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and H−s , s > 0, norms.

Keywords Vlasov-Poisson · Backward-Euler · Mixed finite element ·
Brezzi-Douglas-Marini elements · Discontinuous galerkin · Stability · Convergence

Mathematics Subject Classiffcations (2010) 65M12 · 65M15 · 65M60 · 82D10 ·
35L80

Communicated by: Alexander Barnett

M. Asadzadeh (�)
Department of Mathematics, Chalmers University of Technology and University of Gothenburg,
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1 Introduction

In this paper we study a numerical scheme approximating the solution of the deter-
ministic two-dimensional Vlasov-Poisson (VP) system described below: Given the
initial distribution of particles density f0(x, v), (x, v) ∈ Ωx × R

2 ⊂ R
2 × R

2, find
the evolution of a single species plasma formed by charged particles, at time t , in a
bounded open set Ωx ⊂ R

2 with a phase space density f (x, v, t) satisfying
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tf + v · ∇xf − ∇xϕ · ∇vf = 0, in Ω × [0, T ],
f (x, v, 0) = f0(x, v), in Ω = Ωx × R

2,

−Δxϕ =
∫

R2
f (x, v, t) dv, in Ωx × [0, T ],

ϕ(x, t) = 0, on ∂Ωx × [0, T ],

(1.1)

where · denotes the scalar product. To construct numerical methods for the system
(1.1) we shall restrict the velocity variable v to a bounded domain Ωv ⊂ R

2 and
provide the equation with a Dirichlet type, inflow boundary condition, in the phase-
space variable. We also split the equation system to separate the Poisson and Vlasov
equations coupled with the potential ϕ. Thus we reformulate the problem (1.1) as
follows: given the initial data f0(x, v) with (x, v) ∈ Ωx × Ωv ⊂ R

2 × R
2, find

the density function f (x, v, t) of the initial-boundary value problem for the Vlasov
equation

⎧
⎨

⎩

∂tf + v · ∇xf − ∇xϕ · ∇vf = 0, in Ω × [0, T ],
f (x, v, 0) = f0(x, v), in Ω = Ωx × Ωv,

f (x, v, t) = 0, on Γ −
v for t ∈ [0, T ].

(1.2)

Here for every v ∈ Ωv , Γ −
v := {x ′ ∈ ∂Ωx : n(x ′) · v < 0} is the inflow boundary

of Ωx , (see [2]) and n(x ′) is the outward unit normal to ∂Ωx at x ′ ∈ ∂Ωx , moreover,
the potential ϕ satisfies the following Dirichlet problem for the Poisson equation

⎧
⎨

⎩

−Δxϕ =
∫

Ωv

f (x, v, t) dv, in Ωx × [0, T ],
ϕ(x, t) = 0, on ∂Ωx × [0, T ].

(1.3)

An analytic approach to solve the problem (1.3), is based on replacing f by a given
suitable function g. Then inserting the solution, say ϕg, in (1.2) we obtain a new
Vlasov equation as (1.2) with ϕ replaced by ϕg . Assume that we can solve this new
Vlasov equation, then in this way we link its solution fg to the given function g via,
fg = Λ[g]. Now a solution f for the original Vlasov equation is a fixed point of the
operator Λ: f = Λ[f ], provided that Λ fulfills the conditions of a Schauder fixed
point operator, see [32] for the details. For a discrete version, in a finite dimensional
space, the argument relies on the Brouwer fixed point theorem, as in [2] and the
reference therein. For simplicity, and due to the fact that the BDM method used in our
Poisson scheme is given in 2D, we perform this study for the two dimensional case.
In three dimensions some key estimates, based on Sobolev embedding theorems, and
depending on the dimension, would become quasi-optimal, see, e.g. [3].

Positivity, existence, uniqueness and regularity properties for the continuous prob-
lem (1.1) in the full space R

2d , d = 2, 3, are inherited from those derived for a
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bounded positive initial data f0 ∈ L∞(R2d) ≥ 0, with the bounded second phase-
space moment:

∫

R2d (1 + |x|2 + |v|2)f0 dxdv < ∞, see [11]. These are mainly
indicating that f is non-negative and also we have bounded mass and energy.

Further analytic approaches are given, e.g. by Horst in [22]. For a general math-
ematical framework in this study we refer to the results by J. L. Lions in [26], and
Baouendi and Grisvard in [10]. These are abstract results giving an idea about the
behavior of the solution and, in the very special cases, are leading to the closed form
analytical expressions. In this regard some specific studies for the Vlasov-type sys-
tems are, e.g. the global in time solutions of the two-dimensional Vlasov-Poisson
system by Wollman [35], global symmetric solutions of the initial value problem of
the stellar dynamics considered by Batt [8], and the classical solution in the large-in-
time of two-dimensional Vlasov equation by Ukai and Okabe [32]. Finally, in three
dimensions global existence of smooth solutions to the Vlasov-Poisson system is
studied by Schaeffer [30].

Our goal is to construct and analyze a numerical scheme which yields approx-
imate solutions (piecewise polynomials) sufficiently close to the exact solution in
certain norms specified below. In our previous studies in, e.g. [2] and [4], we assumed
a continuous Poisson solver. Then, using a streamline diffusion (SD) approach, see
e.g. [24], we derived optimal convergence rates for both the SD and discontinuous
Galerkin (DG) approximations for the Vlasov-Poisson and Vlasov-Fokker-Planck
equations, respectively. This paper concerns a fully discrete scheme for a combined
spatial discretization using a mixed DG method for the Poisson Eq. (1.3) with, a SD
based, phase-space DG approximation for the Vlasov equation (1.2). Compared to
[2] and [4], as well as [24], here we have separated the time discretization from the
previous SD-based schemes and have employed a backward Euler (BE) method in
time. The backward Euler method is well-correlated with the DG method, see [18].
In this setting, the local in time convergence rate is that of the BE method, whereas
the discretization for the phase-space has a convergence rate governed by that of the
less regular first order hyperbolic equation in (1.2) when the potential term is already
replaced by its discretized counterpart.

More specifically, in this paper we shall consider the two-dimensional case and
study the convergence of a fully discrete numerical scheme consisting of

(i) A mixed Brezzi-Douglas-Marini (BDM) finite element method for the spatial
discretization for the Poisson Eq. (1.3).

(ii) A discontinuous Galerkin (DG) method for the space-velocity variables for
the Vlasov equation (1.2).

(iii) A backward-Euler (BE) discretization in time for the Vlasov equation (1.2).

Problem (ii) being hyperbolic would require a finer mesh than the more regular
elliptic problem (i). We shall correlate these meshes at the final combined step. How-
ever, the numerical approaches for the problems (i) and (ii) are chosen independently,
therefore they are presented with the different (distinguishable) mesh sizes: � and h,
respectively.

Our motivation for the choice of this combination lies in the fact that the BE is
unconditionally stable. For the other choices: the Crank-Nicolson scheme is condi-
tionally stable, and to derive the stability estimates for the Runge-Kutta (RK) method
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requires a rather involved and cumbersome procedure with no improvements com-
pared to the BE approach (the merit of RK methods are in the fact that they are the
only integrators compatible with an affine transformation in ODEs, but this is not in
the scope of our study in here). Likewise the DG scheme for the phase-space approx-
imation is more stable than the continuous standard Galerkin scheme. In general,
using the DG method would cause a slight reduction in the accuracy whereas the sta-
bility is enhanced, see [18]. But the high accuracy with the weak stability has no use.
Here, we have compromised through combining the BE scheme in time with the DG
approach in the phase-space and achieved desirable stability properties.

We start with a continuous time variable and a (possibly coarse) spatial mesh of
size � and solve (i) to obtain ϕ�. Then, in (ii), we replace ϕ by ϕ�, refine the mesh,
if necessary, and obtain the discrete solution fh. The approximation (fh, ϕh) in (ii)
may, roughly, be viewed as (fh, ϕh) ≈ (f, ϕ�) ≈ (f, ϕ). To perform (ii) we may
formulate a linearized Vlasov equation:

∂tf +v ·∇xf −∇xϕ� ·∇vf = 0, with −Δ�,xϕ� =
∫

Ωv

f�(x, v, t) dv, (1.4)

where Δ�,x is the discrete Laplacian operator defined by (−Δ�,xϕ�, u) =
(∇ϕ�, ∇u).

The backward Euler approximation in (iii) yields an iterative procedure. It starts
from the initial data f0(x, t) and provides the phase-space solutions at each time
level tn, n = 1, . . . , N . In performing the time discretization, ϕn−1

h (depending on
f n−1

h ) is used to compute f n
h on the next time level n, which yields a fully linearized,

discrete in time, Vlasov equation. Observe that the mixed finite elements in BDM-
spaces in (i), as described, are for the spatial approximation and do not involve time
discretizations.

We derive sharp error bounds for (i) and (ii). The convergence rates for the dis-
continuous Galerkin (ii) and backward Euler (iii) methods, although each optimal,
are of different order. Then, combining (i)-(iii), an optimal fully discrete method is
constructed by assuming a compatibility condition on the mesh parameters. For the
sharp approximations, regularity requirements of type, e.g. ϕ ∈ Wr,∞(Ωx), r ≥ 1,
and also a mesh compatibility relation like h = Δt , will be necessary.

Remark 1.1 Note that with implicit methods one can use large time steps, but still the
error in time is of order O(Δt), regardless of the use of implicit or explicit Euler. The
implicit method only means that we do not have stability conditions on the size of
time step. We may use the arbitrary time step. If we use the higher order polynomials
in the DG method, we can use the larger h to get the same error expansion in space
and this means we can use the larger time step.

Early numerical studies for the Vlasov-Poisson and related equations have been
dominated by the particle method approaches, e.g. by Cottet and Raviart in [16];
Ganguly, Lee and Victory in [20]; and Wollman, Ozizmir and Narasimhan in [34].
On the other hand, Raviart-Thomas (RT) and BDM approaches that are extensively
used in the finite element approximation of the elliptic, parabolic, and parabolic
integro-differential equations with memory, have substantially gained ground in more
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involved systems such as VP. Some related studies in this part are, e.g. the optimal
L∞ study of the finite element methods for irregular meshes by Scott in [31]; the two
families of the mixed finite element methods for the second order elliptic problems
by Brezzi, Douglas and Marini in [13], where the BDM spaces are introduced; the
maximum norm estimates for the finite element approximation of the Stokes prob-
lem in 2D by Duran, Nochetto and Wang in [17]; the asymptotic expansions and L∞
estimates for the mixed finite element methods for the second order elliptic prob-
lems by Wang in [33]; the maximum norm estimates for a Ritz-Volterra projection
by Lin in [25]; the global superconvergence analysis in W 1,∞-norm for the Galerkin
FEMs of the integro-differential equations by Liu, Liu, Rao and Zhang in [27]; and
the L∞-error estimates and superconvergence in maximum norm of the mixed FEMs
for nonfickian flows in porous media by Ewing, Lin, Wang and Zhang in [19].

For a DG approach for a semidiscrete Vlasov problem we refer to [21]. Some
relevant “theoretical numerical analysis” for a higher order semi-lagrangian DG for-
mulation, and the corresponding DG schemes for the Vlasov-Poisson equations are
given by Jing-Mei Qui and Chi-Wang Shu in [28]. The corresponding DG schemes
are studied by J. A. Rossmanith and D. C. Seal in [29]. The related numerical stud-
ies considering the Vlasov-Poisson can be found in the recent papers [6] and [15],
and some references therein. These papers are considering a somewhat different
approach, e.g. in [6] (more adequate to compare), the authors consider the Raviart-
Thomas elements rather than the BDM ones which is the case in our study (see [13]
for the crucial differences and motivations). The convergence rates in [6] are derived
for the absolute values of certain error indicators Ki , i = 1, 2 based on measuring
the local quadrature-type estimates applied to interpolation operator. These estimates,
controlling the absolute values of Ki :s are sharp: O(hk+1) for f ∈ Hk+1. But such
convergence rate is not possible for the DG method for the first order hyperbolic
problems in Lp norms, see [23]. Under the same regularity assumption: f ∈ Hk+1,
in [2], we derived triple-norm estimates (may be viewed as energy norm) with the
optimal convergence rate of order O(hk+1/2), which is the best possible estimate
one can hope for, cf [23]. Our particular approach would yield a convergence rate
O(Δt1/2 + hk+1/2) for f ∈ C1([0, T ], Hk+1), confirming the compatibility of the
BE with the DG(0), i.e. for k = 0.

In our step (i) in the present approach we use the results in [31], [13], and [33].
As for the discontinuous Galerkin approximation relevant in the Vlasov-Poisson esti-
mates we refer to the articles by Johnson and Saranen for the Euler and Navier-Stokes
equations in [24]; Asadzadeh for the Vlasov-Poisson equations in [2], Asadzadeh
and Kowalczyk for the Vlasov-Fokker-Planck system in [4], and Asadzadeh and
Sopasakis for the Vlasov-Poisson-Fokker-Planck system in [5].

An outline of this paper is as follows: in Section 2 we state the notations and pre-
liminaries and derive L2-norm error estimates for the Poisson (1.3) in mixed BDM
spaces. In Section 3 we derive the L2-stability for the DG method for the time dis-
cretized system at each time level. Section 4 is devoted to the error estimates for the
DG method for the Vlasov-Poisson system.

In a forthcoming paper we shall study a posteriori error estimates of SD and DG
methods for the fully discrete problem, where the approach in [2] as well as the
scheme in the present work are considered.
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In what follows the constants will be generic and not necessarily the same at each
occurrence and independent of the other parameters, unless otherwise specified.

2 Mixed method for the poisson equation

We shall discretize the Poisson (1.3) using BDM spaces. To this end, we use the
notation (vector functions will be denoted in bold face)

⎧
⎨

⎩

−Δxϕ(x, t) =
∫

Ωv

f (x, v, t) dv =: ρ(x, t),

Ψ (x, t) := −∇xϕ(x, t),

and define a mixed form for (Ψ, ϕ) as
⎧
⎨

⎩

Ψ + ∇xϕ = 0, in Ωx,

div Ψ = ρ, in Ωx,

ϕ = g̃, on ∂Ωx,

(2.1)

where, to begin with, we ignore the time dependence in ϕ and Ψ . Note that we shall
deal with homogeneous Dirichlet data, and the function g̃ in Eq. (2.1) is for showing
the general form of the right hand side in Eq. (2.2) below. We shall use the following
Hilbert space

S := H(div, Ωx) = {u ∈ [L2(Ωx)]
2 : div u ∈ L2(Ωx)},

associated with the norm

||u||2S = ‖u‖2
2 + ‖div u‖2

2.

The weak form for (2.1) reads as follows: find (Ψ, ϕ) ∈ S × L2(Ωx) such that
{

(Ψ, u) − (div u, ϕ) = −〈g̃, u · n〉, ∀u ∈ S,

(div Ψ, w) = (ρ, w), ∀w ∈ L2(Ωx),
(2.2)

where (·, ·) is the usual inner product in either
[
L2(Ωx)

]2
or L2(Ωx) and 〈·, ·〉 is the

inner product in L2(∂Ωx) and n is the outward unit normal to ∂Ωx . For g̃ ≡ 0, the
problems equations (1.3) and (2.2) are equivalent and the solubility of (2.2) is based
on the inf-sup condition

inf
Ψ ∈S

sup
w∈L2

(div Ψ, w)

‖Ψ ‖S‖w‖2
≥ λ, (2.3)

due to Babuška [7] and Brezzi [12] (known as Babuška-Brezzi condition) where λ is
a positive constant.

For a general domain D with a triangulation {K} and for a positive integer k, we
define Pk(K) as a set of scalar valued polynomials, of degree not greater than k,
restricted to the element K and let Pk(K) = [Pk(K)]2 denote the restriction of the
set of all vector valued polynomials of total degree not greater than k to K .



Convergence analysis for Euler and mixed DG methods for the VP

Now we consider a quasi-uniform triangulation of Ωx as T x
�

= {τ } and define

Sk
�

: = {u ∈ S : u|τ ∈ Pk(τ ), τ ∈ T x
�

},
Wk−1

�
: = {w ∈ L2(Ωx) : w|τ ∈ Pk−1(τ ), τ ∈ T x

�
}. (2.4)

Then, Sk
�

×Wk−1
�

⊂ S ×L2(Ωx) is a mixed finite element space on the triangulation
T x
�

of Ωx , for which the discrete version of the Babuška-Brezzi condition holds true:

inf
Ψ�∈Sk

�

sup
w�∈Wk−1

�

(div Ψ�, w�)

‖Ψ�‖S‖w�‖2
≥ λ̃, (2.5)

where λ̃ is independent of �. Note that Wk−1
�

is the space of piecewise polynomials
of degree not greater than k − 1. The mixed finite element method for (2.2) is now
formulated as follows, see [13] and [33]: find (Ψ�, ϕ�) ∈ Sk

�
× Wk−1

�
such that

{
(Ψ�, u) − (div u, ϕ�) = −〈g̃, u · n〉, ∀u ∈ Sk

�
,

(div Ψ�, w) = (ρ, w), ∀w ∈ Wk−1
�

.
(2.6)

To simplify (2.6) it is customary, see [1], to employ a Lagrange multiplier to enforce
the continuity of normal components of Ψ� across inter-element boundaries.

Note that, a formal subtraction of the equations (2.6) and (2.2), in the subspaces
Sk
�

× Wk−1
�

⊂ S × L2, yields the following Galerkin orthogonality for the mixed
method:

{
(Ψ − Ψ�, u) − (div u, ϕ − ϕ�) = 0, ∀u ∈ Sk

�
,

(div (Ψ − Ψ�), w) = 0, ∀w ∈ Wk−1
�

.
(2.7)

2.1 Error estimates for the mixed method

Our main tools are existence of local projections Π� = Πk
�

: H(div, Ωx) → Sk
�

,
and π� = πk−1

�
: L2(Ωx) → Wk−1

�
: such that

div ◦ Πk
�

= πk−1
�

◦ div, (2.8)

and we have, the local, orthogonality

(w − πk−1
�

w, φ)τ = 0, φ ∈ Wk−1
�

(τ ), τ ∈ T x
�

, (2.9)

and, under certain conditions, the global orthogonality relations

(div (u − Πk
�

u), w) = 0, w ∈ Wk−1
�

. (2.10)

The relation (2.10) is identical to (2.7) in [13], which in turn relies on a rather
involved globalization procedure for the projection operators.

Now, since div Sk
�

= Wk−1
�

,

(div u, w − πk−1
�

w) = 0, u ∈ Sk
�
. (2.11)

Then, it is well known that, for 0 ≤ s ≤ k and 0 ≤ j ≤ k,

‖w − πk−1
�

w‖H−s (Ωx) ≤ C

(
∑

τ

�
2(s+j)
τ ‖w‖2

j,τ

)1/2

. (2.12)



Mohammad Asadzadeh, Piotr Kowalczyk

Moreover, for 1 ≤ r ≤ k + 1,

‖u − Πk
�

u‖L2(Ωx) ≤ C

(
∑

τ

�
2r
τ ‖u‖2

r

)1/2

. (2.13)

We shall use the following global form of the estimates (2.12) (with s = 0) and (2.13)
in L2(Ωx)-norm, justified by the construction of πk−1

h and Πk
h ,

‖w − πk−1
h w‖L2(Ωx) ≤ Chk‖Dkw‖L2(Ωx), ∀w ∈ Hk(Ωx), (2.14)

‖u − Πk
hu‖L2(Ωx) ≤ Chk+1‖Dk+1u‖L2(Ωx), ∀u ∈

[
Hk+1(Ωx)

]d

. (2.15)

Below we gather the main error estimates of these approximations in the L2(Ωx)-
norm. In order to make the paper easy to follow, we shall give a brief outline to the
proof of some key estimates. For more detailed proofs we refer the reader to [13]
and [33].

Theorem 2.1 Let {Ψ�, ϕ�} ∈ Sk
�

× Wk−1
�

be the solution of the mixed finite element
scheme (2.6). Then, we have the following L2(Ωx) error estimates:

‖Ψ − Ψ�‖2 ≤ C‖Ψ − Πk
�
Ψ ‖2 ≤ C�

r‖Ψ ‖r , 1 ≤ r ≤ k + 1. (2.16)

‖ρ − ρ�‖2 = ‖ρ − πk−1
�

ρ‖2 ≤ C�
r‖ρ‖r , 0 ≤ r ≤ k. (2.17)

‖ϕ� − πk−1
�

ϕ�‖2 ≤ C�‖Ψ − Πk
�
Ψ ‖2 + C�

min(2,k)‖ρ − πk−1
�

ρ‖2. (2.18)

‖ϕ − ϕ�‖2 ≤ C�
r
(‖ρ‖r−2 + |g|r−1/2

)
, 2 ≤ r ≤ k + 2. (2.19)

Proof Using (2.11) we may rewrite the first equation in (2.7) as

(Ψ − Ψ�, u) − (div u, πk−1
�

ϕ − ϕ�) = 0, u ∈ Sk
�
. (2.20)

Let now ẽ� := Πk
�
Ψ − Ψ� and in (2.20) take u = ẽ�. Then,

‖ẽ�‖2
L2(Ωx)

= (Π�Ψ − Ψ�, ẽ�) = (Ψ − Ψ�, ẽ�) − (Ψ − Π�Ψ, ẽ�)

= (div ẽ�, πk−1
�

ϕ − ϕ�) − (Ψ − Π�Ψ, ẽ�) = −(Ψ − Π�Ψ, ẽ�),

(2.21)
where, we used equations (2.20) and (2.11). Thus, using the Cauchy-Schwarz
inequality

‖ẽ�‖L2(Ωx) ≤ ‖Ψ − Π�Ψ ‖L2(Ωx), (2.22)

and hence, by the well-known estimates for projection error, we get

‖Ψ − Ψ�‖L2(Ωx) ≤ ‖ẽ�‖L2(Ωx) + ‖Ψ − Π�Ψ ‖L2(Ωx)

≤ 2‖Ψ − Π�Ψ ‖L2(Ωx) ≤ C�
r‖Ψ ‖r , 1 ≤ r ≤ k + 1.

(2.23)
This proves the first estimate (2.16) of the theorem.

Next, note that by the successive use of (2.10) and the second relation in Eq. (2.7),

(div ẽ�, w) = (div (Ψ − Ψ�), w) = 0, ∀ w ∈ Wk−1
�

. (2.24)
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Taking w = div ẽ� we get div ẽ� = 0. Thus, by the same calculations as in Eq. (2.23),
and using projection error

‖ρ − ρ�‖L2(Ωx) = ‖div (Ψ − Ψ�)‖L2(Ωx) = ‖div (Ψ − Π�Ψ )‖L2(Ωx)

≤ C�
r‖div Ψ ‖r = C�

r‖ρ‖r , 0 ≤ r ≤ k,
(2.25)

which yields the second assertion (2.17) of the theorem.
Further, let L�φ = �, where L� is the adjoint operator for L := −Δx , and we have

that � ∈ L2(Ωx) and φ ∈ H 2(Ωx) ∩ H 1
0 (Ωx). Then, we may write, see [13],

(
πk−1
�

ϕ − ϕ� , �
)

= (Ψ −Ψ�, ∇φ−Π�(∇xφ))+(div (Ψ −Ψ�), φ−π�φ). (2.26)

Then, by equations (2.14)–(2.15), together with the elliptic regularity of L�, (2.26)
yields (2.18).

Finally, using equations (2.16)–(2.18), and the projection error estimates equa-
tions (2.14) and (2.15),

‖ϕ − ϕ�‖L2(Ωx) ≤ ‖πk−1
�

ϕ − ϕ�‖L2(Ωx) + ‖ϕ − πk−1
�

ϕ‖L2(Ωx)

≤ C
(
hr+2‖Ψ ‖r+1 + hmin(r+2,k)‖ρ‖r + hmin(r,k)‖ϕ‖r

)
,

(2.27)

which, using the elliptic regularity of L� is simplified to (2.19), (we omit the details),
and the proof is complete.

Below, we state some of the L∞ results, due to Wang [33], for the error Ψ − Ψ�,
based on the regularized Green’s functions approach. These are intermediate steps in
the L∞ studies that are relevant in our L2-error estimates.

Proposition 2.1 Let (Ψ, ϕ) and (Ψ�, ϕ�) be the exact solution for (2.2) and the mixed
finite element approximations in the BDM space, respectively, and assume that ϕ ∈
W 1,∞(Ωx). Then

‖Ψ −Π�Ψ ‖∞ ≤ C|log �|1/2
(
‖Ψ−Πk

�
Ψ ‖∞+� |log�|δ1k/2‖ρ−πk−1

�
ρ‖∞

)
, k ≥ 1

where δ1k is the Kronecker function. An improved version of the above estimate for
sufficiently smooth ∂Ω and k > 1 is given by

‖Ψ − Π�Ψ ‖∞ ≤ C
(
|log�|1/2‖Ψ − Πk

�
Ψ ‖∞ + �‖ρ − πk−1

�
ρ‖∞

)
. (2.28)

If in addition, ϕ ∈ Wk+2,∞(Ωx), then

‖Ψ − Ψ�‖∞ ≤ C�
k+1| log�|1/2

(
‖ϕ‖k+2,∞ + | log�|δk1/2‖ρ‖k,∞

)
. (2.29)

The estimates in Proposition 2.1 are used to derive the projection and finite ele-
ment error estimates for ‖ϕ� − πk−1

�
ϕ‖∞ and ‖ϕ − ϕ�‖∞. We use (2.29) in our

estimates.
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3 The discontinuous Galerkin method for Vlasov equation

In this section we consider the Vlasov equation (1.2), and insert the computed value
Ψh, from the previous section, for the discrete gradient of the potential function ϕ.
Thus, we study the following linearized version of the Vlasov equation: (1.4),

⎧
⎨

⎩

∂tf + v · ∇xf + Ψh · ∇vf = 0, in Ω × [0, T ],
f (x, v, 0) = f0(x, v), in Ω = Ωx × Ωv,

f (x, v, t) = 0, on Γ −
v for t ∈ [0, T ].

(3.1)

We discretize (3.1) by the discontinuous Galerkin (DG) finite element method in
(x, v), combined with the backward Euler (BE) method in t .

Remark 3.1 Note that the BE method is equivalent to a time discretization using the
DG(0), i.e. the piecewise constant approximation in time. One can show that for the
time discretization, the error of the continuous Galerkin of order one CG(1) approx-
imation, is smaller than that of the DG(0) approximation (cf [18]). In particular, the
CG(1) method converges more rapidly than the DG(0) method as the mesh is refined.
On the other hand the stability properties of the DG(0) method is exactly as that of
the BE, and hence yields better results, e.g. for parabolic problems, than the CG(1)
method.

Let now Ch := {K} = {τx ×τv} be a family of quasi-uniform partition of the phase
space domain Ω = Ωx × Ωv, with the mesh parameter h(∼ hx ∼ hv).

For the remaining part of the paper we let k be a positive integer and introduce the
triangular finite element spaces of test and trial functions as

Vh = V k
h := {w ∈ L2(Ω) : w|K ∈ Pk(K), ∀K ∈ Ch}

V
0,v
h = V

0,v,k
h := {w ∈ L2(Ω) : w|K ∈ Pk(K), w|∂K∩Γ −

v
= 0, ∀K ∈ Ch}

Ṽh = Ṽh
k := {w ∈ C([0, T ], L2(Ω)) : w(t)|K ∈ Pk(K), ∀K ∈ Ch}

W̃h = W̃ k−1
h :=

{
w ∈ C([0, T ], L2(Ωx)) : w(·, t)|τx ∈ Pk−1(τx), ∀τx ∈ T x

hx

}

S̃h = S̃k
h :=

{
u ∈ C([0, T ], [L2(Ωx)]2) : u(·, t)|τx ∈ Pk(τx), ∀τx ∈ T x

hx

}
,

where in S̃h; u · ne are continuous across all interior edges e for τx ∈ T x
hx

. Note that

the space Ṽh = C([0, T ], Vh). Similar identifications for W̃h and S̃h would make the
notation less concrete.

Next, we formulate the discontinuous Galerkin approximation of the Vlasov
eqrefDG:VPsystem1 in x, v-variables as: given the initial data f0, and an approxi-
mate potential Ψ� ∈ S̃� (computed in Section 2), find fh ∈ Ṽh such that, for all
g ∈ V

0,v
h ,

(∂tfh + Gh(Ψ�)∇fh, g + hGh(Ψ�)∇g)Ω +
∑

K∈Ch

∫

∂K−
G

[fh]g+|Gh(Ψ�) ·n| dν = 0,

(3.2)
where for (x, v) ∈ ∂K , we use the jump notation [w] = w+ − w− with

w±(x, v) = lim|s|→0
w((x, v) ± s · Gh(Ψ�)), s = (sx, sv), sx > 0, sv > 0,
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and we suppress the inner product sign “·”, e.g. Gh∇ := Gh · ∇, and (·, ·)D denotes
the scalar product over the domain D. Further we use the notation Gh(Ψ�) :=
(v, Ψ�), ∇f = (∇xf, ∇vf ) and ∂K−

G = {(x, v) ∈ ∂K : Gh(Ψ�) ·n(x, v) < 0}. Note
that the steps (i) and (ii) (see Section 1) are performed as follows: starting with Ψ�

(computed in Section 2) first we project it on the (possibly finer) mesh with parame-
ter h and then compute fh using (3.2). In practice one can choose � = h for all steps
and for the clarity of presentation in what follows we use only h.

The boundary term in Eq. (3.2) is the sum of jump terms over the inter-element
boundaries in (x, v)-variables. In case of no confusion we use ∂K− and ∂K+ for
∂K−

G and ∂K+
G , respectively.

Combining equations (3.2) and (2.6) we get the mixed discontinuous Galerkin
method for the system (1.1) in x, v-variables: find (fh, Ψh, ϕh) ∈ Ṽh × S̃h ×W̃h such
that
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(∂tfh + Gh(Ψh)∇fh, g + hGh(Ψh)∇g)Ω +
∑

K∈Ch

∫

∂K−
G

[fh]g+|Gh(Ψh)· n| dν = 0,

(Ψh, u) − (div u, ϕh) = 0,

(div Ψh, w) = (ρh, w), for all g ∈ V
0,v
h , u ∈ Sk

h and w ∈ Wk−1
h .

(3.3)
Finally, for a partition 0 = t0 < t1 . . . < tN = T of the time interval [0, T ],

with tn = nΔt we define f n := f (tn), n = 0, 1, . . . , N and apply the backward
Euler scheme in time. This gives a discrete in time formulation of (3.3). Thus, for
each n = 1, 2, . . . , N , we have a variational formulation for a modified stationary
Vlasov-Poisson system in (x, v)-domain, where data for the Poisson equation as well
as the source term (initial data) of the Vlasov equation, both are equal to the com-
puted solution of the Vlasov equation at the previous time level n − 1. Then, the
discrete system at the time level n reads as follows: given f n−1

h ∈ Vh, find first
(Ψ n−1

h , ϕn−1
h ) ∈ Sh × Wh (using the mixed method for the Poisson’s equation) and

then f n
h ∈ Vh such that

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(
(f n

h − f n−1
h )/Δt + Gh(Ψ

n−1
h )∇f n

h , g + hGh(Ψ n−1
h )∇g

)

Ω

+
∑

K∈Ch

∫

∂K−
G

[f n
h ]g+|Gh(Ψ

n−1
h ) · n | dν = 0,

(Ψ n−1
h , u) − (div u, ϕn−1

h ) = 0,

(div Ψ n−1
h , w) = (ρn−1

h , w), ∀(g, u, w) ∈ Vh × Sh × Wh.

(3.4)
Note that since f n−1

h is a piecewise polynomial, so its integral can be computed
exactly using a sufficiently high order quadrature rule. Thus, the scheme (3.4) oper-
ates as follows: given f n−1

h ∈ Vh; ρn−1
h , the quantities Ψ n−1

h and ϕn−1
h are computed

from the last two equations of (3.4). Then f n
h is computed from the first equation

of (3.4).
The first equation in the problem (3.4) can be formulated in a more concise form

as

b(Gh(Ψ
n−1
h ); f n

h , g) = L(g), ∀g ∈ V
0,v
h , (3.5)
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where b and L are, respectively, the bilinear and linear forms defined by:

L(g) : =
(
f n−1

h , g + hGh(Ψ n−1
h ) · ∇g

)

Ω
, and (3.6)

b(μ; f, g) : =
(
f + Δt(μ · ∇f ), g + hGh(Ψ n−1

h ) · ∇g)
)

+Δt
∑

K∈Ch

∫

∂K−
G

[f ]g+|Gh(Ψ n−1
h ) · n| dν. (3.7)

In contrary to b(G(ϕ); f, g), with G(ϕ) := (v, −∇xϕ), which appears in the vari-
ational formulation of the continuous problem equations (1.1) and (1.2), and is
nonlinear (ϕ depends on f ), b(Gh(Ψ

n−1
h ); f, g), with Ψ n−1

h depending on f n−1
h , is

now linear. Recall that, for the composite phase-space schemes (3.4) the final meshes
are chosen as h = hx and hv ∼ hx . Therefore, in the sequel, we shall only use h as
our phase-space parameter. Finally, we introduce the following triple norm

|||g|||2ω := ‖g‖2
Ω + hΔt‖Gh(ω) · ∇g‖2

Ω + h + Δt

2
×

×
⎛

⎝
∑

K∈Ch

∫

∂K−
G

[g]2|Gh(ω) · n|dν +
∫

∂Ω+
g2|Gh(ω) · n|dν

⎞

⎠. (3.8)

Below, we prove, L2-based, stability estimates for (3.5), at an arbitrary time step n, in
|||g|||

Ψ n−1
h

-norm. In Section 4, we shall derive the error estimates in the same norm.

3.1 L2-stability estimates

Lemma 3.1 Assume that the function g satisfies the homogeneous inflow boundary
condition: g|Γ− = 0. Then the bilinear form b(·; ·, ·) is coercive (elliptic) with respect
to |||·|||

Ψ n−1
h

-norm, i.e.

b(Gh(Ψ
n−1
h ); g, g) ≥ (1 − h/2)|||g|||2

Ψ n−1
h

, ∀g ∈ V 0
h ,

where, for simplicity, we restrict the domain of g to

V 0
h := {g ∈ L2(Ω) : g|K ∈ H 1(K), g|Γ − = 0, g is piecewise discontinuous on Ch}.

Proof Assume that Ψ n−1
h is known from the previous steps (for simplicity, in this

proof, we suppress all sub and superscripts: h and n − 1 in Gh and Ψ n−1
h ), then

b(G(Ψ);f,g) =(f, g)Ω + (f, hG(Ψ ) · ∇g)Ω + Δt(g, G(Ψ ) · ∇f )Ω

+ Δt(G(Ψ)·∇f,hG(Ψ)·∇g)Ω +Δt
∑

K∈Ch

∫

∂K−(G)

[f ]g+|G(Ψ)·n|dν,

which, with f = g, yields

b(G(Ψ ); g, g) = ∑

K∈Ch

[‖g‖2
K + (h + Δt)(g, G(Ψ ) · ∇g)K+

+Δth ‖G(Ψ ) · ∇g‖2
K + Δt

∫

∂K−
G

[g]g+|G(Ψ ) · n| dν

]

:=
4∑

i=1
Ti .

(3.9)
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Hence we only need to estimate the terms T2 and T4. Now, using the Green’s formula

(g, G(Ψ ) · ∇g)K = 1

2

∫

∂K

(G(Ψ ) · n)g2 dν

= 1

2

∫

∂K+
g2−|G(Ψ ) · n| dν − 1

2

∫

∂K−
g2+|G(Ψ ) · n| dν. (3.10)

Next, we write [g]g+ = g2+ − g−g+ to get

∫

∂K−
G

[g]g+|G(Ψ ) · n| dν =
∫

∂K−
G

g2+|G(Ψ ) · n| dν −
∫

∂K−
G

g−g+|G(Ψ ) · n| dν.

(3.11)
Combining equations (3.10), (3.11) and the identity

∑

K∈Ch

∫

∂K+
g2−• =

∑

K∈Ch

∫

∂K−
g2− • −

∫

Γ−
g2− • +

∫

Γ+
g2−•, (3.12)

we can write (note that below the added (h + Δt)-term is identically zero),

T2 + T4 =
∑

K∈Ch

[
h+Δt

2

(∫

∂K−
[g2−|G(Ψ ) · n| − g2+|G(Ψ ) · n|] dν

)

+Δt

∫

∂K−
g2+|G(Ψ ) · n| dν − Δt

∫

∂K−
g+g−|G(Ψ ) · n| dν

+(h+Δt)

(∫

∂K−
g+g−|G(Ψ )·n| dν−

∫

∂K−
g+g−|G(Ψ )·n| dν

)]

+h+Δt
2

(∫

Γ+
g2−|G(Ψ ) · n| dν −

∫

Γ−
g2−|G(Ψ ) · n| dν

)

.

By the assumption g|Γ− = 0, the identity above can be written as

T2 + T4 =
∑

K∈Ch

[
h + Δt

2

∫

∂K−
[g]2|G(Ψ ) · n| − (h + Δt)

∫

∂K−
g2+|G(Ψ ) · n| dν

+Δt

∫

∂K−
g2+|G(Ψ ) · n| dν − Δt

∫

∂K−
g+g−|G(Ψ ) · n| dν

+(h+Δt)

∫

∂K−
g+g−|G(Ψ )·n| dν

]

+ h+Δt
2

∫

Γ+
g2−|G(Ψ )·n| dν

=
∑

K∈Ch

[
h + Δt

2

∫

∂K−
[g]2|G(Ψ ) · n| − h

∫

∂K−
[g]g+|G(Ψ ) · n| dν

]

+h+Δt
2

∫

Γ+
g2−|G(Ψ ) · n| dν.

Using −[g]g+ ≥ −[g]2/2 − g2+/2, the negative term above is bounded below,

−h

∫

∂K−
[g]g+|G(Ψ ) · n| ≥ −h

2

∫

∂K−
[g]2|G(Ψ ) · n| − h

2

∫

∂K−
g2+|G(Ψ ) · n|.
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Now we use the trace estimate, see e.g. [26],
∫
∂K− g2+|G(Ψ ) · n| ≤ CK‖g‖2

K , (where
for a convex domain K; CK < 1), to obtain the bound

− h

∫

∂K−
[g]g+|G(Ψ ) · n| ≥ −h

2

∫

∂K−
[g]2|G(Ψ ) · n| − CK

h

2
‖g‖2

K. (3.13)

Inserting (3.13) in the last equality for T2 + T4 we get the estimate

T2+T4 ≥
∑

K∈Ch

[
Δt

2

∫

∂K−
[g]2|G(Ψ ) · n| − CK

h

2
‖g‖2

K

]

+h + Δt

2

∫

Γ+
g2−|G(Ψ )·n| dν.

Thus with a kick back argument and due to the presence of the small coefficients hK

and also the fact that CK < 1, the contribution from the negative term can be hidden
in the first term: ‖g‖K in the triple-norm and we get, recalling (3.9), the desired
result:

b(G(Ψ ); g, g) ≥ (1 − h/2)|||g|||2Ψ ,

and the proof is complete.

Remark 3.2 Note that the above lemma may be proved similarly for the continu-
ous case, where the appearance of the G(ϕn−1)-terms (instead of Gh(Ψ n−1

h )) would
require some more caution.

4 Error estimates

Following the standard procedure, we let f̃ n
h to be the interpolant of f with the

interpolation error denoted by ηn = f n − f̃ n
h and set ξn = f n

h − f̃ n
h , so that

en = f n − f n
h = ηn − ξn. We shall use the following well-known results:

Proposition 4.1 Assume that Ω is a sufficiently smooth domain and let the func-
tion f ∈ C1([0, T ], Wk,∞(Ω) ∩ Wk+1,2(Ω)). Then we have the interpolation error
estimates

‖η‖
L2(Ω,|Gh(Ψ n−1

h )·n|) ≤ Cv
Ψ hk+1‖f ‖k+1, max

1≤n≤N
|||ηn|||

Ψ n−1
h

≤ Cih
k+1‖f ‖k+1,

(4.1)
where Cv

Ψ = Ci |Ωv|‖Ψ ‖∞ with Ψ ∈ S and Ci is the interpolation constant.

Proposition 4.2 (Trace theorem) Suppose that K is a Lipschitz domain. Then there
is a constant CK = C|K| such that

‖w‖L2(∂K) ≤ CK‖w‖1/2
L2(K)‖w‖1/2

H 1(K)
.

Proposition 4.1 can be proved as Theorem 4.4.3 in [14], see also [24]. For a proof of
Proposition 4.2, see Brenner and Scott [9].

In the sequel we shall assume h = Δt .
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Lemma 4.1 For each n = 1, 2, . . . , N , and with ηn and ξn defined as above, there
are the positive constants c and C′ such that

|b(Gh(Ψ
n−1
h ); ηn, ξn)| ≤ ch|||ξn|||2

Ψ n−1
h

+ C′h−1‖ηn‖2
2 + C′|||ηn|||2

Ψ n−1
h

. (4.2)

Proof We use the definition of the triple norm and estimate the bilinear form as

|b(Gh(Ψ
n−1
h ); ηn, ξn)| =

∣
∣
∣

(
ηn + ΔtGh(Ψ

n−1
h )∇ηn, ξn + hGh(Ψ n−1

h )∇ξn
)

+Δt
∑

K∈Ch

∫

∂K−
G

[ηn]ξn+|Gh(Ψ
n−1
h )· n| dν

∣
∣
∣
∣
∣
∣

≤ Ch−1‖ηn‖2
2 + ch‖ξn‖2

2 + CΔt‖Gh(Ψ n−1
h )∇ηn‖2

2 + c(Δt)h2‖Gh(Ψ n−1
h )∇ξn‖2

2

+ Ch−1‖ηn‖2
2 + ch3‖Gh(Ψ n−1

h )∇ξn‖2
2 + cΔt‖ξn‖2

2

+CΔt‖Gh(Ψ n−1
h )∇ηn‖2

2+Δt

∣
∣
∣
∣
∣
∣

∑

K∈Ch

∫

∂K−
G

[ηn]ξn+|Gh(Ψ
n−1
h )·n| dν

∣
∣
∣
∣
∣
∣
.

We use the Proposition 2.1, assumptions, and inverse inequality to bound the term

‖Gh(Ψ n−1
h )∇ηn‖2 ≤ Cv‖Ψ n−1 − Ψ n−1

h ‖∞‖∇ηn‖2 + Cv‖Ψ n−1‖∞‖∇ηn‖2

≤ Cvh
−1‖ηn‖2.

Moreover, for the contribution from the boundary terms we use the trace estimate as

Δt

∣
∣
∣
∣
∣

∑

K∈Ch

∫

∂K−(G)

[ηn]ξn+|Gh(Ψ
n−1
h )· n| dν

∣
∣
∣
∣
∣
≤CΔt

∑

K∈Ch

∫

∂K−
G

[ηn]2|Gh(Ψ
n−1
h )·n| dν

+cΔt
∑

K∈Ch

∫

∂K−
G

|ξn|2|Gh(Ψ n−1
h )· n| dν ≤ C|||ηn|||2

Ψ n−1
h

+cΔt max CK

(
∑

K∈Ch

‖ξn‖2
L2(K,|Gh(Ψ n−1

h )·n|)

)1/2(
∑

K∈Ch

‖∇ξn‖2
L2(K,|Gh(Ψ n−1

h )·n|)

)1/2

≤ C|||ηn|||2
Ψ n−1

h

+ c1Δt |||ξn|||2
Ψ n−1

h

+ c1(Δt)h2‖∇ξn‖2
L2(Ω,|Gh(Ψ n−1

h )·n|)
≤ C|||ηn|||2

Ψ n−1
h

+ c2Δt |||ξn|||2
Ψ n−1

h

.

Now we may add up all η and ξ -terms in the corresponding ‖ηn‖2 or |||ξn|||
Ψ n−1

h
-

norms, use the assumption that h ≈ Δt and represent the final coefficient by a new
constant C′ to conclude that

|b(Gh(Ψ
n−1
h ); ηn, ξn)| ≤ ch|||ξn|||2

Ψ n−1
h

+ C′h−1‖ηn‖2
2 + C′|||ηn|||2

Ψ n−1
h

,

which is the desired result.

Our main result is the following, local in time, error estimate.

Theorem 4.1 Let (f n
h , Ψ n−1

h , ϕn−1
h ) ∈ Vh × Sh × Wh be the mixed discontinuous

Galerkin finite element approximation of (3.4), and (f, Ψ, ϕ) be the exact solution
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of the system equations (1.2)–(1.3) and (2.1), such that ‖∇f n‖2 + ‖∇f n‖∞ ≤ C,
ϕn−1 ∈ Wk+2,∞ for n = 1, . . . , N , and f ∈ C1([0, T ], Wk,∞ ∩ Wk+1,2). Then,
there are the positive constants C1, C2, c, independent of h, ϕ and f , but may depend
on the size of the velocity domain Ωv, such that for sufficiently small h and for each
n = 1, 2, . . . , N

|||ξn|||2
Ψ n−1

h

≤ 1

1 − ch

(
C1h

2k+1 + C2Δt‖Θn‖2
2

)
+ 1

1 − ch
‖ξn−1‖2

2,

where Θn = f n−f n−1

Δt
− f n

t = o(Δt), with o(Δt) interpreted due to the amount of
regularity of f in time.

Proof The exact solution f n at time t = tn satisfies

be(G(ϕn); f n, g) := b(G(ϕn); f n, g) −
(
ΔtΘn, g + hGh(Ψ n−1

h )∇g
)

=
(
f n−1, g + hGh(Ψ n−1

h )∇g
)

,

where, for the sake of simplicity, the right hand side is denoted by be. Hence, using
the Lemma 3.1 and (3.5), we may write

(1 − h/2)|||ξn|||2
Ψ n−1

h

≤ b(Gh(Ψ
n−1
h ); f n

h − f̃ n
h , ξn)

= b(Gh(Ψ
n−1
h ); f n

h , ξn) − b(Gh(Ψ
n−1
h ); f̃ n

h , ξn)

=
(
f n−1

h , ξn + hGh(Ψ n−1
h )∇ξn

)
− b(Gh(Ψ

n−1
h ); f̃ n

h , ξn)

= be(G(ϕn); f n, ξn) − b(Gh(Ψ
n−1
h ); f̃ n

h , ξn)

+
(
ξn−1 − ηn−1, ξn + hGh(Ψ n−1

h )∇ξn
)

=
[
be(G(ϕn); f n, ξn) − b(Gh(Ψ

n−1
h ); f n, ξn)

]

+b(Gh(Ψ
n−1
h ); ηn, ξn)

+
(
ξn−1−ηn−1, ξn+hGh(Ψ n−1

h )∇ξn
)
:=J1+J2 + J3.

Here, Lemma 4.1 gives a bound for the J2-term. J1 and J3 are combined error indi-
cators for the mixed finite element (Ψh is computed, using the DG approximated fh)
DG and BE approximations. Below, we estimate J1 and J3 separately. As for the
J1-term, using the definition of be and (3.5),

|J1| =
∣
∣
∣

(
f n + ΔtG(ϕn)∇f n − ΔtΘn, ξn + hGh(Ψ n−1

h )∇ξn
)

−
(
f n + ΔtG(Ψ n−1

h )∇f n, ξn + hGh(Ψ n−1
h )∇ξn

)∣
∣
∣

≤
∣
∣
∣

(
Δt[G(ϕn) − Gh(Ψ n−1

h )]∇f n, ξn + hGh(Ψ n−1
h )∇ξn

)∣
∣
∣

+
∣
∣
∣

(
ΔtΘn, ξn + hGh(Ψ n−1

h )∇ξn
)∣
∣
∣ := J11 + J12.
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Evidently, we may write

|J11|=
∣
∣
∣

(
Δt[G(ϕn)−G(ϕn−1)+G(ϕn−1)−Gh(Ψ

n−1
h )]∇f n, ξn+hGh(Ψ n−1

h )∇ξn
)∣
∣
∣

≤ Δt

∣
∣
∣

(
[G(ϕn) − G(ϕn−1)]∇f n, ξn + hGh(Ψ n−1

h )∇ξn
)∣
∣
∣

+Δt

∣
∣
∣

(
[G(ϕn−1) − Gh(Ψ n−1

h )]∇f n, ξn + hGh(Ψ n−1
h )∇ξn

)∣
∣
∣ .

Further, using the Hölder and Young’s inequalities, combined with the assumptions in
the theorem, the last estimate (2.29) of Proposition 2.1, and the constant contribution
from the linearized term Gh(ϕ

n−1
h ) − Gh(Ψ n−1

h ), yield

|J11| ≤ Δt‖∇x(ϕn − ϕn−1)‖2‖∇f n‖∞‖ξn + hGh(Ψ n−1
h )∇ξn‖2

+Δt‖∇x(ϕn−1 − ϕn−1
h )‖∞‖∇f n‖2‖ξn + hGh(Ψ n−1

h )∇ξn‖2

≤ CΔt‖f n − f n−1‖2‖∇f n‖∞‖ξn + hGh(Ψ n−1
h )∇ξn‖2

+Δt‖Ψ n−1 − Ψ n−1
h ‖∞‖∇f n‖2‖ξn + hGh(Ψ n−1

h )∇ξn‖2

≤ C′(Δt)2‖ξn + hGh(Ψ n−1
h )∇ξn‖2 + C(Δt)hk+1| log h|1/2

· (‖ϕn−1‖k+2,∞ + | log h|δk1/2‖ρn−1‖k,∞
) ‖ξn + hGh(Ψ n−1

h )∇ξn‖2

≤ C′(Δt)3 +
(
C1 + 1

4C11

)
Δt

(
‖ξn‖2

2 + h2‖Gh(Ψ n−1
h )∇ξn‖2

2

)

+C11(Δt)h2k+2| log h|
(
‖ϕn−1‖2

k+2,∞ + | log h|δk1‖ρn−1‖2
k,∞

)
.

As for the J12-term

|J12| ≤ Δt‖Θn‖2‖ξn + hGh(Ψ n−1
h )∇ξn‖2

≤ 1
2Δt‖Θn‖2

2 + 1
2Δt

(
‖ξn‖2

2 + h2‖Gh(Ψ n−1
h )∇ξn‖2

2

)
.

(4.3)

Next, for the term J3 we have

|J3| ≤ ‖ηn−1 − ξn−1‖2‖ξn + hGh(Ψ n−1
h )∇ξn‖2

≤ 1
2

(‖ηn−1‖2
2 + ‖ξn−1‖2

2

) + 1
2

(
‖ξn‖2

2 + h2‖Gh(Ψ n−1
h )∇ξn‖2

2

)
.

(4.4)

Now adding the estimates for the terms J11, J12, J2, J3, using the mesh com-
patibility relation Δt = h and hiding the terms involving c|||ξn|||2

Ψ n−1
h

, c‖ξn‖2
2,

and the second term on the right hand side of the estimates for |J11| and (4.3), and
1
2

(
‖ξn‖2

2 + h2‖Gh(Ψ n−1
h )∇ξn‖2

2

)
from the right hand side of (4.4), in the triple

norm on the left, we end up with the bound
(

1
2 − c′h

)
|||ξn|||2

Ψ n−1
h

≤ C11(Δt)h2k+2
(
‖ϕn−1‖2

k+2,∞ + | log h|δk1‖ρn−1‖2
k,∞

)

+C′h−1‖ηn‖2
2 + C′|||ηn|||2

Ψ n−1
h+ 1

2‖ηn−1‖2
2 + 1

2‖ξn−1‖2
2 + C2Δt‖Θn‖2

2

≤ C̃h2k+1 + 1
2‖ξn−1‖2

2 + C̃2Δt‖Θn‖2
2,

(4.5)
where in the last step we used the first and second interpolation error estimates in
Eq. 4.1, the fact that the second term on the right hand side is dominating the first
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one, and c′ = 1 +
(
C1 + 1

4C11

)
+ c. Hence, multiplying both sides of (4.5) by 2 and

dividing by 1 − 2c′h, the proof is complete.

Corollary 4.1 Under the assumptions of Theorem 4.1, there exist the constants C1
and C2, depending on T , such that

|||f N − f N
h |||

Ψ N−1
h

≤ C1h
k + C2 max

1≤n≤N
‖Θn‖2.

Proof From Theorem 4.1 we get for n = 1, 2, . . . , N ,

|||ξn|||2
Ψ n−1

h

≤ 1

1 − ch

(
C1h

2k+1 + C2Δt‖Θn‖2
2

)
+ 1

1 − ch
|||ξn−1|||2

Ψ n−2
h

. (4.6)

For the clarity of further estimations, we simplify the notation using μn :=
C1h

2k+1 + C2Δt‖Θn‖2
2 and en := |||ξn|||2

Ψ n−1
h

. Hence the inequality (4.6) takes the

form

en ≤ 1

1 − ch
μn + 1

1 − ch
en−1.

For sufficiently small h we have ch ≤ 1
2 , which gives (1 − ch)−1 ≤ e2ch. Thus

eN ≤ 1

1 − ch
eN−1 + 1

1 − ch
μN ≤ eN−1e

2ch + μNe2ch. (4.7)

Iterating (4.7) and using the fact that, by Theorem 4.1, e1 ≤ μ1e
2ch + ẽ0, with

ẽ0 = ‖ξ0‖2
2 = 0, we get

eN ≤ e4ch (eN−2 + μN−1) + μNe2ch

≤ e6cheN−3 + e6chμN−2 + e4chμN−1 + e2chμN ≤ · · · ≤
≤ e2cNhẽ0 +

N∑

n=1
e2c(N−n+1)hμn =

N∑

n=1
e2c(N−n+1)hμn.

(4.8)

Denoting τn := tN − tn−1 = (N −n+1)h, we obviously have τn = τn+1 +h. Hence,
since ch ≤ 1/2, we have 2cτn ≤ 2cτn+1+1. Further for τn+1 ≤ τ ≤ τn, we can write

e2cτn h =
∫ τn

τn+1

e2cτndτ ≤
∫ τn

τn+1

e(2cτn+1+1)dτ ≤ e

∫ τn

τn+1

e2cτ dτ.

Summing the above inequality over n we get

N∑

n=1

e2cτn ≤ e

h

(
N∑

n=1

∫ τn

τn+1

e2cτ dτ

)

= e

h

∫ τ1

τN+1

e2cτ dτ = e

h

∫ tN

0
e2cτ dτ

= e

2ch

(
e2ctN − 1

)
.

Now, using the above estimate and (4.8), we have that

eN ≤
(

N∑

n=1

e2cτn

)

max
1≤n≤N

μn ≤ e

2ch

(
e2ctN − 1

)
max

1≤n≤N
μn.
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Hence, for each n and for sufficiently small h we have the error bound

|||ξN |||2
Ψ N−1

h

≤ C0h
2k + C̃2 max1≤n≤N ‖Θn‖2

2.

Now recalling that the second interpolation error estimate, cf (4.1), is of order hk+1,
the proof is complete.

Remark 4.1 The term max1≤n≤N ‖Θn‖2 tends to zero with Δt → 0. Assuming
more regularity in time, f ∈ C2([0, T ], Wk,∞ ∩ Wk+1,2), we have for each n that
‖Θn‖2 ≤ CΔt , i.e. the optimal convergence rate for backward Euler. Using higher
order approximations in time we get the optimal result as in [2].

5 Conclusions

In this paper we presented a numerical scheme for the solution of the two-
dimensional Vlasov-Poisson equation based on a hybrid of three different numerical
approaches consisting of i) the mixed finite element approximation for the Poisson
equation combined with ii) the discontinuous Galerkin finite element method for
the Vlasov equation and iii) the backward Euler scheme for time discretization. The
choice of the BE is mainly for its unconditional stability and its compatibility with
the DG method. We proved that our composite scheme possesses good stability and
high accuracy properties and yields the optimal convergence rate.

In a forthcoming paper we shall study a posteriori error estimates of SD and DG
methods for the fully discrete problem. We also plan to study some relativistic models
of the three-dimensional problem.
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