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Summary. — In this paper we study the discontinuous Galerkin (DG) finite el-
ement method for approximate solution of the mono-energetic, critical transport
equation in an infinite cylindrical domain  in R® with a polygonal convex cross-
section 2. Assuming that all involved functions are constant in the direction of the
symmetry axis of the cylinder, the problem is reduced to R? by projection along the
symmetry axis. By embedding between Sobolev and Besov interpolation spaces, see
[3], we derive superconvergence estimates for fully discrete scalar flux and the critical
eigenvalue. The velocity discretization rely on a special quadrature rule developed
in [1]-[2]. For the critical eigenvalues studies see, e.g. [5]-[7]

PACS 28.20.Fc — Neutorn absoprption.
PACS 28.20.Gd — Neutron diffusion.
PACS 28.20.Cz — Neutron scattering.

1. — Description

The critical eigenvalue is a positive parameter A for which there exists a nonnegative
function ¢ = (z,v) satisfying the, so-called, critical transport equation:

1
—0-Vap=Bp + | ovple)duw) + 5 [ orpte. i) =0,

p=00nT":={(z,0) €N xV: v-n(z) <0},

(1)

where the space variable z is in an open subset Q2 C R?, the domain of the core of the
reactor, and the velocity variable v is in a closed subset V' C R?, the admissible velocity
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domain. Further, I'~ denotes the inflow boundary and n(x) is the outward unit normal at
the point z € 0Q. The kernels o5 := o5(z,v,v') and o5 := of(x,v,v") describe the pure
scattering and fission, respectively, while ¥ := X(z,v) represents the total cross-section.

In this note we study the numerical solution of the mono-energetic critical equation in
a cylindrical domain  in R? with a polygonal convex cross-section 2. Thus the velocity
domain is the unit sphere S? ¢ R3. All involved functions are assumed to be constant in
the direction of the symmetry axis of the cylinder. This allows us to reduce the problem
to R? by projection along the symmetry axis of the cylinder. Therefore we study the
mono-energetic version of the (1) in a bounded convex polygonal domain 2 C R?, where
due to the projection the integration over velocity domain D C R?2 is now associated by
the measure (1 — |5|?)~/2dy. Furthermore, we assume that the kernels satisfy

S(z,0) = 2(Jv]), os(z,0,0') =04(v,0") and op(z,v,0") = op(lv], V') = 1.

Since ¥ and oy depend only on |v|, thus for the mono-energetic model they are constant.
We may normalize o; to 1, and use the same notation for A by a corresponding “stretch”
mapping A = Aoy

2. — The continuous problem

By geometry the projection of the mono-energetic version of the critical equation (1)
onto the cross-section (2 of (2 satisfies the equation

dn 1 dn
—p - Vap — T +/ os(m,me(@,n) ——= + —/ p(x,n) ———= =10
(2) D VI-TnP  AJp V1=nl?
o=00nT" :={(z,u) €N xD: p-n(z) <0}
In contrary to the mono-energetic version of (1), where u € S? = |u| = 1, the projected

equation (2) allows small velocities as well and we have |u| < 1. cross-section and all
kernels are space homogeneous. Our functional space setting will be

1

V1= [uP

(3a) LP (2 x D)= L"(Q x D, w dxd,u), 1<p< oo, w(p) =
(3b) WP(Qx D) = {(p €I2(QAx D), - Vap € L2 (Q x D)},

The total cross-section ¥ is split into the scattering (X,) and fission () cross-
sections: ¥ =X, + X, with ¥, > 0 and ¥y > 0, and X, is given by

dn

(4) ESZ/DUS(UJ,U/)\/TW.

Further, using the notation Cs(p) := X,0(x, u) — / os(u,n)p(z,n)w(n) dn, we also get
D

(Cscp(.,u), |‘/’("“)|p_2‘p("“))w(u> >0, 1<p< oo Thatis, ¥ ¢ € L?(Q x D)

plz,w) dp (@, p)dp  p(z,m)dy
(5) / ES% dx Z US(MJU)'SO(‘IE;MNP 2 ( ) . A ( ) . dz.
QxD 1—|pl QxD?2 \/1 —|ul \/1 —In]
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To continue let L? := L? (2 x D), and define the operators S, K, Ky and A by

S =—p-Vep— o, D(S)={p:pe€lLkl, p-Vopell, p=00onT_},
dn dn

Ksp(z,p) = /D as(u,n)p(z, n)ﬁ, Krp(x,pu) = /D o(, n)ﬁ,
Ap = Sp+ Ky, D(A) = D(S).

Note that the operators K, and Ky are bounded on LE (2 x D). We also recall that
the operators S and A generate strongly continuous semigroups on L2 (© x D) denoted
by {et5, ¢+ > 0} and {e*4, ¢t > 0}, respectively. In the sequel, we may replace the
conservative assumption (4) by a somewhat stronger one, viz 3§ > 0 such that

dn

74_
V1=nl?

In the numerical approximations we combine a quadrature rule for the angular variable
with a discontinuous Galerkin finite element scheme for the spatial discretization.

(6) S, > /D oa(11, 1) 5.

3. — The semi-discrete problem - Quadrature rule

Let A, = { Ni}?zl C D be a discrete set of quadrature points associated with the
quadrature weights w,; and introduce the discrete operators K* and K?, approximating
the operators K and Ky, respectively

(7a)  Kio(w,p):= Y os(u,n)e(@,nw, N/ s (1, m)e(z,n) i

neA, D V 1- |77|2,

) Kpplwn) = Y oy~ [ plan— 2

nEnn D V1=

We also introduce the semi-discrete [2, (An; L2(Q)) space associated with the norm

(3w [ o)™

HEA,

Note that the operators K[' and K} are bounded on I2,(A,; L?(2)) and we have

K2 < sup (o0Gum) (D0 wn)s  IEFI< (D wy)-

2
(n,mED nEA, nEA,

More specifically writing 7 € A in polar coordinates as = r(cosf,siné), r = |n| we
may choose a uniform quadrature rule on § with a uniform weight of 27/M, where M is
the number of quadrature points in 6 (unit circle). Here, for the radial quadrature, we
choose a particular Gauss rule on (0,1) with the quadrature points and weights given by
(re, Ax), k=1,..., N, where N is the number of quadrature points in r € (0,1). We let
n = M N be the total number of quadrature points on D, then we can prove that
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Lemma 3.1. Let f € Cg:g(D,Ll(Q)), then 3 constants C > 0 and small e1 > 0,
dn " 1 1

/D f(ﬂfalU?)TW - i:zlf(%u,m)wm < C(W + W)”f”Ll(Q)a

where Cg:g(D,Ll(Q)) denotes the space functions, defined in D x Q that are in Li(Q)

and are continuously differentiable 4 times in r and twice in 6.

Lemma 3.2. Assume (6) then for sufficiently large n and all u € D we have that

®) S, > max (Y (os(mmwy , D ou(un)wy).

NEA, NEAR

The proof is based on (6) and Lemma 1 which for sufficiently large n, yields

as(n, pw)dn

as(n, ) dn
Y oampw, - | S|+ ST

neA, D 1- |”7|2

2: 030%}0“% <

neEA,

IA

C(%qtﬁ)—(ﬂzs < 3,

4. — The Fully-Discrete Problem - Discontinuous Galerkin method

Let {Cr} be a family of quasiuniform triangulations C;, = {K} of Q indexed by the
parameter h, the maximum diameter of triangles K € Cp and introduce the finite element
space V}, of functions which are allowed to be discontinuous over enterelement boundaries:

Vi = {v € L*(Q): U‘K is linear, VK € Ch}.

Given p € D and g € Ly(f), we define Tl*g € V;, as the solution u(., u) € V}, for

Z [(,u.Vu + Zu,v) +/ [u]vg|p - n|da] = / gudz, YveV,
9) Kecy, oK - @

u=0, on T, :={zedQ: p-n(z)<0},
where
(u,v)K:/ wvdz, OK_={z€dK: p-n(z) <0},
K
[v] = vy —v_, vi(z) = lim v(z + sp) for z € OK,
s—04

n = n(z) is the outward unit normal to K at z € 0K, do is the surface measure on 0K.
To continue we need to introduce the adjoint operator (T*)" of T*. For a given y € D

and f € L*(Q), we define (Tﬁ‘)* f € V}, as the solution u(-, u) € V3, of the dual problem

Z [(—u-Vu+Eu,v)K—/a

[w]v_|p - n|da] =0, Yv € V,
Kecy K-

u =g, on TH:={zed: p- n(z)>0}, (gis given),
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(T")" is well defined adjoint of the operator T in L2((). We simplify the notation by
introducing T = (—S)~! on L?. Then the critical eigenvalue problem is formulated as

1

o—TKsp= b\

TKfcp.

The fully discrete scheme: Find the parameter A! > 0 and a nonnegative function
@l €12 (An; L3(Q2)) such that

(10) { on — ThKon = s ThK oy, A
Tho(e,p) =Tro(p) € Vi, VYpelAn, Veel(An;L3(Q).

According to [1]-[3], the discrete operator T)" is bounded on 12 (Ay; L*(Q2)), i.e. A and
ol (., 1) € Vi, Yu € A, are solution of the fully discrete critical eigenvalue equation

r

> [(M-V¢Z+E¢Z,U)K+/3K (il |1 - mldo] —/Qv(w) > os(u,)en (@, mwy

KeCy neA,
1
< —/\—h/gv(w) Z ot (z,n)w, dz =0, Yue A,, YveV,

n€An
( u=0 onT,:={z€d: p-n(r) <0}, Vue A,

Lemma 4.1. For sufficiently large n, the operators TT’}KJ? and TPK™ are uniformly bounded
on 12 (An; L*(2)). Moreover, there exists a constant 0 < o < 1 such that |TPK?| < a.
Consequently the operator (Id — TMK?) is invertible on 12 (An; L*(2)) and the inverse

operator (Id — ThK™) s uniformly bounded.
Proof. Let 7 € 12(A,; L*(Q)) and u = TPK?7. For a given p € A, it follows from the

definition of T, with the choice of u as a test function in (9), that

(11) /Qqudez Z [(u-VU—l—Eu,u)K—I-/BK [u]uy|p - n|do|.

KeCy -

Let £ = UOK, 0K C Q\ 09, i.e. £ is the set of all the sides of the triangles K € Cp,
which are not included in 9. By using Green’s formula we get that

S [(n- V) [ el niar]

KeCp -
1
= ) twenluera = [ penlfusPar+ [ e nfr]
Kec, 0K+ OK- OK-
1 1
= Y [5f el g [ penliusPar— [ penfucugr]
oK_ce - JOK- OK- OK-

1 2 1 ) 1/ \
9 ’ - = 5 : = . _ > 0.
+2 /F;f |N n“u | dl Z [2 /BK_ |N TL| [u] dF] + > - |/J/ n||u | dl’ >0

OK_€e&
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Consequently, summing (11) over A,,, it follows that
(12) Z / w(z, ) K7 7(z, p)de wy, > X Z / [u(z, pw)|*dz w,,.
HEA, Q HEA, Q
On the other hand by the repeated use of Cauchy-Schwartz inequality, and Lemma 3,

> [ uewkirend = 3 [ @ 3 onnre e, ds

HEA, HEA, nEA,

< [ 3 el X ownw)” x (X omnirnPu,) w,ds
REA, neA, neEA,
([ % 5 menommnis) " x ([ 52 52 ourtenuunis)

REA, NEA, HEAL, NEA,

1/2 1/2
<=(/f 3 e iPunda) /| 3 refunds)

Hence from the inequality (12) we deduce that

([ X wemrw) < ([ 3 renre)”

HEA, nEA,

Therefore the operator norm of T K is strictly smaller than ;%" < 1. A similar, but
simpler, calculus yields || Ty K7|| < 71,

Lemma 4.2. Given u in D, the operator TL’} is positive on L?(Q).

Proof. For € D, let u = Tlfg, where g € L?(f2) is nonnegative. We write u = ut — u~
with 4~ = max(0, —u) and u* = max(0,u). Choosing u~ as a test function in (8), and
using the fact that the supports of u* and v~ are disconnected, we get

19 [ wgde=— 3 [(uVu +Sum )+ [ lulucnlao]

KeCp

We assume that 4~ has a non-empty support and proceed as in the proof of lemma 3 we
can prove using the Green’s formula that (we omit the details),

- Z [(,u-Vu7+Eu*,u*)K+/ [u”Jui |- n|dl < 0.
KeCy oK
But / u”gdz > 0, therefore, Equality (13) implies that v~ = 0.
Q
We are now in position to solve the spectral problem (10).

Theorem 4.1. There exists a real and positive eigenvalue \! associated with a unique
normalized nonnegative eigenfunction ol € 12 (An;L2 (Q)) such that

1
oh = ThKop = ET#K?SOZ-
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Proof. To simplify the notation let B := (Id — TT’}KQ)_ITT’}K}‘. By Lemma 3 we have

B=(Id—TMKD) 'TIKP = (ThK!)"TrK?.
m>0

By Lemma 4 the operator B is positive. Since T"} and (T"])* have finite dimensional
ranges, and (Id — TZ}KQ)f1 is bounded, we deduce that B and its adjoint B* have
also finite dimensional ranges. Consequently, (ker B)J' = R(B*) has finite dimensional

range, and the operator B acting from (ker B) ™ into R(B) is a bijective positive matrix.
Then the spectral radius of B is a positive eigenvalue, not necessary simple, associated
with a unique normalized nonnegative eigenfunction, i.e. ¢! € 12 (A,; L*(12)), (see also

[51-[7])-

Theorem 4.2. Let u and uy be the solutions of (2) and (9), respectively. Then we have
(14) l|u—ul|| < Ch' == |ul| grss2-< (o V smalle > 0.

Proof [sketchy]. The geometry of Q (convex polygonal) yields to a solution uw with the
first partial derivatives depending on the outward unit normal n to 012, i.e. a linear
combination of Heaviside functions. Thus, by a trace estimate, the maximal available
regularity of v is u € H3/27¢(Q) and hence the optimal convergence order for DG in this
case is O(h'=¢). To deal with such fractional derivatives, we need embeddings between
Sobolev and Besov spaces. We skip these technical details and refer the reader to the
methodology strategy developed in [3].

5. — Eigenvalue estimates

Below we show that the largest eigenvalue A\~! of the transport operator T, (which
makes (I — A\T)~! singular), can be found more accurately than the pointwise scalar
flux. Observe that, cf [2] the kernel of the integral operator T is symmetric and positive.
Hence T is self-adjoint (on L3(€2)), and thus has only real eigenvalues. Furthermore, by
the Krien-Rutman theory, its largest eigenvalue is positive and simple. We prove that

Lemma 5.1. Let K, k, and k! be the largest eigenvalues of the operators T, T,, and T},
respectively. Then for any € > 0 and 1 > 0, and any arbitrary quadrature set @), there
are constants C = C(e1, k) and C(Q) = C(e, k, Q) such that for sufficiently large N and
M (even) and sufficiently small h,

1 1
(154) lls = rall <C (m + W) ;

1 1 .
(15b) Ik = khll < O (57 + 7= ) + C@B .

These estimates, are rather involved, and follow from the results in [1]- [3]. The assump-
tion on the number of angular quadrature points M (even), makes the quadrature set A
symmetric, so that, u € A implies —py € A. Then it follows that T, is self-adjoint and
thus its eigenvalues are real, which is crucial in the proof of (15b).
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Remark 5.1. In the two-dimensional case with Q& C R? and the velocities in the unit
circle S. Using a quadrature rule with N discrete points on a quadrature set ) C S, and
by a duality argument for spatial discretization, it is possible to show that for the largest
eigenvalue ky, of the corresponding semidiscrete operator Ty, there exists an eigenvalue
kR, for the fully discrete operator T} such that

(16) len — K3 ll < C@QRB*.

Whereas, for discrete ordinates with N uniformly distributed points on S, the optimal
result, based on error analysis for DG for scalar flux estimates in [4], yields

(17) sy — will < ChY <.

Similarly, in the case of infinite cylindrical domains using Theorem 4. 2 and cf [4], we
get

(18) 1K — kipll < ChI72,

here k,, and k" are the largest eigenvalues of T}, and T respectively, n is the number of
discrete points on the unit disc and the constant C is independent of the quadrature set.
Combining (15a) and a duality argument applied to (18) gives (15b).

Concluding remarks. We present a mathematical framework that picks up the maxi-
mal available regularity of the exact solution and yields an optimal convergence for the
DG method for transport equation. In eigenvalue estimates (15b), if the quadrature
set Q C D is properly chosen, so that C(Q) does not cause a decay on efficiency of
the scheme, then to obtain sharper fully discrete eigenvalue estimates, a change of the
compatibility concept; i.e. the condition h ~ %, is necessary. The optimal relations
h = h(N), as well as M = M(N), in the above estimates should be chosen in such a
way that the contributions of the spatial and angular errors, to the global error, be of
the same order of magnitude. Omitting € and &1 powers of h and M, respectively, we
conclude that in the case of the infinite cylindrical domains, with the duality argument
h ~ N—%/3 ~ M~2/3 is optimal whereas the corresponding condition without using the

duality is h ~ N™* ~ M2,
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