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We study a numerical scheme for an initial- and Dirichlet boundary-value problem for

a nonlinear Schrödinger equation. For the proposed fully discrete scheme we show con-

vergence both in the L2– and H1–norms. Bibliography: 16 titles.

1 Introduction

We consider an initial- and Dirichlet boundary–value problem for a nonlinear Schrödinger equa-

tion and approximate the solution by using a local (nonuniform) two level scheme in time [1, 2]

combined with an optimal finite element strategy for the discretization in the spatial variable

based on studies outlined, for example, in [3, 4].

Let T > 0 be a final time, and let D ⊂ R
d, d = 1, 2, 3, be an arbitrary convex and sim-

ply connected spatial domain. We consider the following initial- and Dirichlet boundary-value

problem for a nonlinear Schrödinger equation: Find a function u : [0, T ]×D → C such that

ut = iΔu+ if(|u|2)u+ g(t, x) ∀(t, x) ∈ (0, T ]×D, (1.1)

u(t, ·)|∂D = 0 ∀t ∈ (0, T ], (1.2)

u(0, x) = u0 ∀x ∈ D, (1.3)

where u0 : D → C, f ∈ C3([0,∞);R), and g ∈ C3([0, T )×R
d;Ch). For this problem we consider

a fully discrete optimal space-time numerical scheme based on a spatial discretization strategy

as in [3] combined with two-level (half-step) Crank–Nicolson and Backward Euler temporal
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discretizations. (For locally Lipschitz f, g : C → C the well-posedness of the problem with a

sufficiently smooth solution requires further smoothness and compatibility assumptions, which

will be considered in the semi-discrete approximation below.)

The nonlinear Schrödinger equation is modeling several physical phenomena describing, for

example, quantum effects, with a solution that describes molecular, atomic, subatomic as well as

macroscopic systems. In particular, the cubic nonlinear Schrödinger equation (when f(x) = λx

for a real number λ) is of vital interest in applications such as nonlinear optics, oceanography,

and plasma physics. For a survey of significant mathematical results on the Schrödinger equation

we refer to an early work [5]. Previous studies related to this work can be found, for example,

in [6, 7]. The study in [6] concerns an initial value problem for a radially symmetric nonlinear

Schrödinger equation in 2 and 3 spatial dimensions discretized by a standard Galerkin method

combined with a Crank-Nicolson type time-stepping. While in [7], the authors consider an im-

plicit Runge-Kutta temporal approximation combined with the Galerkin method for the spatial

domain. In both studies, the spatial scheme is on the background and the focus of analysis is

on the time discretization. We give a brief approach to a more standard spatial discretization.

In this part, we relay on the investigations in [3], where also a second order accurate temporal

discretization based on a Crank-Nicolson scheme is studied. There is a more abstract approach

[8] that relies on the nonlinear stability theory developed in [4]. In [8], a pointwise error bound is

established and H1 optimal estimates are derived for both backward-Euler and Crank-Nicolson,

temporal, schemes. Somewhat more elaborate studies employing the discontinuous Galerkin

strategy for spatial discretization are given in [9] and [10], where the discontinuous Galerkin

method for the coupled nonlinear Schrödinger equations is considered. More specifically, while

[9] concerns the L2-stability and implementations, the work [10] is devoted to multiscale vari-

ational approach for the space-time discretization of a coupled nonlinear Schrödinger equation

and corresponding implementations. A related study, with a finite difference approach, is given

in [11] for a linear Schrödinger-type equation.

In this paper, we extend the uniform time scheme studied in [12] to the case of a two-time-

level, nonuniform, linearly implicit finite element scheme. The finite element approach for the

spatial discretization is widely studied in full detail inheriting some crucial results from the

nonlinear heat equation. Therefore, as mentioned above, the finite element discretization will

appear as a background scheme with its crucial results presented in overview form. Hence,

although fully discrete, most of the new contribution concerns temporal approximation. In

this setting, assuming the regularity of the exact solution u ∈ H2((0, t];Hr(D)), we prove the

convergence rate of order O(k2 + hr) in the L2(D)-norm and a gradient estimate with accuracy

O(k + hr−1) in the H1
0 (D)-norm. The L2-estimate is optimal. As for the gradient estimate,

comparing with the theoretical result [8], our gradient estimate is sharp as well. Whereas

compared to [12], where the spatial gradient estimate is of order O(k2 + hr−1), due to the fact

that there is no time derivative involved, our result is suboptimal.

An outline of this paper is as follows. In Section 2, we introduce some notation and prelim-

inaries necessary in the analysis. In Section 3, we introduce two related spatial discretization

strategies, study the convergence of the simplest one, and derive the optimal semi-discrete error

estimates. The results are of overview nature and are presented for the sake of completeness.

Section 4 is devoted to the study of a two-level nonuniform grid time discretization of the (back-

ground) Galerkin finite element solution obtained in Section 3. In this section, we also include

the consistency of the temporal scheme. The convergence analysis is singled out and presented
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in the concluding Section 5. Finally, in Section 6, we give a conclusion of the results of the

paper. Throughout the paper, C denotes a generic constant that might be different at differ-

ent appearances and is independent of all involved parameters and functions unless otherwise

explicitly stated.

2 Notation and Preliminaries

We employ the L2(D)-based complex inner product and the bilinear form

(u, v) =

∫

D

u(x)v(x) dx, a(u, v) =

∫

D

∇u(x)∇v(x) dx

respectively. For a multiindex α = (α1, α2 . . . , αd), αi � 0, |α| = α1 + α2 + . . . + αd, we recall

the standard Sobolev space

Hs(D) := {v : Dαv ∈ L2(D); |α| � s},

of all complex-valued functions in L2(D) having all their distribution derivatives of order at

most s in L2(D). The space Hs(D) is associated with the norm

‖v‖s = ‖v‖Hs(D) =
( ∑

|α|�s

‖Dαv‖2L2(D)

)1/2

and the seminorm

|v|s =
( ∑

|α|=s

‖Dαv‖2L2(D)

)1/2
.

Hence L2 = H0, and we denote ‖v‖ := ‖v‖L2 = ‖v‖0. Further, we define

H1
0 (D) := {v ∈ H1(D); v = 0 on ∂D}.

We also use the space Cm(D) of continuously differentiable functions on D consisting of all

complex-valued functions v with all their partial derivatives Dαv of order |α| � m being con-

tinuous in D. Further, Cm(D) presents the space of functions v ∈ Cm(D) for which Dαv is

bounded and uniformly continuous in D for |α| � m. The norm in Cm(D) is defined by

‖v‖Cm(D) = max
|α|�m

sup
x∈D

|Dαv(x)|.

In this setting, it is easy to verify that the solution u(t) := u(t, ·) satisfies the boundedness

relation in the sense that

‖u(t)‖ � ‖u0‖+
t∫

0

‖g(τ, ·)‖ dτ, 0 � t � T. (2.1)

Frequently, an abstract and extended version of the Sobolev spaces to time dependent func-

tions appear in our reference literature (cf., for example, [13]). Below, we include a brief notation.
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For a Banach space X with the norm ‖·‖X the function space Lp(0, T ;X) consists of all strongly

measurable functions u : [0, T ] → X such that

‖u‖Lp(0,T ;X) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

( T∫

0

‖u(t)‖pX dt

)1/p

, 1 � p < ∞,

ess sup
0�t�T

‖u(t)‖X , p = ∞.

Then the Sobolev space W s,p(0, T ;X) is defined by the boundedness of the norms of its elements;

namely,

‖u‖W s,p(0,T ;X) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
s∑

m=0

T∫

0

∥∥∥∥∥
∂mu

∂tm

∥∥∥∥∥
p

X

dt

)1/p

, 1 � p < ∞,

max
0�m�s

ess sup
t∈[0,T ]

∥∥∥∥∥
∂mu

∂tm
(t, ·)

∥∥∥∥∥
X

, p = ∞.

It is obvious that 0 and T can be replaced by any t1 and t2 with 0 � t1 < t2 and hence [0, T ] is

replaced by [t1, t2].

3 Spatial Discretization Scheme

The spatial discretization for the Schrödinger equation is by now a standard procedure

considered by several authors. At first glance, it can be viewed as an extension of the results for

the heat equation. This however is not a straight-forward strategy, due to the complex terms

in the nonlinear Schrödinger equation. Nevertheless, below, for the sake of completeness we

introduce two equivalent spatial discretization strategies outlined in [8] and [3] respectively:

SI. Let N be a positive integer, and for n = 1, . . . , N let {Sn
h}h∈(0,1) ⊂ H1

0 (D) be a family of

finite dimensional subspaces. Consider a partition of the time interval [0, T ] into not necessarily

uniform subintervals In := (tn−1, tn). Let kn := |In| = tn − tn−1 be the length of In. Denoting

by unh ∈ Sn
h an approximation of u(tn), we construct a vector uh = (u0h, u

1
h, u

2
h, . . . , u

n
h) ∈ Xh by

solving a discretized problem of the form

Φh(uh) = 0,

where Φh : Xh → Yh is a nonlinear mapping such that
⎧⎨
⎩

Xh = S0
h × S1

h × · · · × SN
h ,

Yh = (S0
h)

∗ × (S1
h)

∗ × · · · × (SN
h )∗.

where (Sn
h )

∗ is the dual space of (Sn
h , ‖ · ‖), n = 0, . . . , N , equipped with the norm

‖ · ‖∗ = sup
ϕ∈Sn

h

|〈·, ϕ〉|
‖ϕ‖ .

Note that we have chosen N + 1 different finite element spaces with Sn
h corresponding to a

discrete time level tn, n = 0, . . . , N . A detailed stability and convergence analysis in this is

given in [4] (cf. also the analysis in [8]).
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We focus on a simpler strategy, based on the approach [3] as outlined below:

SII. At each time level, let {Sh}h∈(0,1) be a family of finite dimensional subspaces of H0 :=

H1
0 (Ω) ∩ C(D) satisfying the approximation property

inf
χ∈Sh

{
‖v − χ‖+ h‖v − χ‖1

}
� Chs‖v‖s ∀v ∈ Hs(D) ∩H1

0 (D), 2 � s � r, (3.1)

for all h ∈ (0, 1), where s is an integer. Here, for a quasi-uniform family of partitions of D,

{Sh} is the set of all continuous functions with their real and imaginary parts being piecewise

polynomials of degree r − 1 on D, where r � 2. Then for ϕ ∈ Sh we have the following inverse

inequalities due to [14]:

‖ϕ‖L∞(D) � C

⎧⎨
⎩
h−

d
2 ‖ϕ‖, d = 1, 2, 3,

h1−
d
2 (log(1/h))1−1/d‖∇ϕ‖, d = 2, 3,

∀ϕ ∈ Sh. (3.2)

Now, using (3.1), (3.2) and assuming the existence of certain operator bounds, one can deduce

(cf. [3])

lim
h→0

sup
0�t�T

inf
ϕ∈Sh

{|u(t)− ϕ|∞ + h−
d
2 ‖u(t)− ϕ‖} = 0. (3.3)

To proceed, for h ∈ (0, 1) we define the discrete Laplacian operator Δh : Sh → Sh by

(Δhϕ, χ) = −(∇ϕ,∇χ) ∀ϕ, χ ∈ Sh,

and the elliptic projection operator Rh : H1(D) → Sh by

(∇Rhv,∇χ) = (∇v,∇χ) ∀v ∈ H1(D), ∀χ ∈ Sh.

Then (cf., for example, [15, 16]) Rh satisfies the approximation properties (3.1); namely,

‖Rhv − v‖+ h‖Rhv − v‖1 � CRh
s‖v‖s ∀v ∈ Hs(D) ∩H1

0 (D), 2 � s � r, (3.4)

and

‖Rhv(t)− v(t)‖L∞(D) � CR(log(1/h)
shs‖v‖W s,∞(D)

for all h ∈ (0, 1), where s is equal to 1 if s = 2 and d � 2 and 0 otherwise. Further,

‖∇Rhv‖ � ‖∇v‖ ∀v ∈ H1(D), ∀h ∈ (0, 1).

Now, the time continuous variational formulation for the problem (1.1)–(1.3) reads as follows:

Find u ∈ H1
0 (D) such that

(ut, χ) + i(∇u,∇χ)− i(f(|u|2)u, χ) = (g, χ) ∀χ ∈ H1
0 (D),

u(0, x) = u0(x).

The corresponding finite element problem is formulated as follows: Find uh ∈ Sh such that

(uh,t, χ) + i(∇uh,∇χ)− i(f(|uh|2)uh, χ) = (g, χ) ∀χ ∈ Sh,

uh(0, x) = u0,h(x),
(3.5)
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where u0,h is an approximation of u0 in Sh.

Spatial/semidiscrete error estimate. As we mentioned in the introduction, the finite

element schemes for the spatial discretization of the Schrödinger equation (1.1) are fully con-

sidered in the literature. This section is a brief review of two equivalent spatial discretization

strategies adequate in our fully discrete study.

As a crucial property of the finite element scheme (3.5), in analogy with (2.1), we can easily

verify that the L2-norm of the semidiscrete solution uh(t) := uh(·, t) is bounded in the following

sense:

‖uh(t)‖ � ‖u0,h‖+
t∫

0

‖g(τ, ·)‖ dτ, 0 � t � T. (3.6)

Then the existence of a unique solution uh for (3.5) would follow recalling that f is locally

Lipschitz together with the relations (3.2) and (3.6).

The convergence estimate for this semidiscrete problem is derived in [3]. Below, for the sake

of completeness we outline a concise approach to their proof.

Theorem 3.1. Assume that u ∈ Hs(D). Then the finite element solution uh(t) for (3.5)

inherits the convergence rate for an appropriately chosen approximation u0,h for u0 and yields

the optimal convergence rate; namely,

‖u0 − u0,h‖ � Chs =⇒ max
0�t�T

‖u(t)− uh(t)‖ � Chs‖u‖s.

Proof. For ε > 0 we assume that Mε = {z ∈ C : ∃(x, t) ∈ D × [0, T ] |z − u(x, t)| < ε} and

define a globally Lipschitz function fε : C → C such that fε(z) = f(z) for z ∈ Mε. Now, we

introduce an auxiliary function wh : [0, t] → Sh as the unique solution of the problem

(wh,t, χ) + i(∇wh,∇χ)− i(fε(|wh|2)wh, χ) = (g, χ) ∀χ ∈ Sh,

wh(0, x) = u0,h(x),
(3.7)

The proof is now based on first establishing the auxiliary estimate

max
0�t�T

‖u(t)− wh(t)‖ � C
(
‖u0 − u0,h‖+ hs‖u‖s

)
(3.8)

and then justifying the fact that uh and wh coincide for sufficiently small h. To show (3.8), we

use the split u−wh = (u−Rhu)+ (Rhu−wh) := ρ+ θ. Now, a combination of (1.1), (3.5), and

(3.7) yields

(θt, χ) + i(∇θ,∇χ) = −(ρt, χ)− i(fε(|wh|2)wh − fε(|u|2)u, χ), 0 � t � T,

where we used the fact that fε coincides with f in Mε. Next, we take χ = θ and consider the

real part to get

1

2

d

dt
‖θ(t)‖2 �

(
‖fε(|wh|2)wh − fε(|u|2)u‖+ ‖ρt‖

)
‖θ(t)‖.

Consequently

d

dt
‖θ(t)‖ � L‖wh − u‖‖wh + u‖∞‖wh‖+ ‖wh − u‖‖fε(|u|2)‖+ ‖ρt‖

� C(‖θ(t)‖+ ‖ρ(t)‖+ ‖ρt(t)‖+ ‖u0‖+ ‖u0,h‖) <
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where we used the Lipschitz continuity of f with Lipschitz constant L. Here, we assumed that

max(‖u‖∞, ‖wh‖∞) < C(t), which can be motivated by the stability estimates (2.1) and (3.6)

(the latter for wh replacing uh). By the Grönwall lemma, the property of the elliptic operator

Rh, and (3.4), we deduce the desired estimate (3.8). Combining the assumption of the theorem:

‖u0 − u0,h‖ � Chs and (3.8), we get

max
0�t�T

‖u(t)− wh(t)‖ � Chs. (3.9)

By (3.2), (3.4), and (3.9), for 0 � t � T and χ ∈ Sh we have

‖u(t)− wh(t)‖∞ � ‖u(t)− χ‖∞ + ‖χ−Rhu(t)‖∞ + ‖Rhu(t)− wh(t)‖∞
� ‖u(t)− χ‖∞ + Ch−

d
2 (‖u(t)− χ‖+ ‖ρ(t)‖+ ‖θ(t)‖)

� ‖u(t)− χ‖∞ + Ch−
d
2 ‖u(t)− χ‖+ Chs−

1
2 .

Recalling (3.3), we deduce

∃h0 > 0 : ∀h � h0, wh(x, t) ∈ Mε, (x, t) ∈ D × [0, T ].

For such h we have uh = wh, and the proof follows from (3.9).

4 Time Discretization Scheme

Let N ∈ N, and let {tn}Nn=0 be the nodes of a nonuniform partition of the time interval [0, T ],

i.e. tn < tn+1 for n = 0, 1, . . . , N − 1 , t0 = 0 and tN = T . Then we set kn := tn − tn−1 for

n = 0, 1, . . . , N and consider the following two time-step numerical scheme:

Step 1. We set

U0
h = u0,h,

where u0,h = Rhu0.

Step 2. For n = 1, 2, . . . , N we first find U
n− 1

2
h ∈ Sh such that

⎛
⎝U

n− 1
2

h − Un−1
h

kn/2
, χ

⎞
⎠ =i

⎛
⎝∇U

n− 1
2

h +∇Un−1
h

2
,∇χ

⎞
⎠

+ i

⎛
⎝f(|Un−1

n |2)U
n− 1

2
h + Un−1

h

2
, χ

⎞
⎠+ (g(tn−1, ·), χ)

for all χ ∈ Sh and then find Un
h ∈ Sh such that

(
Un
h − Un−1

h

kn
, χ

)
=i

(
∇Un

h +∇Un−1
h

2
,∇χ

)

+ i

(
f(|Un− 1

2
h |2)U

n
h + Un−1

h

2
, χ

)
+

(
g(tn− 1

2
, ·), χ

)
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for all χ ∈ Sh.

Consistency. Below, we show the consistency of the scheme defined at step 2. To this

approach, for n = 1, 2, . . . , N , we define rn−
1
2 and rn by

un−
1
2 − un−1

kn/2
=iΔ

(un− 1
2 + un−1

2

)
+ if(|un−1|2)u

n− 1
2 + un−1

2

+ g(tn−1, ·) + rn−
1
2

(4.1)

and

un − un−1

kn
=iΔ

(un + un−1

2

)
+ if(|un− 1

2 |2)u
n + un−1

2

+ g(tn− 1
2
, ·) + rn

(4.2)

respectively, where un = u(tn, ·) for n = 0, 1, . . . , N . Then we have the following estimates for

rn−
1
2 and rn:

Proposition 4.1. Assume that there is a constant C1 such that

max
(
‖∂tu‖∞, ‖∂2

t u‖∞, ‖Δ∂tu‖∞
)
< C1. (4.3)

Then

‖rn− 1
2 ‖ � Ckn.

If, in addition to (4.3), there is a constant C2 such that

max
(
‖∂3

t u‖∞, ‖Δ∂2
t u‖∞

)
< C2, (4.4)

then

‖rn‖ � Ck2n.

Proof. We start by proving the second assertion. Subtracting the Schrödinger equation at

time t = tn− 1
2
from Equation (4.2), we have

rn =
un − un−1 − knu

n− 1
2

t

kn
− iΔ

(un + un−1 − 2un−
1
2

2

)

− if(|un− 1
2 |2)

(un + un−1 − 2un−
1
2

2

)
:= J1 − J2 − J3.

We estimate each ‖Ji‖, i = 1, 2, 3, separately. For this purpose we expand un and un−1 in

the Taylor series about tn− 1
2
of degree 2 for J1 and of degree 1 for J2 and J3. As for J1, by

cancellations in the Taylor expansions we end up with

J1 =
1

6kn

tn∫

t
n− 1

2

∂3
t u(t, ·)(tn − t)2 dt− 1

6kn

t
n− 1

2∫

tn−1

∂3
t u(t, ·)(tn−1 − t)2 dt.
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Since (tn − t)2 � k2n/4 on (tn− 1
2
, tn), likewise (tn−1 − t)2 � k2n/4 on (tn−1, tn− 1

2
), we use (4.4) to

get

‖J1‖ � kn
24

tn∫

tn−1

‖∂3
t u(t, ·)‖ dt � Ck2n.

Similarly,

J2 =
iΔ

4

( tn∫

t
n− 1

2

∂2
t u(t, ·)(tn − t) dt−

t
n− 1

2∫

tn−1

∂2
t u(t, ·)(tn−1 − t) dt

)
,

where, using (tn − t) � kn/2 on the interval (tn− 1
2
, tn) and (tn−1 − t) � kn/2 on (tn−1, tn− 1

2
)

together with (4.4), we find

‖J2‖ � kn
8

tn∫

tn−1

‖Δ∂2
t u(t, ·)‖ dt � Ck2n.

For J3 we have

J3 =
i

4
f
(
|un− 1

2 |2
)( tn∫

t
n− 1

2

∂2
t u(t, ·)(tn − t) dt−

t
n− 1

2∫

tn−1

∂2
t u(t, ·)(tn−1 − t) dt

)
.

Therefore, using (4.3) combined with the assumption on f , we have

‖J3‖ � Ckn

tn∫

tn−1

‖∂2
t u(t, ·)‖ dt � Ck2n.

Consequently, we have proved the second assertion

‖rn‖ � Ck2n.

The proof of the first assertion follows a similar path. However for the sake of completeness

we include it as well. This time, we subtract the Schrödinger equation at the time level t = tn−1

from the equation (4.1), which yields

rn−1/2 =
un−1/2 − un−1 − kn

2 un−1
t

kn/2
− iΔ

(un−1/2 − un−1

2

)

− if(|un−1|2)
(un−1/2 − un−1

2

)
= S1 − S2 − S3.

Below we estimate the norms ‖Si‖, i = 1, 2, 3, by using the Taylor expansion of un−1/2 about

tn−1, of order 1 for S1 and order 0 for S2 and S3. For S1 we have

S1 =
1

kn

tn−1/2∫

tn−1

∂2
t u(t, ·)(tn−1/2 − t) dt.
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Using (4.3), we deduce

‖S1‖ � 1

2

tn−1/2∫

tn−1

‖∂2
t u(t, ·)‖ dt � Ckn. (4.5)

For S2 we have

S2 =
iΔ

2

tn−1/2∫

tn−1

∂tu(t, ·) dt,

which, by (4.3), can be estimated as

‖S2‖ � 1

2

tn−1/2∫

tn−1

‖Δ∂tu(t, ·)‖ dt � Ckn. (4.6)

Finally, we have

S3 =
i

2
f
(
|un−1|2

) tn−1/2∫

tn−1

∂tu(t, ·) dt,

Once again using (4.3), we can estimate S3 as

‖S3‖ � 1

2
‖f

(
|un−1|2

)
‖

tn−1/2∫

tn−1

‖∂tu(t, ·)‖ dt � Ckn. (4.7)

Summing up the estimates (4.5), (4.6), and (4.7), we obtain the first assertion of the theorem

and the estimate for rn−1/2. The proof is complete.

5 Convergence Analysis

In this part, we rely on the result of [12].

Lemma 5.1. Let u1, u2 ∈ C(D), and let g ∈ C1([0,∞);R). Then

‖g (|u1|2)− g
(|u2|2) ‖ � sup

x∈I(u1,u2)
|g′(x)|(‖u1‖∞ + ‖u2‖∞)‖u1 − u2‖

with I(u1, u2) := [0,max{‖u1‖2∞, ‖u2‖2∞}].
Now, we are ready to formulate the main result of this paper.

Theorem 5.1. Let en := Un
h − un be the error at the time level t = tn. Assume that u

satisfies the conditions (4.3) and (4.4). Then there is a constant C such that

‖en‖ � C(k2 + hr),

and

‖∇en‖ � C(k + hr−1),

with k := max1�n�N kn.
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Proof. We start by proving the L2 estimate. For this purpose, we rely on the classical

approach and split the error en into the Ritz projection error at the time level n and the error

between the fully approximate solution Un
h and the Ritz projection:

en := Un
h − un = (Un

h −Rhu
n) + (Rhu

n − un) =: θn + ρn.

We invoke the standard estimate for the Ritz projection error ρn from the theory and focus on

the estimates for θn. Note first that θn satisfies the equation(
θn − θn−1

kn
, χ

)
=− i

(
∇θn + θn−1

2
,∇χ

)
−

(
ρn − ρn−1

kn
, χ

)

+ i(ωn, χ)− (rn, χ),

(5.1)

with

ωn = f
(
|Un−1/2

h |2
)Un

h + Un−1
h

2
− f

(
|un−1/2|2

)un + un−1

2
.

Choosing χ = θn + θn−1 leads to

‖θn‖2 − ‖θn−1‖2 =− ikn
2

‖∇(θn + θn−1)‖2 − (
ρn − ρn−1, θn + θn−1

)
+ ikn(ω

n, θn + θn−1)− kn(r
n, θn + θn−1).

It is obvious that the first term on the right-hand side above is purely imaginary. Taking the

real part of the other terms on the right-hand side, we end up with

‖θn‖2 − ‖θn−1‖2 =− Re
(
ρn − ρn−1, θn + θn−1

)
− kn

[
Im (ωn, θn + θn−1) + Re (rn, θn + θn−1)

]
.

(5.2)

For the first term on the right-hand side we use the mean value theorem together with (3.4) to

get the estimate

|(ρn − ρn−1, θn + θn−1
)| � Cknh

r
(‖θn‖+ ‖θn−1‖) . (5.3)

The estimate for rn was derived in the consistency section. It remains to estimate ωn. To do

so, we split

ωn = ωn
1 + ωn

2 ,

where

ωn
1 :=

(
f
(
|Un−1/2

h |2
)
− f

(
|un−1/2|2

))Un
h + Un−1

h

2
,

ωn
2 := f

(
|un−1/2|2

)(en + en−1

2

)
.

To estimate ωn
1 and ωn

2 , we assume that there exists δ > 0 such that

sup
t∈[0,T ]

‖u(t, ·)‖∞ +max
n

‖Un
h ‖∞ < δ.

By Lemma 5.1, we have the estimates

‖ωn
1 ‖ � δ sup

x∈[0,δ2]
|f ′(x)| ·

(
‖Un−1/2

h ‖∞ + ‖un−1/2‖∞
)
‖Un−1/2

h − un−1/2‖

� Cδ2‖en−1/2‖. (5.4)
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We also have

‖ωn
2 ‖ � C̃

(
‖en‖+ ‖en−1‖

)
, (5.5)

where

C̃ =
1

2
sup

x∈[0,δ2]
|f(x)|.

Inserting (5.3), (5.4), (5.5) and the estimate for rn into (5.2), we get

‖θn‖2 − ‖θn−1‖2 �
(
Cknδ

2‖en−1/2‖+ C̃kn
(‖en‖+ ‖en−1‖)+ Ck3n + Cknh

r
)

×
(
‖θn‖+ ‖θn−1‖

)
.

Consequently,

‖θn‖ − ‖θn−1‖ � Cknδ
2‖en−1/2‖+ C̃kn

(‖en‖+ ‖en−1‖)+ Ckn(k
2
n + hr)

� Cknδ
2‖θn−1/2‖+ C̃kn

(‖θn‖+ ‖θn−1‖)+ Ckn(k
2
n + hr). (5.6)

Hence

(1− C̃kn)‖θn‖ � Cknδ
2‖θn−1/2‖+ (1 + C̃kn)‖θn−1‖+ Ckn(k

2
n + hr).

A similar argument for θn−1/2, using the estimate for rn−1/2, reads as follows:

(
1− C̃kn

2

)
‖θn−1/2‖ �

(
1 +

C̃kn
2

+ Cknδ
2
)
‖θn−1‖+ Ckn(kn + hr). (5.7)

To proceed we assume that C̃k < 1. Then a combination of (5.6) and (5.7) gives that

‖θn‖ − ‖θn−1‖ � C̃kn‖θn‖+ Cn‖θn−1‖+ Ckn(k
2
n + hr),

where

Cn :=
(Cknδ

2(1 +
˜Ckn
2 + Cknδ

2)

1− ˜Ckn
2

+ C̃kn

)
.

Relabeling n to j and summing over j = 1, . . . , n, we thus get

‖θn‖ − ‖θ0‖ �
n∑

j=1

(
‖θj‖ − ‖θj−1‖

)
�

n∑
j=1

(
C̃kj‖θj‖+ Cj‖θj−1‖+ Ckj(k

2 + hr)
)
.

Hence

(1− C̃k)‖θn‖ � Ctn(k
2 + hr) + (1 + C1)‖θ0‖+

n−1∑
j=1

[C̃kj + Cj+1]‖θj‖.

Then

‖θn‖ � Ctn(k
2 + hr)

1− C̃k
+

1 + C1

1− C̃k
‖θ0‖+

n−1∑
j=1

C̃kj + Cj+1

1− C̃k
‖θj‖,
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so that from the discrete Grönwall inequality we get

‖θn‖ � Ctn(k
2 + hr)

1− C̃k
exp

[ 1 + C1

1− C̃k
+

n−1∑
j=1

C̃kj + Cj+1

1− C̃k

]
. (5.8)

Thus, for the error en we have the L2 estimate

‖en‖ � ‖θn‖+ ‖ρn‖ � Ctn(k
2 + hr).

Combining (5.7) and (5.8) we also have

‖θn−1/2‖ � Ctn(k
2 + hr),

and therefore we have the same L2 estimate for the error en−1/2 in the intermediate time level:

‖en−1/2‖ � Ctn(k
2 + hr).

It remains to derive the L2-estimate for the gradient of the error ‖∇en‖. Even here, the estimate

for ‖∇ρn‖ is an approximation theory result, and we need to give an error bound for ‖∇θn‖.
For this purpose we choose χ = θn − θn−1 in (5.1), which yields

1

kn
‖θn − θn−1‖2 = − i

2

(‖∇θn‖2 − ‖∇θn−1‖2)+ 2i Im (∇θn,∇θn−1)

−
(
ρn − ρn−1

kn
, θn − θn−1

)
+ i(ωn, θn − θn−1)− (rn, θn − θn−1).

Taking the imaginary part of the above relation, we get

1

2

(‖∇θn‖2 − ‖∇θn−1‖2) = − Im

(
ρn − ρn−1

kn
, θn − θn−1

)

+Re (ωn, θn − θn−1)− Im (rn, θn − θn−1).

From the Cauchy–Schwarz inequality and the triangle inequality it follows that

‖∇θn‖2 − ‖∇θn−1‖2 � 2
(‖θn‖+ ‖θn−1‖)

(∥∥∥∥ρ
n − ρn−1

kn

∥∥∥∥+ ‖ωn‖+ ‖rn‖
)
.

Note that we already have estimated the terms in the second factor on the right-hand side. For

the θ-terms we use the Poincaré inequality. Therefore,

‖∇θn‖2 − ‖∇θn−1‖2 � C(k2 + hr)
(‖∇θn‖+ ‖∇θn−1‖) .

Canceling common factors, we get

‖∇θn‖ � ‖∇θn−1‖+ C(k2 + hr).

Applying the above inequality iteratively, we find

‖∇θn‖ � C(k + hr−1) (5.9)

under the assumption that k is proportional to h. The desired estimate for ‖∇en‖ follows from

(5.9) and (3.4).

Remark 5.1. Regarding the estimate of ‖∇en‖, one would expect an order of O(k2+hr−1)

since we only have spatial derivatives (cf. [12]). However, in [8] (and here) an optimal error

estimate for the H1-norm of order O(k+ hr−1) is derived. On the other hand, compared to the

gradient estimate in [12], our H1-norm estimate is suboptimal.
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6 Concluding Remarks

In this paper, we considered a discretization of a nonlinear Schrödinger equation based on

the two-level time stepping scheme with underlying finite element spatial discretization. The

nonlinearity is of cubic type with crucial applications. In the spatial discretization, we follow

the strategy of [3] based on the classical estimates in [16] and [15]. We also briefly outline

a more abstract form of a time-space scheme by [8] and its convergence properties derived in

[4]. The crucial steps in the spatial discretization include the split of the error via L2, H1

and elliptic projections and then proceed with the argument of dominating the error between

approximation and projection with that of the projection error (an error between the exact

solution and corresponding projection). Here, both solution and gradient estimates are derived.

Then these results are further used in half-steps in time following the results [12] and the

references therein. In this part, we prove the consistency of the numerical scheme, derive stability

estimates, and establish the convergence analysis. In the temporal discretization, we considered

the L∞(L2) approximations. The L2 results are optimal of accuracy O(k2 + hr) due to the

maximal available regularity of the exact solution, where h and k are spatial and temporal

mesh parameters respectively. For the gradient estimates we prove the convergence of order

O(k + hr−1).
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14. E. Süli, “Convergence and nonlinear stability of the Lagrange-Galerkin method for the
Navier-Stokes equations,” Numer. Math. 53, No. 3, 459–483 (1988).

15. V. Thomée, Galerkin Finite-Element Methods for Parabolic Problems, Springer, Berlin etc.
(2006).

16. A. H. Schatz and L. B. Wahlbin, “On the quasi-optimality in L∞ od the H1-into finite
element spaces,” Math. Comput. 38, 1–22 (1982).

Submitted on October 29, 2018

247


	Abstract
	1 Introduction
	2 Notation and Preliminaries
	3 Spatial Discretization Scheme
	4 Time Discretization Scheme
	5 Convergence Analysis
	6 Concluding Remarks
	Acknowledgments
	References



