemma 4.5.8
and Theorem 4.5.11). Then the bilinear form Bs(.,.) is coercive on Vi x VP, i.e.

- 1
(3.16) Bs(g,9) = §[||9||]§, Vg e V.

Proof. The proof is a standard argument followed by the estimate of the Jxo-term:

IN

1 _
5Cihi' p*Voox [0 Vugllc + 0xllge + v Vigl]

1
5 [01IVoglli + dxcllge +v - Vigll]

Or0o(Avg, 9z +v-V1ig)k

IN

where we use Cauchy-Schwarz and inverse inequality and the assumption on dx. O

We shall use the following approximation property: Let g € H*(K) and ||.||s x
be the Sobolev norm on K; there exists a constant C' depending on s and r but
independent of g, hx and p, and a polynomial IT,g of degree p such that (see [6]),

b
B-17) g = pgllrr < Cpf_r l9lls.c, for 0<r<s,  p=min(p+1,s).

We shall also require a global counterpart of (3.17) for the finite element space V,’,

Lemma 3.3. Let g € H}(Qr)NL*(I,H"(Q)), 7 > 2 such that g |x€ H*(K), with
a positive integer s > r and K € Cp,. Then, there exists an interpolant I,g € V¥
of g which is continuous on € such that

ptt
(3.18) llg — Mpgllix < Cpﬁil lglls,x

where C > 0 is a constant independent of h and p and p = min(p + 1, s).

See, e.g. [12] where a proof is outlined assuming certain regularity. More elabo-
rated proofs can be found in [16] and [8]. We shall also need the trace inequality:

(3.19) Inl3x < CUVnllxlinllx + b InlE). VK € Ch.

Theorem 3.2. Let Cy, be a shape regular mesh on Qr, and f be the exact solution of

(2.1) that satisfies the assumptions of Lemma 3 3. Let f* be the solution of (3.12)
and assume that 0 < 0k satisfies 0 < o < CQ - for each K € Cy,. Then,

2p—1
B20) I = PUE<C Y TE (ko ot i + 5 )

KecCy,

Proof. We start with the triangle inequality

(3:21) I1f = £*1s < lnlls + (€15,
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where n = f—1I,f and £ = f"—TI,f. Here I, f € V}? is the conforming interpolant
in Lemma 3.3. Using Lemma 3.2 and Galerkin orthogonality Bg(e, &) =0, we have

SEIN < Bo(6, &) = Bo(n,&) — Bs(e,) = Bs(n,)
=0a(Vyn, vg) -0 Z O (Avn, & +v- V1K

KecCy,
(3.22) + (e +v-Vin o, + Z k(e +v-Vin,& +v-Vi&k
KeCy
+Z 77+,§+>0—<77 §+ F*—ZT

=1

The terms Ty and T3-T7 are easily estimated by standard techniques (see [2]-[5]).
As for the T term, using the inverse inequality and assumptions on o, and dg,

_ 0K
1] < Croxop®hid [Vonllic € + v Vgl < 20|nlk + Z- M€ +v- Vgl
Then, we end up rewriteing the estimate (3.22) concisely (we skip the details) as

(3.23) [1€lls < C(I1 + L),

where I; and I are given by

I = Y cee, 0t Inll% + bl + v Vinll% + ol Vonl?).
M-—1

=Y Bt [ B nlduds.
1 Ix0Q

To estimate I; we have, using Lemma 3.3 and assumption on dx, that

h2,u 2 h2
(3.24) n<cy £ 5‘1 5+ ok + o) f12 x
KeCy p

As, for the term I, using the trace estimate (3.19), yields

h“ ! h“ _ h2 Rt 1
(3.25) I < Z K= D A+ IfIE -
KeCh KeCp p p
Hence from (3.23)-(3.25) we get
h ! (L]
(3.26) lle<c . = T g(—5 + —Fohy +ch + 55 )||f||
KECh p
Finally, the term [||n]|]s can be estimated in the same way, for which we get,
h2u 1
(3.27) (s <c Yy X 22 5 ( + ohi + 6l IS &
KECh
Substituting (3.26)-(3.27) into (3.21), we obtain the desired result. O

Remark 3.1. In Theorem 3.2, we chose dg for all K € Cj, when o is small compared
to hy and 1/p. The parameters are selected in a way that dx satisfies the hypothesis
of Theorem 3.2. This particular choice of dx is motivated by our analysis in the

discretization error (3.20) in [||.||]s norm, in order to give hp-error bound as,
h2,u 1
(3.28) 11 =" g <y =& prre — 112k

KGCh
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The assumption on ¢ is crucial for, simultaneous, optimal error bound in A and p.

Remark 3.2. The assumptions of Lemma 3.3, for the global regularity of the solu-
tion, are somehow restrictive, but since we assume our test functions are continuous
in (z,,v), so in this framework it is difficult to relax these assumptions. For the
DG counterpart of current analysis we shall substantially ease these requirements.

Remark 3.3. We have not allowed element-by-element local parameters p, or s for
the exact solution f. Our analysis can be extended easily to this case replacing
s by sk and || f|ls by ||flls,xs K € Ch. However, to replace p by pg, (although
straightforward for the DG studies below) is an uneasy procedure in the SD case.
Going through this cumbersome procedure for SD, subsequently, in the local ap-
proximation (3.17), p = min(p + 1, s) will be replaced by px = min(px + 1, sk).

4. Discontinuous Galerkin
4.1. Description of discontinuous Galerkin (DG)-method. Here we assume

trial functions as being polynomials of degree k > 1 on each element K which may
be discontinuous across inter-element boundaries in all variables. We define

OK1(B) = {(z,21,v) €K : B-n=n,(z,z,,v)+10,, (r,2,,0)-v =0}, KE€EC,
where 3 = (1,v,0) and n = (n,,n, ,n,) is the outward unit normal to K. To

treat the diffusive part of (2.1), using discontinuous trial functions, we introduce
an operator R as defined in, e.g. [4] and [9]. To this end, we first define the spaces

V=[] H'*K)
Kecy,
Vi, ={w € Ly(Qr) : w |xk€ Pp(K) : VK € Cp; w=0o0n 9N},

Wy, = {w € [La(Q1)] : W |x€ [Po(K)]%: VK € Cp).

(4.1)

Then, given g € V we define R : V — W, by the following weak formulation

(R(g) - > /1 / Vdv,  Yw e Wy,

I XTa XTz) eck,

Here &, denotes the set of all interior edges of the triangulation 7} of the domain
Q" and n, is the outward unit normal from element 7; to 7;, sharing the edge e
with ¢ > j, 7, 7; € TY. Further, for an appropriately chosen function x let

(42) (X)O = %, [[X]] =y — Xezt

where x““* denotes the value of x in the element 75** having e € &, as the common
edge with 7,. Hence, roughly speaking, [[x]] corresponds to the jump and (y)°
is the average value of x in the velocity variable. Next for e € &, we define the
operator 7. to be the restriction of R to the elements sharing the edge e € &, i.e.

(re(g),w / / )Odo, Yw € Wy,
Iy X7y, YAmXTz, Je
One can easily verify that, for any element 7, of the triangulation of €2,
(4.3) Z re=R on T,.
eCOT,NEy
As a consequence of this we have the following estimate

(4.4) IR@)IE <w Y lre(@)ll,

eCOT,NEy
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where 7, corresponds to the element K and x > 0 is a constant. Now, since the
support of each 7. is the union of elements sharing the edge e, we evidently have

(4.5) dolre@lp, = > D el

e€&,y KeCp eCOTyNEy
Hence, the DG method for (2.1) is now formulated as: find f* € Vj, such that
(46) B579(fhag) = <f0;g+>07 Vg € th where
(4.7) Bso(f,9) = As(f,9) + Do(f,9)-

The bilinear forms As and Dy correspond to the convective and diffusive parts viz:

A5(fhvg) = Z (fg? +U'Vth79+5K(gm +U'Vlg))K+ <f+7g+>0

(4_8) Kecy, ) ]
s / flgsld-nl, 0K _(3) = aK_(A)\{0} x .
KeCy,
De(fhv g) :O'(va ) VUQ)QL + U(V'Ufha R(Q))QL + U(R(fh)v VUQ)QL
(4'9) + Ao Z (Te(fh)a 7“e(g))QL - Z eKU(Avfhvgw +v-Vig)k
ecé, KeCy,

Here, [f"] = f? — f where f! is defined as in (3.2), 0x > 0 is a positive constant
on element K, 0 < 0 < dg and A > 0 is a given constant. We also define the
norms corresponding to (4.8) and (4.9) by

gl =5 | D 6Kng+U'VJ_QH%<+|9|%\/[+|9|(2)+/ g*lv-na,|
Kec, IX(’?Q+
w3 [ i),
Kecy,

and

llgllD, =5 l0|va|QL +20 ) Ire(g ||QL] :

ec&,
Finally, we define
(4.10) lglll3.o = lllgll2, + [MgllID,-

Note that, in general [g] is distinct from the jump [[g]], defined by (4.2), in the
sense that the latter depends on element numbering as well. Recall that since the
characteristic 8 = (1,v,0) is divergent free, (3 - n) is continuous across the inter-
element boundaries of C, and thus K4 is well defined. If we chose dx := h, and
Ok := h for all K € Cj, then the problem (4.6) can be formulated as

(4.11) B.(f", 9) = (fo. 9+)o, Vg € Vi,
(4.12) B.(f".9) = A(f", 9) + D(f",9).

We shall suppress the indexes § from As and 6 from Dy, when we set §x := h and
Ok := h for all K € C. Then, the stability lemma for bilinear forms As and Dy is:

Lemma 4.1 (Extended coercivity Lemma). Suppose that dx satisfies (3.15) for
all K € Cp, and X > max(2,2k), then there is a constant 0 < a < 1/2 such that

As(g.9) + Da(g,9) > allllgllZ, + lllglllB,), Vg € Va.
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Proof. By the definition of A in (4.8) we have that

A5(9.9) =(9: +v-Vig.9)e. + Y dxllge+v-Vigli + oI5
KeCy,

+ Z/ [9]g+15 - .

KecCy

(4.13)

Further, using Green’s formula we may write

9z+v-Vi9,9)0 /
( Z 0K

Kec
(4.14)
[ Z/ i g+|[3 n| + Z/ ) gz|[3-n|].
KeCh Kecy,
Hence,
(9: +v-Vig,9)Q. + Z/ [919+16 - | + |5
KeCy,

(4.15) X

=3 Z/ 9213 n|+/ lo-n, |+ gl + gl

Kec, Y OK- (5)’ Ix00

Similarly, by the definition of Dy and using (4.7), we have also

Do(g,9) =0[Vuglll, +20(Vog: R@)ar +A0 > > @)k

(416) KeCy, ee€,NOTy,

- Z HKU(AUgugw +uv- VJ_Q)K
Kecy,

Finally, the estimate (4.4), for some 0 < £ < %, yields

(417 20(Veg R(@))a, <o )
KecCy,

K
NVugli + 5> |re<g>||%<].

e€E,NITy
Thus

20(Vog, R(9)qu + A0 Y > lre(9)lk

KeCh e€€n,NOTy
K
>0 Z _EHV’UQH%( + ()\ - g) Z ||T‘Jg)||%;| '
Kecy,

e€&,NOTy

(4.18)

Hence, by an inverse estimate, using 0 < dx and assumptions on ¢ and dg,

1
> o0k(Aug.gr+v-Vigg, <5 <U||Vv9|2QL + D Ocllge + v VL9”%<> :
Kecy, Kecy,

Taking o = min[3 — e, A — £], (> 0 for § < & < 3) we conclude the desired

result. O

Corollary 4.1. For B, defined as in (4.12) we have the coercivity estimate
(4.19) Bi(g.9) z alllglll}, Vg€ Va,

where |[g]l1Z =: llglll% + llglll%-
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Suppose now that f* € W" and f are the solutions of (4.6) and (2.1), respec-
tively, and let f" € V}, be the interpolant of the exact solution f. Then, we write

(4.20) e=f-f'=0F--("-=n-¢
Lemma 4.2. There ezists a constant C' independent of the mesh size h such that
for di chosen as in (3.15) we have the following estimates

1 _
As(m &) <gllIelliz, + ¢ > G nlx + 0xlVallx)
Kecy,

(4.21) + Z Moz + Inlry + [nlo + (Ml
Kecy,

1 1
Do(n, €) < Slllellf, + gD, + CollVunlld, -

Proof. We proceed as in the SD approach in [5]. Here, we need to control some
additional jump and boundary terms. We have, using the definition of Ag, that

As(m,©) = > (e +v-Vin &+ 0k(& +v-ViE))k
(4.22) e

tlgdor [ e on

Kecy,

Integrating by parts we end up with
(Matv-Vin,§q, + (14,84 )o + Z /az( Gy mé+18 - nl

Kecy,
4.23 =& +v-Vi€o, — _[€)1B -
(4.2 (0.6 +v-V.)g K;}L/BK(B)@ GERY
+ <77-,§—>M+/IXBQ+ n-¢-|B - nl.

Inserting (4.23) in (4.22) and applying Cauchy-schwarz inequality we obtain

1 _
As(n, &) <<€, +C > (0 Inll% + = I Vll%)
(4.24) K

+ > AWl gy + 1, + nlg + 03
KeCy,

For Dy we have by the definition,

Do (777 6) :U(VM, vvg)QL + U(VM, R(&))QL + U(R(ﬁ), vvg)QL
5

+ Ao Z (Te(n)vre(g))QL - Z HKU(Avnugw +uv- VJ_f)K = ZTZ

ec&, Kecy 1=1
Here, T7 and T5 can be estimated by standard techniques. Below we estimate the

terms To, T3 and Ty. Since 7 is continuous, the definition of operators R and 7,
yield that T3 = Ty = 0. To estimate T> we use (4.4) and (4.5) to obtain

zs) 101 Y olValelr@lx < 3 (Colvuli+ IR ).

Kecy, Kecy,

Hence, by Cauchy-Schwarz inequality and assumption on o we finally get

1 1
(4.26) Do(n,€) < &N, + gllEllD, + CollVenlld,
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and the proof is complete. ([
In the sequel we shall use the following lemma (see, e.g. [4]),

Lemma 4.3. Let u € L*(I x Q. , H'(Q,)) with Ayu € L*(Qr), and let w € Vj,.

Then
/ In,.(V, u

ou
CELID Sl I A zz/
Kec, LI XTo | Oy anv I X T I,
Theorem 4.1 (Convergence Theorem). Suppose f* € V" and f are the solutions
of (4.11) and (2.1) respectively, then there exists a constant C' independent of the
mesh size h such that we have the following error estimate

XTz ) eck,

(4.28) 11F = Sl < OO 2 f kg

Proof. Using Lemma 4.1 and (4.20), we have

(429)  alllEll? < Bu(&,€) = Bu(n — ¢,6) = Bu(n,€) — Bu(e, ).
We may split B.(e, &) as

(4.30) Bu(e,€) = Ae,€) + D(e,€).

Recall that

Hence, by the definition of D and since R(f) = r.(f) = 0 we have that

Kec, /Imxrn/T oV, vaﬁ—UI ; /lmxTM 2 /[[5]]nv-(vvf)0
=2 / o Y [

(’9n

Kee, Kee, XTe ) J 0Ty v
-0 E / / Jn,.(V,f)° g / —o(Ayf)E

Iy xty, YImXTay ece, KeCy,

where in the last equality we have used Lemma 4.3. Thus, the problem (4.11) is
fully consistent and B (e, &) = 0. Further, we get from (4.29) that

(4.32) alllell[ < Bx(n,€) = A(n,€) + D(n, ).

We have now using Lemma 4.2, the multiplicative trace inequality (3.19), and the
local interpolation error estimates (3.9)-(3.10) that

1
(4.33) A, &) < SllIElA + CP I flln .
and

1
(4.34) D(n,€) < Il + CR** M fli1.q.-
Inserting (4.33) and (4.34) into (4.32) we obtain
(4.35) €N < CR M| FlI7 1.0,
Using the interpolation estimates as above we also have
(4.36) Il < CR* ) fllfirq.

Then (4.28) is a consequence of (4.35), (4.36) and the triangle inequality. O
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Remark 4.1. Choosing 0 < 0k < dx in (4.9), specially 8 = 0, i.e., with extra
diffusion in x only for the convective terms, the Galerkin orthogonality would not
hold any longer and this renders the scheme (4.6) as an inconsistent one. The
consistency error introduces an additional term of O(h?) in the convergence analysis
of the scheme, since

(437)  Balf— 0 = 3 Ok — 0x)0(Af, & + v+ V1E)k = T,
KeCy,

and the consistency error bound follows from
1
(4.38) ITs| < Coxa®[AufllG, + 3lIENE0

Hence, the scheme cannot be better than third order accurate, no matter how high
the spectral degree k is, and the stabilizing term is therefore non-compatible with
the optimal order guaranteed by the polynomial approximation.

4.2. hp-Discontinuous Galerkin method. In this section we employ the ap-
proach in [17] and derive error bound that is optimal in both h and p. We assume
that the family {Cy} is shape regular in the sense of (3.14) and that every K € Cj, is
affine equivalent to the unit hypercube in R®. We allow the meshes to be 1-irregular,
i.e. elements may contain hanging nodes. Let us first consider the bilinear form

(439) D5:D5(fag)+Ds(fvg)7
where D is as in (4.9) and the stabilizer D, is defined by

(4.40) D(fg) =0 ¥ / /g A (h) )

ImXTa | Lo X7 .

~v(h.) is the discontinuity scaling function below. We introduce the bilinear form

(4.41) Bg = As + D(;.
Then, the hp-DG for the equation (2.1) reads as follows: find f" € V' such that
(4.42) Bs(f",9) = (fo.g+)0 Vg€V

As in subsection 3.1.2, we use V? to emphasize the polynomials degree p := k in
(4.1). Note that when y(h.) is set to zero and the SD-parameter dx ~ h, for all
K € Cy, then (4.42) is identical to the method introduced in (4.11). In the sequel we
assume that the solution f of the equation (2.1) is sufficiently smooth on £2,: namely
fe L*1,Q.,,H} Q) N L*(1,Q,, , H?(Q,)), therefore, f is continuous across
interelement boundaries in Q,, and hence D(f, g) = 0 for all g € V}'. Consequently,
the Galerkin orthogonality Bs(f — f", g) = 0 holds for all g € VP
We shall derive the stability of the method (4.42) in the following norm

(4.43) glll3.s = Mgl +1llglliD, +o > /IX /gv(he)[[g]]Q-

Iy X T |

Lemma 4.4. There is a constant C > 0 such that

(4.44) Bs(g,9) > Clllgll2s.  VgeVE.

Proof. This is a simple observation namely, by (4.41) and (4.39), we have

(4.45) Bs(g,9) = As(g,9) + Ds(g.9) + Ds(g, 9),
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with
(4.46) (9.9)=0 / /v(h
I X T | T X7z | S Ew

Inserting (4.46) in (4.45), and using Lemma 4.1, we obtain the desired result. O

Before proceeding we state an approximation result for the space V' (see, [13]).
We consider Q. (K), the set of all polynomials of degree < k in each variable on K.

Lemma 4.5. Let K € Cp, and assume that g € H*(K) for some integer s > 1.
Then, for any integer p = min(p + 1, s), and p > 0, we have that

hie \'*
(4.47 lo = Plzane < € (S25) " oo

where P : L*(K) — Q,(K) is the usual L?- projection of degree p on K.

We denote by P, the univariate elementwise L?(7,)-projection onto the polyno-
mials of degree p in the variable v for every 7, € T}. Local error estimates for
f — Py f can now be obtained from Lemma 4.5. Actually for K € C;, we have

_1

4191 = Puflltrn, om0 < C () Ul e
where K := I, X 7,,, x 7,. We also recall a restatement of Lemma 3.3: suppose
(4.49) f e L3190, HY(0) 0 L3190, H2(S2)),

and assume that for s > 2,

(4.50) flx € H*(K), VK € Cp,

then, there is an interpolant II, f € L*(1,Q,  , H}(,)) which is continuous on .
Thus, by local interpolation error estimate (3.17), with » = 1, we have

it ,
(4.51) If =l < Cpf—_ll\fl\s,m p=min(p +1,s).
Theorem 4.2. For h, € &, we define the scaling discontinuity function v by
»?
(4.52) ~v(he) = =

Assume that 0 satisfies (3.15) and the solution f satisfies (4.49)-(4.50). Then,
there is a constant C > 0 independent of h and p such that for p = min(p + 1, s),

2pu—1

hy
I1F =M< C > S fllx
(4.53) - f“ci
+ Y (2 )P

KECh
Proof. We follow the proof of Theorem 4.1, except now we decompose the error as
(4.54) c=f- "=+ " =M =n+g

where f € VP is hp-interpolant of f satisfying (4.51), i.e. fh =T, f. By virtue
of Lemma 4.4, we have

(4.55) CrllEl|ly.6 < Bs(€,€) = Bs(e —n.€) = Bs(—n, &),
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where we use Galerkin orthogonality: Bs(e, &) = 0 which follows form (4.42) with
g = & and the definition of the problem, given the assumed smoothness of f. Thus,

(4.56) Crllléllly.6 < [Bs(n, )| < |As(n,€)] + | Ds(n, )]
Since n € L?(I,Q,, , H}(5,)), we have
(4.57) (] =0 on&,
also
(4.58) R(n) =0 on{, and re(n) =0 onQ Vecek,.
Hence,
(4.59) |Ds(n, &) < T+ 1I+1I1,
where

I'=0|(Von, Voo, |, 1T =0|(Von, R(£))qQ.l,
(4.60) IIT =Y odk|(Avn, & +0- VK]

KeCp

I is estimated as in the Lemma 4.2. The orthogonal projector to L?(Q1) yields

a(Von, R(§))q. = o(Ven — PuVun, R(§))q, +0(PuVen, R(§))q,
=0 (Von —PuVun, R(§))q, +0(Vun, R(§))q, =T1 + T».
By the definition of R and the shape regularity of C, relating h. to hg,

Ti=0 Y. /1 / Vo — P, Vyn)°

Iy XTa XTz ) eck,
<all\VAll¢ ]]H&J 72 (Vo = PuVun)°|le,

(4.61)

1/2

<Colvalldllle, | D D P b Vo = PuVunill o, -, or) )

Ly X 7o | To€E€TY
/gdv

Further, since V,(II, f) € V¥ x V} and the Lo-projection preserves polynomials,
an - vavn = vvf - vvnpf - vavf + vavnpf = vvf - vavf'

Hence,

where, in the first inequality, we used the notation

lolle, = 3 /

I X T mXTz ) ecg,

1/2

n<CollAlElle, | S 3 0 2hklVof — PuVudl3ago s om

Iy X 70 | To €T
Moreover, using (4.4) and (4.5), we estimate the T5 term as
1, < Ve (Voo (o 3 Ire@)13,)
e€&y

It remains to estimate the term I7]. By inverse inequality and assumption (3.15),

(4.62) o0k |[(Avn, &x +v - VI K| <V ook ||[Vunll ke +v - ViE|k.
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Substituting the above estimates, for T} and T5, into (4.61) and then using (4.62)
and inserting the estimates for (4.60) into (4.59), Cauchy-Schwarz inequality yields

|Ds(n,6)] < 01|||€|||3,5+CU<|I(VU77)|QQL

(4.63)
+ Z Z p_th”vvf_vavf”%%Im,er_,an))v

Iy X 70 | To €T
where, C1 < %CI. As for the term |As(n, €|, using Lemma 4.2 and with Cy < %CI,
(4.64) [A5(n,&)| < ColllEll3.5+C Y (Ox"Inlli + dxcline +v-Vanllk + Inll3x) -
KecCy

Substituting (4.63) and (4.64) into (4.56), using a kick back argument and applying
the error estimates (4.51) and (4.48) and trace inequality (3.19) we deduce that

2,u 1 h2,u71
(165) lEllEs <€ 3 i ( )||f||sK+ K12k

KGCh

Similarly, due to (4.57) and (4.58), for the interpolation error we get

(4.66) InlliZs <C > (bl + ol Venllk + dxcllne + v.Vinlk) -
Kecy,

Hence, using (4.51) and trace inequality (3.19) we end up with
2pu—1

h _ 1 1 _
aen  llnlEs<c Y A (6KhKl L ahKl) 112

Kecy,
Inserting the bound for |||n|||,,s and (4.65) in (4.56) we obtain the desired result. [

Remark 4.2. Let, in Theorem 4.2, 2 < s < p+ 1 and choose dx = for all

C2 4
K € Cp, then assuming O(;%-) ~ 1 for all K € Cp, we deduce from Theorem 4.2
—1
that the discretization error in the norm |||.|||,,5, converges as O(%). Hence,

the error bound is optimal in both A and p. The parameter §x may be selected as
h

(4.68) Sk =Cs—=, VK €Cy.
p

The constant Cy is chosen subject to the constraint on dx in Theorem 4.2. In this
case the parameter dhj’ in (4.53) is equal to %, and the error of the method in

. (=3 S o . .
DG-norm is of order O(%), which is again simultaneously optimal in h and p.
P 2

Remark 4.3. The choices made for dx in Remark 4.2, are closely connected to
the degeneracy of diffusion term in Fermi equation (2.1). The use of continuous
interpolant in velocity space and the homogeneity of boundary condition on 2,
cause the suboptimal stabilization terms in the method (4.42) to vanish.

Conclusion: We extend the result in [2]- [3] to the three dimensional problem.
We present an h- and hp-a priori error analysis of both SD- and DG- schemes for
Fermi equation. We show that both schemes are optimally convergent with respect
to the mesh size h and the spectral degree p of approximating polynomial. For DG
method we admit general 1-irregular meshes, it allows less restrictive smoothness
assumptions compared to the SD method. Of course, for given h and p, the number
of degrees of freedom in DG method is higher than in the SD case. The analytic
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solution is non-negative with Ly and L., stability properties, see, e.g. [11]. Same
stabilities are achieved for the approximate solutions by the construction. However,
the positivity is guaranteed only for the limit. For positivity of final step approxi-
mate solutions excessive stability assuptions and uniform convergence are required.
As for the computational aspects, the discretized problem being 5-dimensional is
difficult to handle. One remedy would be considering the discrete velocity model of
the Fermi equation combined with backward Euler method for penetration variable.
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