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a b s t r a c t

The present paper is focused on the mathematical modeling of the charged particle
transport in nonuniform media. We study the energy deposition of high energy protons
and electrons in an energy range of ≈50–500 MeV. This work is an extension of the
bipartition model; for high energy electrons studied by Luo and Brahme in [Z. Luo, A.
Brahme, High energy electron transport, Phys. Rev. B 46 (1992) 739–752] [42]; and for
light ions studied by Luo and Wang in [Z. Luo, S. Wang, Bipartition model of ion transport:
an outline of new range theory for light ions, Phys. Rev. B 36 (1987) 1885–1893]; to the
field of high energy ions in inhomogeneous media with the retained energy-loss straggling
term. In the bipartition model, the transport equation is split into a coupled system
of convection–diffusion equations controlled by a partition condition. A similar split is
obtained in an asymptotic expansion approach applied to the linear transport equation
yielding pencil beam and broad beam models, which are again convection–diffusion type
equations. We shall focus on the bipartition model applied for solving three types of
problems: (i) normally incident ion transport in a slab; (ii) obliquely incident ion transport
in a semi-infinitemedium; (iii) energy deposition of ions in amultilayermedium. The broad
beam model of the proton absorbed dose was illustrated with the results of a modified
Monte Carlo code: SHIELD - HIT+.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Charged particles entering into a medium undergo multiple elastic and inelastic collisions. The elastic collisions that
result alter mainly the direction and to a much lesser extent the energy of the particles, whereas the inelastic collisions
reduce the energy of the particles but do not generally cause significant change in their directions. In the present paper
we, primarily, assume a broad beam of forward-directed ions normally incident at the boundary of a semi-infinite medium
entering the domain in a direction labeled as the positive direction of the x-axis. As a result of collisions (because of the
forward-directed assumption), only, a very small portion of the ions is scattered to large angles. Except at very low energies,
very few ions will have a directional change beyond a certain minimal angle θm, determined by the bipartition condition.
Above this angle the ions will have a diffusion-like transport behavior and with, almost, isotropic angular distribution.
Hence, their transport behavior is, preferably, described using Pn-approximations of spherical harmonics. The remaining
most significant portion of the ion particles, deflecting slightly (<θm) from the original direction, are convective ions and
refereed to as forward-directed ions. To separate the large-angle scattered and forward-directed ions properly, the bipartition
condition is introduced. The current model is based on a split, of the scattering integral (kernel), through adding and
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subtracting the diffusion ion source to the diffusion and straightforward equations, respectively. A similar approach is given
through the split of the scattering cross-section into the hard and soft parts, see [1]. This kind of splitting strategy is more
common inmedical physics studies related to the application of particle beams in cancer therapy. In the bipartitionmodeling
procedure the underlying physics is for the case of ions injected into a background medium with large atomic weight (soft
tissue): a transport phenomenon described by assuming a strong algebraic fall-off of the scattering kernel from its peaks
at ‘‘zero’’ angle and energy. The underlying partial differential equation is therefore the Boltzmann equation within the
Fokker–Planck realm, studied as pencil beam and broad beam models. Alternatively, the particle beam models are derived
using asymptotic expansions, see, e.g. [2–5]. Both bipartition and asymptotically derived beam models are classified as
convection-dominated convection–diffusion equations. In [6] finite element approximations for an asymptotically derived
broad beam equation is compared with the results from the bipartition model. For related studies in asymptotically
derivations pencil beam equations see, e.g. [1–4,7–10]. Bellomo and co-authors have recently developed and presented
a series of mathematical studies in cancer modeling and [11–14]. Further studies concerning transport in biological tissues
can be found in [15,16]. For some other related studies see, e.g. in [17,18]. [19] study a method for the semiconductors.
Finally, an exposition of connection between kinetic methods and finite difference schemes is given in [20].

The ion transport describing the actual process of energetic ions in absorbingmedia is formulated for the ion distribution
function f (x,u, E), also called the ion fluence differential, in angle and energy. Here u := v/|v|, where v ∈ R3

\ {0} is the
velocity. Then f (x,u, E)dudE represents the ion fluence at point x ∈ R3, with direction between u and u + du and energy
between E and E + dE (E ∈ R+). Due to the statistical balance principle we may write the following ion transport equation
derived from the transport equation by Lewis and Miller in [21],

u · ∇xf −
∂(ρf )
∂E

=
1
2

∂2(Ωf )
∂E2

+ N
∫
4π

du′


f (x,u′, E) − f (x,u, E)


× σn(E ′, 2E(1 − u · u′)M1/M2)


+ S(x,u, E), (1.1)

where ρ = ρe + ρn is the total stopping power, with ρe being the electronic stopping power and ρn the nuclear stopping
power. Ω = Ωc + Ωr is the total energy-loss straggling factor where Ωc is the collision energy-loss straggling factor and
Ωr is the radiation energy-loss straggling factor. N is the number of solid atoms in unit volume of the medium, M1 and M2
are the atomic weights of the incident ions and the medium, respectively (for slightly heavy ions M1 < M2, whereas for
light ions M1 ≪ M2) and S is the source. Generally, E ′

∈ R+ and u′
∈ S2. We shall study the problem (1.1) for E ′

∈ [0, E0]
and u′

∈ S0 ⊂ S2. We shall assume a continuous slowing down approximation (CSDA) to justify for the collision integral
formulated as in (1.1), as well as for the presence of the energy-loss straggling term −

1
2

∂2(Ωf )
∂E2

. In some studies for light ion
transport, see [22], this energy-loss straggling term is neglected. Hence, in this setting the terms in the ion transport equation
(1.1) are related to three, physically justified, quantities:

(i) the energy-loss straggling term: − 1
2

∂2(Ωf )
∂E2

,
(ii) the elastic scattering cross-section: σn,
(iii) the total stopping power of ions: ρ.

The most specific assumption for the present study is that, following [22] and the references therein, for proton ions, we
have assigned an inverse polynomial approximation for the cross-section term in form of separated inverse power functions
in E and 1 − u · u′. Other forms of radiation interactions are presented, e.g. [23].

Neutral (photon, i.e. X-ray) and charged (electron and ion) particle beams are extensively used in radiation therapy both
for early cancer detection and dose computations/algorithms see, e.g. [24–35].

The outline of this paper is as follows: In Section 2 we start with the ion transport equation under the CSDA assumption
and derive a computable form of the partition condition and bipartition coefficients. Section 3 is devoted to the bipartition
model for the transport of normally incident ions in a semi-infinite medium. Here we derive the key parameters: Legendre
coefficients fsl for the distribution function of the straightforward particles, as well as the Legendre coefficients Sl for the
diffusion source. Due to the singularity of the kernel, both parameters are derived by approximation in a Fourier transform
procedure. We also derive the equation for diffusion ion group and the associated boundary conditions. In Section 4 we
extend the bipartition model of Section 3 to obliquely incident ions. In Section 5 we study the energy deposition of ions
in a multilayer medium and derive a closed form relation for the dose (deposited ion energy) on each layer. Finally, our
concluding Section 6 is devoted to some simulation results for the bipartition model using a modified Monte Carlo code.

2. Bipartition model for ion transport under CSDA

To describe the transport of ions of, e.g., ≈50–600 MeV energy, the energy-loss straggling is a significant term that,
retained in the study of the bipartition, contributes to the accuracy of the model. We consider an ion beam of energy E0
normally incident on the hypersurface of a semi-infinite medium. For our physical model we consider a scattering kernel
with strong algebraic fall-off behavior from its peaks at zero angle and zero energy. To this endwe assume an inverse power
function approximation for the elastic cross-section for ion transport, (see also [23]), viz

σn(E,u · u′) ≈ CE−2k(1 − u · u′)−1−k, (2.1)
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Fig. 1. The extract of diffusion source Sd from the collision term Cf .

where C is a constant depending on E0, atomic numbers and also Bohr radius (a factor of the classical electron radius, see [22]
for details), k ≫ 1 is a positive integer which corresponds to the magnitude of the algebraic fall-offs. Further, we let the
outward normal to the semi-infinite region on the left to be along the positive x-axis inside the solid, then using the standard
vector notation: x = (x, y, z), the high energy ion/electron transport equation under the CSDA is given by (see [32]),

−
∂(ρf )
∂E

+ µ
∂ f
∂x

−
1
2

∂2(Ωf )
∂E2

:= δ̃ + Cf ≡
1
2π

δ(x)δ(E − E0)δ(1 − µ)

+ CE−2k
∫
4π

du′
[f (x, µ′, E) − f (x, µ, E)] × (1 − u · u′)−k−1, (2.2)

where µ is the cosine of the angle between the direction of the ions and the x-axis. Cf is called the scattering integral and
represents the net increase in the number of particles per unit solid angle u, passing through a unit distance, caused by
elastic scattering. From (2.2) and the property that the small-angle elastic scattering of ions is dominating, the main feature
of Cf can be shown as in Fig. 1.

In the bipartition strategy the scattering integral is divided into two parts, of which one is the comparatively isotropic
diffusion ion source Sd, including almost all of the ‘‘large-angle’’ scattered ions, the other is the remaining part that spreads
mainly in the forward, small-angle, direction.

To solve for spherical harmonic coefficients, using Fourier transformation in E would reduce the equation to an ODE in
x, where the presence of (2.1) would enforce yet another approximation in computing Fourier integrals. This is specified by
(3.7) and outlined in Remark 3.2. For a more general approach see, e.g. [36].

The bipartition model splits f into two parts:

f (x, µ, E) = fs(x, µ, E) + fd(x, µ, E), (2.3)

where fs is the forward-directed ion distribution satisfying

−
∂(ρfs)

∂E
+ µ

∂ fs
∂x

−
1
2

∂2(Ωfs)
∂E2

= − Sd +
1
2π

δ(x)δ(E − E0)δ(1 − µ)

+ CE−2k
∫
4π

du′
[fs(x, µ′, E) − fs(x, µ, E)] × (1 − u · u′)−k−1, (2.4)

and fd is the distribution of the diffusion ion particles satisfying

−
∂(ρfd)

∂E
+ µ

∂ fd
∂x

−
1
2

∂2(Ωfd)
∂E2

= Sd + CE−2k
∫
4π

du′
[fd(x, µ′, E) − fd(x, µ, E)] × (1 − u · u′)−k−1. (2.5)

In the bipartitionmodel we deduct the large-angle scattering source from the collision term in the straightforward equation
(2.2) bymeans of subtracting Sd(x, µ, E). Consequently in (2.4), the scattering process generating large-angle ions is removed
from the forward-directed (2.2). Then, the partition condition is given by

Sd(x, µi, E) = Cfs(x, µi, E), i = 0, 1, . . . ,m. (2.6)

The condition (2.6) means that all the large-angle scattered ions in the straightforward ion group are regarded as the
secondary diffusion ion source Sd. To define the bipartition condition, we require that the intensity of this diffusion ion source
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at the m + 1 large-angle directions to be exactly equal to the values of collision integral at the same directions. We expand the
distribution functions fs and fd and the diffusion source Sd into Legendre polynomials,

fs(x, µ, E) =

∞−
l=0

2l + 1
4π

Pl(µ)fsl(x, E), (2.7)

fd(x, µ, E) =

∞−
l=0

2l + 1
4π

Pl(µ)fdl(x, E), (2.8)

Sd(x, µ, E) =

m−
l=0

2l + 1
4π

Pl(µ)Sdl(x, E). (2.9)

The collision integral for fs, forward-directed particles, can then be computed as

Cfs(x, µ, E) = −CE−2k
∞−
l=0

2l + 1
4π

ηlPl(µ)fsl(x, E), (2.10)

where

ηl = 2π
∫ 1

−1
[1 − Pl(µ)](1 − µ)−1−kdµ. (2.11)

Obviously η0 = 0 and for l ≥ 1, ηl is obtained from the following recursive formula (see [22]),

(l + 1 − k)ηl+1 = (l + 1 + k)ηl + 4π/2k, η0 = 0. (2.12)

Inserting (2.10) into (2.6) and using (2.9) we get the specific partition condition:

− CE−2k
∞−
l=0

2l + 1
4π

ηlPl(µi)fsl(x, E) =

m−
l=0

2l + 1
4π

Pl(µi)Sdl(x, E). (2.13)

Therefore

Sdl(x, E) = −CE−2k


ηlfsl(x, E) +

∞−
l′=k+1

η′

lDll′ fsl′(x, E)


. (2.14)

The bipartition coefficient Dll′ is given by

Dll′ =
2l′ + 1
2l + 1

·
∆ll′

∆l
, (2.15)

where we have used Cramer’s rule with

∆l = det[P0(µ), P1(µ), . . . , Pl(µ), . . . , Pm(µ)],

∆ll′ = det[P0(µ), P1(µ), . . . , Pl′(µ), . . . , Pm(µ)],

where

Pj(µ) = [Pj(µ0), Pj(µ1), . . . , Pj(µm)]T , j = 0, 1, . . . ,m.

For further discussions on small-angle condition and other quantities, see [32–34].

3. The primary ion transport including energy-loss straggling

3.1. The straightforward ion group

To compute the distribution function fs for convective ions group we shall assume that the following properties hold:

(p1) The bipartition condition: Cf (x, µi, E) = Sd(x, µi, E), i = 0, 1, . . . ,m,

(p2) The narrow energy spectrum approximation (NESA),
(p3) The small-angle approximation (SAA).

The idea of NESA is that: ‘‘if the width of energy spectrum for a charged particle beam is much narrower than the average energy
of the beam, then the interaction cross-section between the particles in the beam and the atoms inmedium in an integral, weighted
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with the charged particle spectrum, can be replaced by its truncated Taylor series around the average energy’’. The small-angle
approximation, SAA is to substitute µ in the term µ(∂ fs/∂x) by µa(x); an average direction cosine

µa(x) =

 E0
0

 1
−1 µfs(x, µ, E)dµdE E0

0

 1
−1 fs(x, µ, E)dµdE

=

 E0
0 fs1(x, E)dE E0
0 fs0(x, E)dE

. (3.1)

Remark 3.1. In the presence of the energy-loss straggling term: −
1
2

∂2(Ωf )
∂E2

, the SAA is given by (3.1). Consequently, to

transfer the equation for fs to an ordinary differential equation, the suitable Fourier transform variable is E. Neglecting
the energy-loss straggling term, the SAA may be characterized by defining µa(E) through replacing the integrations over E
in (3.1) by integrations over x and then perform Fourier transformation in x.

To proceed, for convective ion particles arriving at point x, we introduce the average path-length La(x) and the corresponding
average energy Ea(x), by

La(x) =

∫ x

0

1
µa(x′)

dx′, (3.2)

Ea(x) = E0 −

∫ La

0
L(E, E0 − E ′)dE ′, (3.3)

where L(E, E0 − E ′) is an approximation of the conventional stopping power ρ. In this way, using (2.7)–(2.11), (2.14) and
(3.1)–(3.3), in integrating (2.4) with respect to µ, we end up with the equation for the Legendre coefficients fsl as

T fsl := −
∂

∂E


L(E, E ′)fsl(x, E)


+ µa(x)

∂ fsl
∂x

−
1
2

∂2

∂E2
[Ωc fsl(x, E)]

= −CE−2k
∞−

l′=m+1

ηl′Dll′ fsl′(x, E) + δ(x)δ(E − E0); l ≤ m, (3.4)

T fsl := −CE−2kηlfsl(x, E) + δ(x)δ(E − E0); l > m, (3.5)

where T is a degenerate (no second derivative in x) convection–diffusion operator

T • =


−

∂

∂E
L(E, E ′) + µa(x)

∂

∂x
−

1
2

∂2

∂E2
Ωc


• .

By some formal calculus, one can show that

fsl(x, E) = −

∞−
l′=m+1

Dll′ fsl′(x, E), l ≤ m. (3.6)

Therefore, as soon as, we obtain a solution of (3.5), we automatically have a solution for (3.4) as well. To solve (3.5) it is
natural to transfer the equation to an ODE in x by imposing Fourier transformation in E. This, however, is prohibited due to
singularity of E−2k, (k > 0) in the Fourier domain. A remedywould be through using the notion of average energy Ea(x) (>0)
introduced in (3.3) and NESA approximation for weighted Fourier transform viz;

F [w(E)fsl(E)] (ξ) =

∫
∞

−∞

e−iξEw(E)fsl(E)dE ≈ w(Ea)f̂sl(ξ), (3.7)

where

f̂sl(x, ξ) =

∫
∞

−∞

e−iξE fsl(x, E)dξ, (3.8)

is the Fourier transform of fsl(x, E) with respect to E and w(E) := w(x, E) is any sufficiently smooth weight function
(e.g. interaction function between ions and the background atoms).

Remark 3.2. Generally, to justify an approximation of the form (3.7), in a Fourier transform, Ea should be chosen so that

w(x, Ea) ≈ ŵ(x, 0) =

∫
∞

−∞

w(x, E)dE. (3.9)

Since for ŵ(x, ξ) =


∞

−∞
e−ixξw(x, E)dE, the Fourier transform of w(x, E), we have

F [w(x, E)fsl(x, E)] (ξ) = ŵ(x, ξ) ∗ξ f̂sl(x, ξ), (3.10)
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we may write

w(x, E) =
w(x, E)

w(x, Ea)
w(x, Ea) := g(x, E)w(x, Ea), (3.11)

where, due to (3.9),


∞

−∞
g(x, E)dE ≈ 1, i.e. g ∈ L1. Now, since

ŵ(x, ξ) = w(x, Ea)ĝ(x, ξ), (3.12)

hence,

ŵ(x, ξ) ∗ξ f̂sl(x, ξ) = w(x, Ea)ĝ(x, ξ) ∗ξ f̂sl(x, ξ), (3.13)

and under certain assumption (if, e.g. g(x, E) ≈ δx(E), see Folland [37], chapter 7) we may choose an approximation of the
form:

ĝ(x, ξ) ∗ξ f̂sl(x, ξ) ≈ f̂sl(x, ξ).

Our goal is to give a closed form approximation for f̂sl. Then, by the inverse Fourier transform we can get the lth Legendre
components fsl. To this approach it suffices to invoke the following approximation of the weight function:

w(x, E) =
w(x, E)

w(x, Ea)
w(x, Ea) ≈ δ(E)w(Ea, x), (3.14)

i.e., we approximate g := w/wa by the Dirac δ function in energy variable. Hence

F [w(E, x)fsl(x, E)] (ξ) ≈ w(x, Ea)

δ̂(ξ ) ∗ f̂sl(x, ξ)


= w(x, Ea)f̂sl(x, ξ). (3.15)

This however is too involved: in reality the energy variable ranges in an interval I = [0−, E0] (0−, to avoid 0 as starting limit
for the integration of δ(E) over [0, E0]) and one may just use the integral form of the generalized mean value theorem:

Lemma 3.3. If f and g are continuous on the interval [a, b] and f does not change sign on that interval, then there exists a point
p ∈ [a, b] such that∫ b

a
f (x)g(x)dx = g(p)

∫ b

a
f (x)dx. (3.16)

Hence the indefinite integral in (3.7) can be replaced by an integral over I = [0−, E0] and, assuming that fsl is positive for all
l, the mean value theorem above would provide us with an equality (instead of approximation (3.15)) in (3.7). Thus, with
some physically motivated manipulations, the Fourier transform of (3.5), with respect to E yields the approximate equation

− (iξ)

L(Ea, ∆)f̂sl(x, ξ)


+ µa(x)

∂ f̂sl(x, ξ)

∂x
−

(iξ)2

2
Ωc(Ea)f̂sl(x, ξ) = −CE−2k

a ηl f̂sl(x, ξ) + δ(x)e−iξE0 , (3.17)

i.e., [
CE−2k

a ηl − (iξ)L(Ea, ∆) +
ξ 2

2
Ωc(Ea)

]
f̂sl(x, ξ) + µa(x)

∂ f̂sl(x, ξ)

∂x
= δ(x)e−iξE0 ,

where ∆ := E0 − E ′. To simplify we write this relation as

λ(Ea, ξ)f̂sl(x, ξ) + µa(x)
∂ f̂sl(x, ξ)

∂x
= δ(x)e−iξE0 , (3.18)

or equivalently

∂ f̂sl(x, ξ)

∂x
+

λ(Ea, ξ)

µa(x)
f̂sl(x, ξ) =

1
µa(x)

δ(x)e−iξE0 . (3.19)

Let now Λ(x) =


λ(Ea,ξ)

µa(x)
dx = λ(Ea, ξ)

 1
µa(x)

dx, or Λ(x) = λ(Ea, ξ)
 x
0

1
µa(x′)

dx′
:= λ(Ea, ξ)La(x), and multiply (3.19) by

the integrating factor eΛ(x) to get

eΛ(x) ∂ f̂sl(x, ξ)

∂x
+ eΛ(x) λ(Ea, ξ)

µa(x)
f̂sl(x, ξ) = eΛ(x) 1

µa(x)
δ(x)e−iξE0 , (3.20)
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i.e.,

d
dx


eΛ(x) f̂sl(x, ξ)


=

1
µa(x)

eΛ(x)δ(x)e−iξE0 , (3.21)

which, integrating over (0, x) yields

eΛ(x) f̂sl(x, ξ) − eΛ(0) f̂sl(0, ξ) =
1

µa(0)
eΛ(0)e−iξE0 . (3.22)

Recall that, starting with the straightforward, incident, ions at x = 0; µa(0) ≈ 1, and consequently we may write

f̂sl(x, ξ) ≈ e−(Λ(x)−Λ(0))

f̂sl(0, ξ) + e−iξE0


, x ≠ 0. (3.23)

Note that

Λ(x) = Cηl

∫ x

0

E−2k
a

µa(x′)
dx′

− iξ
∫ x

0

L[Ea(x′), ∆]

µa(x′)
dx′

+
1
2
ξ 2
∫ x

0

Ωc[Ea(x′)]

µa(x′)
dx′

:= Cηlq(x) − iξ∆E(x) + ξ 2ω(x),

and q(0) = ∆E(0) = ω(0) = 0, i.e. Λ(0) = 0. Further, by the forward-directed assumption and with no back-scattering to
the left of x = 0 we get

fsl(x, E) = f̂sl(x, ξ) = 0, for x < 0.

Hence

f̂sl(x, ξ) =


e−iξ(E0−∆E(x))−Cηlq(x)−ξ2ω(x), x > 0,
0 x < 0.

(3.24)

Thus, we have

fsl(x, ξ) =
1
2π

e−Cηlq(x)
∫

∞

−∞

eiξE · e−iξ(E0−∆E(x))
· e−ξ2ω(x)dξ . (3.25)

We define

G(x, E) :=
1
2π

∫
∞

−∞

eiξE · e−iξ(E0−∆E(x))
· e−ξ2ω(x)dξ . (3.26)

Comparing with the inverse Fourier transform

G(x, E) =
1
2π

∫
∞

−∞

eiξE[Ĝ(x, ξ)](E)dξ, (3.27)

we have that
Ĝ(x, ξ)


(E0 − ∆E(x)) =


e−iξ(E0−∆E(x))−ξ2ω(x), x ≥ 0,
0 x < 0.

(3.28)

Now by the symmetry relation for the Fourier transform for the Gaussian:

ĥ(x, ξ) = e−ξ2ω(x)
H⇒ h(x, E) =

1
2
√

πω(x)
e−

E2
4ω(x) (3.29)

and with Ea = E0 − ∆E, using the inverse Fourier transform, we may write

G(x, E) = h(x, E − Ea) =
1
2π


π

ω(x)
e−

(E−Ea)2
4ω(x) , (3.30)

so that finally we get

fsl(x, E) =
1
2π


π

ω(x)
e−(E−Ea)2/4ω(x)

· e−Cηlq(x). (3.31)

Thus, recalling (3.4) and (3.5), the Legendre coefficients for the distribution function fsl can be written as

fsl(x, E) =
1
2π


π

ω(x)
e−(E−Ea)2/4ω(x)γl(x) (3.32)
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where

γl(x) =

−

∞−
l′=m+1

Dll′e−Cηl′ q(x), l ≤ m,

e−Cηlq(x), l > m.

(3.33)

As in the case of (3.5) and (3.4), once we compute γl for l > m, then we get automatically the sum in (3.33). Thus γl is easily
computable, recalling that

q(x) =

∫ x

0

Ea(x′)−2k

µa(x′)
dx′, ∆E(x) =

∫ x

0

L[Ea(x′), ∆]

µa(x′)
dx′, and ω(x) =

1
2

∫ x

0

Ωc[Ea(x′)]

µa(x′)
dx′. (3.34)

Having computed fsl, we can give a, numerically, computable expression for Sl(x, E) in (2.14) and prepare for the study of
the diffusion ion group.

Proposition 3.4. For the bipartition model the Legendre coefficients Sdl(x, E) for the diffusion source term in (2.14) are given by

Sdl(x, E) =

[
−CE−2kηl +

d
dx

ln (γl(x))
]
fsl(x, E). (3.35)

Proof. Differentiating (3.32) we have

∂ fsl
∂E

=

[
−

E − Ea
2ω

]
fsl, (3.36)

and

∂2fsl
∂E2

= −
1
2ω

fsl −
E − Ea
2ω

∂ fsl
∂E

= −
1
2ω

fsl −

E − Ea
2ω

[
−

E − Ea
2ω

]
fsl

=

[
(E − Ea)2 − 2ω

4ω2

]
fsl. (3.37)

Further

∂ fsl
∂x

=
1
2π

·
√

π


−

1
2
ω−3/2


· e−(E−Ea)2/(4ω(x))γl(x)

+
1
2π


π

ω
e−(E−Ea)2/(4ω(x))


−

2(E − Ea)
4ω(x)

·
dEa
dx

−
(E − Ea)2

4
·
−1
ω2

dω
dx


γl(x)

+
1
2π


π

ω
e−(E−Ea)2/(4ω(x)) d

dx
γl(x)

=

[
−

1
2ω

dω
dx

−
E − Ea
2ω

dEa
dx

+
(E − Ea)2

4ω2

dω
dx

+
d
dx

(ln γ (x))
]
fsl,

where, for the logarithmic term, we have used the identity γ ′

l (x) =
γ ′
l

γl
γl. Inserting these derivatives in (3.4) and invoking

the average quantities defined for the coefficients, and the auxiliary relations

dω
dx

=
Ωc

2µa
,

dEa
dx

=
l

µa
, (3.38)

yields

− CE−2k
∞−

l′=m+1

ηl′Dll′ fsl′(x, E) + δ(x)δ(E − E0) = fsl(x, E)
d
dx

(ln γ (x)) . (3.39)

Hence, the Legendre coefficients Sl for the diffusion source term can be written as

Sdl(x, E) =

[
−CE−2kηl +

d
dx

ln (γl(x))
]
fsl(x, E), (3.40)

which is the desired result and the proof is complete. �



Author's personal copy

M. Asadzadeh et al. / Computers and Mathematics with Applications 60 (2010) 2445–2459 2453

3.2. The diffusion ion group

With the diffusion coefficients Sdl for the ion source given by (3.40), we can now calculate the Legendre coefficients
fdl for the distribution function fd of the diffusion ions. Due to a nearly isotropic behavior of the angular distribution of
diffusion ions, the spherical harmonicmoments cannot be decoupled. To circumvent such obstacle a cutoffmethod, based on
Pn-approximation, is commonly used assuming

fdl(x, E) = 0, for l > n. (3.41)

Then, a weighted central differencing, see [22,33] for details, yields

−
∂(ρfdl)

∂E
+

1
2l + 1

[
(l + 1)

∂(µafd,l+1)

∂x
+ l

∂(µafd,l−1)

∂x

]
−

1
2

∂2(Ωfdl)
∂E2

= −CE−2kηlfdl + S̃l(x, E), l = 0, 1, . . . , n, (3.42)

where fd,−1 ≡ 0 and

S̃l(x, E) := fsl(x, E)
d
dx

ln (γl(x)) , l = 0, 1, . . . , n. (3.43)

Under certain assumptions on the coefficients, this set of equations may have closed form analytic solutions. But, in the real
applications, the coefficients are rather involved and therefore numerical methods are the most realistic approaches. In this
regard, a direct approach to (3.42) and (3.43) is based on a Lax–Wendroff scheme applied to a symmetrical form of (3.42)
for the auxiliary function

f̃dl(x, E) :=
1

√
2l + 1

fdl(x, E). (3.44)

Then, f̃dl would satisfy the following, second order accurate, scheme:

−
∂(ρ f̃dl)

∂E
= −

1
√
2l + 1


l + 1

√
2l + 3

∂(µa f̃d,l+1)

∂x
+

l
√
2l − 1

∂(µa f̃d,l−1)

∂x



−
1
2

∂2(Ω f̃dl)
∂E2

− CE−2kηl f̃dl +
1

√
2l + 1

S̃l, l = 0, 1, . . . , n. (3.45)

Another interesting scheme is obtained using a finite element approximation applied directly to the diffusion equation

−
∂(ρfdl)

∂E
+ µa

∂ fdl
∂x

−
1
2

∂2(Ωfdl)
∂E2

= Sdl. (3.46)

The Eq. (3.46) is a degenerate type convection–diffusion equationwhich is studied extensively in [7–10], using the Streamline
diffusion finite element method.

3.3. Boundary conditions

As expecting, for the forward-directed incident ions, only the ions reflected from the solid surface to the left-hand side
of the domain may exist at the boundary x = 0. Therefore it is reasonable to assume a boundary condition, equivalent to
assuming a vacuummedium on the left, of the form,

fd(0, µ, E) = 0, µ ≥ 0. (3.47)

To determine the approximate distribution function for diffusion ions, based on Pn-approximation, we need certain variants
of (3.47) formulated for finite number of angular cosines µ. In this regard there are two classical type of discrete boundary
conditions proposed by Mark [38] and Marshak [39]. Both conditions are assuming an odd number of discrete cosine
directions n. The Mark condition is based on treating the left-hand side as a vacuum of a scape black-box, i.e.,

fd(0, µi, E) = 0, Pn+1(µi) = 0, µi ≥ 0, i = 1, 2, . . . ,
n + 1
2

. (3.48)

TheMarshak condition is formulated for the current; ensuring that no diffusion ion current is incident upon the solid surface
from the assumed vacuum part:∫ 1

0
fd(0, µi, E)µ2j−1dµ = 0, i = 1, 2, . . . ,

n + 1
2

. (3.49)
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Fig. 2. Obliquely incident ions.

Mark condition is used for higher degree approximations (e.g., for n > 5). As the (n + 1)/2 boundary conditions (3.48) or
(3.49) are insufficient to determine (n+ 1) spherical harmonic moments f̃dl involved in the Eq. (3.45), additional conditions
are supplied for µ < 0. These are of the form

∂(ρfd)
∂E

+
1
2

∂2(Ωfd)
∂E2

= µi
∂(fd)
∂x

+
C
4π

E−2k
n−

l=0

(2l + 1)ηlPl(µi)fdl(0, E),

Pn+1(µi) = 0, µi < 0, i =
n + 3
2

, . . . , n + 1

(3.50)

and are described in [22] and the references therein. With the complete set of boundary conditions we are prepared to
expand the study to the multilayer case.

4. Obliquely incident ion transport in semi-infinite media

Assume that a conical ion beam of initial energy E0 is incident upon a semi-infinite homogeneous medium at an incident
angle θ0, as shown in Fig. 2.

The forward peakedness condition for ions is then
π

2
− θ0 > θm, (4.1)

and therefore there is no influence from the boundary to the distribution function of forward-peaked ions. Even for
π
2 −θ0 < θmin, the amount of forward-peaked ions that leave the surface directly is negligible. Thus we neglect the influence
of the boundary on the distribution function of convective particles. To proceed we make a coordinate transformation:
(E, µ, x) → (E ′, ν, x′), where x and x′ are directions of inwardnormal to the surface and obliquely incident ions, respectively,
ν = θ − θ0 is the deflection angle and E ′ is the energy of oblique ions. Thus, E ′

= E and x′
= x/ cos θ . In this way we can

derive the distribution function for the forward-peaked ions of oblique incidence from the distribution function for forward-
peaked ions of normal incidence. One may address this as the fact that in the coordinate system (E ′, ν, x′) the distribution
function of the forward-peaked ions would remain unchanged. We denote the forward-peaked distribution function and
the diffusion ion source in the new coordinate system by f̃s and S̃d, respectively. Then by the abovemotivation and our result
for the normally incident ions we conclude that

f̃s(x′, ν, E ′) =
1
2π

π

ω

1/2
e−(E′

−Ea)2/4ω(x)
×

∞−
l=0

2l + 1
4π

Pl(cos ν)γl(x′), (4.2)

and

S̃d(x′, ν, E ′) =
1
2π

π

ω

1/2
e−(E′

−Ea)2/4ω(x)
×

∞−
l=0

2l + 1
4π

Pl(cos ν)Sl(x′). (4.3)

Now we may return to the original coordinate system, recalling
x′

= x/ cos θ, E ′
= E, cos ν = cos θ0 cos θ + sin θ0 sin θ cos(ϕ − ϕ0)


. (4.4)

Since the cone is symmetric in the azimuthal angle ϕ, the distribution function of forward-peaked ions, in the original
coordinates, should be averaged over ϕ, i.e.,

fs(x, µ, E) =
1
2π

∫ 2π

0
f̃s(x′, cos ν, E ′)dϕ =

∞−
l=0

2l + 1
4π

Pl(cos θ)fsl(x, E). (4.5)
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The average projection distance of the forward-peaked ions along the x′-axis is:

x′
=

∫ r ′

0
µa(r ′)dr ′

=

∫ r ′

0

γ1(r ′)

γ0(r ′)
dr ′. (4.6)

Thus

fs(x, µ, E) =
1
2π

π

ω

1/2
e−(E−Ea)2/4ω(x)

∞−
l=0

2l + 1
4π

γl(x′) ·
1
2π

∫ 2π

0
Pl(cos ν)dϕ. (4.7)

Using the addition theorem for Legendre polynomials, see [40], we have

fsl(x, E) =
1

√
4πω(x)

e−(E−Ea)2/4ω(x)Pl(cos θ0)γl(x′), (4.8)

and

Sl(x, E) = Pl(cos θ0)Sl(x′, E). (4.9)

5. Energy deposition for ion transport in multilayer media

We consider a medium consisting of two layers Ω1 and Ω2 with thicknesses d1 and d2 respectively, where d1 ≪ d2.
The ions in second layer Ω2 have no influence on the transport of the forward-directed ions in the first layer. The ions
that scatter back from the second layer to the first, are no longer forward directed and they, if any, would appear in the
diffusion ion group. Likewise the forward-directed ions having entered into the second layer Ω2 would no longer be under
the influence of the particles in the first layer. Dealing with the transport of the forward-peaked particles in a certain
layer, the layer is virtually extended to a hypersurface with a condition that the fluence of the forward-peaked particles
at the boundary is equal to that of the forward-peaked particles in the preceding layer at the same boundary. Considering a
multilayermedium is adequate only if there is a difference in the backgroundmaterial in both sides of a layer surface. Such an
anisotropy would induce discontinuities in the energy variable. In this study, for simplicity, this discontinuity is assumed to
be small and therefore has been neglected. In a mediumwith a few layers, this assumption introduces a small but negligible
approximation error in themodel. However, for amedium consisting of a large number of layers, ignoring discontinuities on
the inter-layer boundaries would cause accumulative approximation errors that can be an extensive source of inconsistency
in the model. To distinguish between the physical quantities of the first layer from those of the second layer, the quantities
in the second layer will be denoted by an Astrix (∗) on the corresponding quantities from the first layer. Recall that in the
first layer Ω1, we have for 0 ≤ x ≤ d1, the diffusion ion source is expressed as

Sdiff =

m−
l=0

2l + 1
4π

Pl(µ)Sl(x, E), Sl = fsl(x, E)
d
dx

(ln γl(x)) , (5.1)

where fsl is given by (3.32) and

γl(x) =

−

∞−
l′=m+1

Dll′e−Cηl′ q(x), l ≤ m,

0, l > m
(5.2)

with ηl, Dll′ and q(x) given by (2.11), (2.15) and (3.34), respectively.
In the second layer the distribution of ions satisfies the following equation and boundary conditions−

∂(ρ∗f ∗)

∂E
+ µ∗

∂ f ∗

∂x
−

1
2

∂2(Ω∗f ∗)

∂E2
= CE−2k

∫
4π

du′
[f ∗(x, µ′, E) − f ∗(x, µ, E)] × (1 − u · u′)−k−1,

f ∗(d1, µ, x) = f (d1, µ, x),
(5.3)

on

Ω2 = {(x, E) : d1 ≤ x ≤ 1 & 0 ≤ E ≤ Ẽ},

where Ẽ = min E; is the minimum amount of the energy deposited on the first layer for x ∈ [0, d1]. In Ω2 the distribution
function for the forward-directed ions f ∗

s and the diffusion ions f ∗

d satisfy the following equations:
−

∂(ρ∗f ∗
s )

∂E
+ µ∗

∂ f ∗
s

∂x
−

1
2

∂2(Ω∗f ∗
s )

∂E2

= CE−2k
∫
4π

du′
[f ∗

s (x, µ′, E) − f ∗

s (x, µ, E)] × (1 − u · u′)−k−1
− S∗

diff (x, µ, E),

f ∗

s (d1, µ, E) = fs(d1, µ, E)
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−

∂(ρ∗f ∗

d )

∂E
+ µ∗

∂ f ∗

d

∂x
−

1
2

∂2(Ω∗f ∗

d )

∂E2

= CE−2k
∫
4π

du′
[f ∗

d (x, µ′, E) − f ∗

d (x, µ, E)] × (1 − u · u′)−k−1
+ S∗

diff (x, µ, E),

f ∗

d (d1, µ, E) = fd(d1, µ, E).

Performing similar calculations as in previous section, the integral quantities γ ∗

l (x) of ion transport can be written as

γ ∗

l (x) =

−

∞−
l′=m+1

Dll′e−Cηl′ [q(x)+q⋆(x)], l ≤ m,

0, l > m,

(5.4)

and the spatial component of characteristics are presented by

µ∗(x) =

 Ẽ
0

 1
−1 µf ∗

s (x, µ, E)dµdE Ẽ
0

 1
−1 f

∗
s (x, µ, E)dµdE

=

 Ẽ
0 f ∗

s1(x, E)dE Ẽ
0 f ∗

s0(x, E)dE
. (5.5)

The equation for f ∗

sl is then

−
∂

∂E


L(E, ∆)f ∗

sl (x, E)

+ µ∗

a(x)
∂ f ∗

sl

∂x
−

1
2

∂2

∂E2


Ω∗

c f
∗

sl (x, E)


= Γsl(f ), (5.6)

where

Γsl(f ) := −


∞−

l′=m+1

CE−2kηl′Dll′ f ∗

sl (x, E), if l ≤ m,

CE−2kηlfsl(x, E), if l > m.

(5.7)

The very same approximate Fourier transformation procedure as before yields
f̂ ∗

sl (x, E) = C∗e−Λ∗
[x],

f ∗

sl (d1, E) = fsl(d1, E),
C∗

= f̂sl(d1, E)eΛ∗
[d1]. (5.8)

Hence

f̂ ∗

sl (x, E) = f̂sl(d1, E)e−(Λ∗
[x]−Λ∗

[d1]). (5.9)
Now since

f̂sl(d1, E) = eΛ[0]−Λ[d1]−iξE0 = e−Λ[d1]−iξE0 , (5.10)
thus

f̂ ∗

sl (x, E) = e−(Λ∗
[x]−Λ∗

[d1]+Λ[d1]) × e−iξE0 . (5.11)
Consequently

f ∗

sl (x, E) =
1
2π

∫
∞

−∞

e−iξ(E−E0) × e−(Λ∗
[x]−Λ∗

[d1]+Λ[d1])dξ . (5.12)

Here

Λ∗
[x] = Cηlq∗(x) − iξ∆E∗

a (x) + ξ 2ω∗(x), (5.13)
implies that

Λ∗
[d1] = Cηlq∗(d1) − iξ∆E∗

a (d1) + ξ 2ω∗(d1). (5.14)
Analogously

Λ[d1] = Cηlq(d1) − iξ∆Ea(d1) + ξ 2ω(d1). (5.15)
Thus

Λ∗
[x] − Λ∗

[d1] + Λ[d1] = Cηl

q∗(x) − q∗(d1) + q(d1)


− iξ


∆E∗

a (x) − ∆E∗

a (d1) + ∆Ea(d1)


+ ξ 2 ω∗(x) − ω∗(d1) + ω(d1)

. (5.16)

Finally the energy deposition by ions in a two-layer medium is given by the energy integral of zeroth moments of the
Legendre coefficients of the straightforward and diffusion fluence functions, (see [33] for the details) viz:

D(x) =


∫ E0

0
[fs0(x, E) + fd0(x, E)] dE, 0 ≤ x ≤ d1∫ Ẽ

0


f ∗

s0(x, E) + f ∗

d0(x, E)

dE, d1 ≤ x ≤ 1.

(5.17)
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Fig. 3. The total absorbed dose DT , the primary absorbed dose D
1H,T ,p , the secondary proton dose ΦH,Sec , the total proton fluence Φ

1H,T , the total planar
proton fluenceΦ

1H,T ,p , the primary fluenceΦ
1H,Prim , the planar primary fluenceΦ

1H,prim,p , the secondary protons fluenceΦ
1H,Sec , and the planar secondary

proton fluenceΦ
1H,Sec,p of therapeutic 70 and 202MeV/u 1H ion beam inwater. SHIELD -HIT +MC simulations. The curves are normalized to the respective

values of the different transport parameters at the phantom surface, z = 0.

6. Monte Carlo simulations

The strategy in usingMonte Carlo (MC)method, for the bipartitionmodel is governed by taking account the facts charac-
terizing the behavior of the actual problem. During the slowing down of high energy projectiles, fragments are continuously
generated, with the origin either from the incoming primary projectile, the target nuclei or by fragments interactions such
as those by high energy secondary neutrons, protons, and α-particles. Some of these fragments may therefore be scattered
almost isotropically. In the case of a high energy proton beam, the dose from secondary protons is dominating in compari-
son to other secondaries, cf. [28]. Therefore although, the fact that, in this model we do not consider any absorption term, as
given in [30,31], the bipartition model for ion transport, under continuously slowing down assumption, can in the first ap-
proximation be related to transport of a therapeutic proton beam. The bipartition model was therefore applied in a case of a
therapeutic 70 MeV/u and 202MeV/u proton beam. In this approach the protons below a specific cutoff angle were treated
with the straightforward ion group and thus separated from those protons ofmore diffusive character. The bipartitionmodel
in here is illustrated with the SHIELD-HIT+ MC simulations. The Monte Carlo SHIELD-HIT+ code has advantageous features
in implementing radiation for charged particles, see [29,30]. The results are discussed in the aspect of the primary particles
fluence, planar fluence and absorbed dose of primary 1H ions and their associated 1H fragments in tissue-like media with
ranges of clinical interest.

We calculate the depth absorbed dose distribution of 70 MeV/u and 202 MeV/u 1H ion beams corresponding to ranges
of approximately 40 and 260 mm in water. In the present version of, SHIELD-HIT+ code, the fluence differential in both
energy and angle was determined both for primary particles and their fragments. The computations are performed for a
point mono-directional and mono-energetic ion beam perpendicularly incidence at the centre of a cylindrical water phantom
(with the radius R = 10 cm, and the of length L = 50 cm). The fluence or track length per unit volume differential in energy
and angle was scored separately in cylindrical rings of a thickness of 1 mm and diameters up to 20 cm. In the plots below
the dose represented by D(z) corresponds to D(x) in (5.17) and Φ(z) to the dept fluence f (x). The plots illustrate protons of
forward- and diffusion-directed ion groups for both 70 MeV/u 1H and 202 MeV/u 1H ion beam in water, see [30] for details.
Some basic MC codes can be found in [41].

6.1. Summary

We present a mathematical derivation of the bipartition model for low and high energy ion transport in inhomogeneous
media with retained energy straggling term: an approach based on an split of the source term to diffusion- and forward-
directed particles combined with a Legendre series expansion. We study the problem in single- and multilayer domains
as well as obliquely incident case and compute the dose. We employ a modified and new version of simulation code:
SHIELD - HIT+ based on the Monte Carlo method suitable for computations in therapeutic applications.

The results are illustrated in Figs. 3 and 4 that we concisely describe in Fig. 3. the curves have been normalized to the
respective values of the different transport parameters at the phantom surface, z = 0. In the figures, the total and the
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Fig. 4. A close up of the total absorbed dose DT , the total fluence Φ
1H,T , the total planar proton fluence Φ

1H,T ,p , the primary fluence Φ
1H,prim , the planar

primary fluence Φ
1H,prim,p , the secondary proton fluence Φ

1H,Sec and the planar secondary protons fluence Φ
1H Sec,p of the therapeutic 70 MeV/u 1H in

water. SHIELD - HIT + MC simulations. The curves have been normalized to the respective values of the different transport parameters at the phantom
surface, z = 0.

planar total proton components, are denoted by Φ
1H,T and Φ

1H,T ,p, respectively. The small differences between these two
components illustrate the dominated forward-directed protons. Furthermore from the closed equality between the primary
and their associated planar components, i.e.Φ

1H,Prim
≈ Φ

1H,Prim,p, it is also clear that the diffusion related ion group is closely
related to the transport of secondaries Cf. Fig. 4. In Fig. 4 the transport of secondary protons is characterized with the wider
angular distribution in contrast to the primary protons as seen by the difference from the planar to the total components.
The transport of secondary protons in a high energy proton beam can therefore be associated with the different parts in the
discussed bipartition model.

To conclude it is clear that in therapeutic applications, the fluence of forward-directed particles in high energy proton
beams, is both related to the transport of primary particles as well as the produced secondary protons. Contributions from
themore diffusion scattered protons, are almost solely correlatedwith the transport of secondary protons and the associated
depth dependence of the fluenceweighted cosine value, cf. [30]. The bipartitionmodel, with retained energy straggling term,
could then be a compliment to other particle transport models to identify the, more isotropically generated and scattered,
secondary protons in therapeutic high energy proton beams.

In a forthcoming paper we plan to carry out the analysis for secondary particles and study the bipartition and discontin-
uous Galerkin finite element methods for this setting.
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