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On a Canonical Form
for Maxwell Equations and
Convergence of Finite
Element Schemes for a
Vlasov-Maxwell System

M. Asadzadeh
Department of Mathematics, Chalmers University of Technology and University of
Gothenburg, Gothenburg, Sweden

This work is a swift introduction to the nature of governing laws involved in the
Maxwell equations. We then approximate a “one and one-half” dimensional relativistic
Vlasov-Maxwell (VM) system using streamline diffusion finite element method. In this
geometry d’Alembert representation for the fields functions guarantees the existence
of a unique solution of the Maxwell equations. The VM system is then approximated
using the streamline diffusion finite element method. In this part we derive some sta-
bility inequalities and optimal a priori error estimates due to the maximal available
regularity of the exact solution.

Keywords Vlasov-Maxwell; canonical form; finite element; stability; convergence

1. INTRODUCTION

In this article we introduce some basic properties of the equations in the
Maxwell’s system and point out the special roles played by the field functions.
We then consider a one and one-and-half dimensional, relativistic, Vlasov-
Maxwell (VM) system. In this geometry we derive closed form solutions for
the field equations represented in d’Alembert’s formulas. This is the simplest
possible to derive the existence of a unique solution for the field functions in
Maxwell’s equation. There is no d’Alembert representation in higher dimen-
sions. Our main concern will be approximation of the VM system by a semi-
classical finite element approach: the streamline diffusion (SD) method. Both
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2 M. Asadzadeh

the geometry, and the current combination of the equations in the system re-
quire a particular, and seemingly detailed, investigation. Here, we highlight
only novel aspects and leave the common features to reference literature. It is
well-known that the standard finite element method for hyperbolic equations
(e.g., VM), with the exact solution in the Sobolev space Hr+1, has an L2-optimal
convergence rate of order O(hr). Whereas, with the same regularity (Hr+1) the
corresponding optimal convergence rate for the elliptic and parabolic problems
is O(hr+1). SD method is constructed, roughly, based on a variational formu-
lation with the test functions possessing a multiple of the convection term in
the equation. This eventually corresponds to addition of extra diffusion to the
continuous problem, which enhances the regularity in the streamline (charac-
teristic) directions. That is why the method is called the streamline diffusion
method. Using the SD strategy would improve the convergence rate of the cor-
responding finite element scheme for the hyperbolic problems by an order of
1/2:—O(hr+1/2). Then, by interpolation space techniques, one can show that for
the hyperbolic problems this rate is optimal.

An outline of this article is as follows. First we present a discussion on
the role of each equation in Maxwell’s system. Then, we introduce a continu-
ous model problem for the one and one-half dimensional, relativistic, Vlasov-
Maxwell system. In the subsequent sections, we discretize this system using
the SD method and prove the stability of the scheme and derive convergence
rates.

Throughout this article C will denote a generic constant, not necessarily
the same at each occurrence, and independent of the parameters in the equa-
tions, unless otherwise explicitly specified.

2. VLASOV-MAXWELL SYSTEM IN VECTOR ANALYSIS FORM

The VM system describes time evolution of collosionless plasma of particles
with mass m and charge q, formulated as

∂t f + v̂ · ∇x f + q(E + c−1v × B) · ∇v f = 0,

(Ampere’s Law) ∂t E = c∇ × B− j, ∇ · E = ρ,

(Faraday’s Law) ∂t B = −c∇ × E, ∇ · B = 0. (2.1)

Here f is density in phase space, c is the speed of light, v is momentum, and
the velocity, v̂, is given by

v̂ = (m2 + c−2|v|2)−1/2.

Further, the charge and current densities are given by

ρ(t, x) = 4π

∫
qf dv, j(t, x) = 4π

∫
qf v̂ dv. (2.2)
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A Canonical Form for Maxwell Equations 3

A mathematical proof for the existence (and uniqueness) of the solution to
VM system can be obtained using the Schauder fixed point theorem: Insert
an assumed and given g for f in (2.2). Compute ρg, jg and insert the results in
Maxwell equations to get Eg, Bg. Then insert such obtained Eg and Bg in the
Vlasov equation to get fg via an operator �: fg = �g. A fixed point of � is the
solution of the VM system. For the discretized version one should, instead, use
the Brouwer fixed point theorem. (For a survey on fixed point theory and proofs
for Schauder and Brouwer fixed point theorems see Dugundji and Granas,
2003, and Kellogg, Li, and Yorke, 1976, respectively.) Besides the fact that
both these proofs are rather involved and nontrivial, they are not attractive
for physicists in the sense that, for example, the quantities f , B, E, j, and ρ are
physically related to each others by the Vlasov-Maxwell system of equations
and again, physically, it is not the case that some of them are given to deter-
mine the others: they act in concert and do not follow any ordering. Whereas,
for example, in Vlasov-Poisson and Vlasov-Poisson-Fokker-Planck systems, the
physical connection is simpler and also the Poisson equation is treated easily.
To conclude: for some physical problems (including Vlasov-Maxwell system)
the use of mathematically relevant, fixed point approach is vulnerable. There-
fore, next we shall employ a different approach to investigating the existence
of a unique solution for our VM system.

2.1. Particular Manner that Various Quantities Enter Maxwell’s
Equations
Why can we not have a plus sign entering the right hand side of Faraday’s

law?
If one does consider such “revised” equations, it is easy to show that one

obtains, in the Lorentz gauge, perfectly respectable mathematical relations

∇2 A+ (1/c2)Ä = −(4π/c) j, B = ∇ × A

∇2ϕ + (1/c2)ϕ̈ = −4πρ, E = −∇ϕ + (1/c)A.

However, they do not have the properties that Maxwell’s customary solutions
do, for example,

A(x, t) = A(x)eiωt, (ρ = 0 = j)

do not yield customary wave solution for A(x, t) and yield an A(x) that decreases
by an exponential factor everywhere within any closed surface.

If we, instead, change the sign on the right hand side in Ampere’s law, we
get a mathematically permissible set of equations containing wave solutions,
but denying charge conservation.
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4 M. Asadzadeh

Question. What makes the fields E and B satisfy, in particular, Maxwell’s
equations, rather than some other mathematically permissible scheme? Such
questions on physical relevance of these quantities are behind the doubt on
suitability of using a Scheuder-type approach, to the existence and uniqueness
mentioned previously.

2.2. Relativistic Mode in One and One-half Dimensional
Geometry
The most convenient VM system to discretize is the relativistic Vlasov-

Maxwell (RVM) model, in one and one-half dimensional geometry, where
x ∈ R, v ∈ R

2, and E = (E1, E2), which then can be generalized to higher di-
mensions

l@ c∂t f + v̂1 · ∂x f + q(E + BM0v̂)· ∇v f = 0,

∂t E1 = −4π j1, ∂x E1 = 4πρ,

∂t E2 = −∂x B− 4π j2, ∂t B = −∂x E2.

⎫⎪⎬
⎪⎭ M0 =

(
0 1

−1 0

)
.

To carry out discrete analysis, we need global existence of classical solution.
Due to the physical concerns about the fixed here we employ another approach
that requires some regularity assumptions as follows:

Assumption A1: The background density n(x) is smooth, has compact sup-
port, and is neutralizing. This yields, for

ρ(t, x) = q
∫

f dv − n(x); that
∫ ∞

−∞
ρ(0, x) dx = 0. (2.3)

Assumption A2: We also assume that f 0(x, v) := f (0, x, v) ≥ 0. Then choosing

E1(0, x) = 4π
( ∫ x

−∞
f 0(y, v) dv − n(y)

)
dy, (2.4)

∂x E1 = 4πρis the only possibility that lead to finite energy solution.

Theorem 2.1 (Glassey and Schaeffer, 1990). Assume that n is naturalizing,
and let r ≥ 1 be an integer. Further

(i) 0 ≤ f 0(x, v) ∈ Cr
0(R3), (ii) E0

2 , B0 ∈ Cr+1
0 (R1).

Then, there exists global Cr solutions of RVM: ( f, E, B) of class Cr over R
+ ×

R × R
2.
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A Canonical Form for Maxwell Equations 5

The theorem is an existence result. For r = 2 we differentiate with respect
to x and t to get{

∂x∂t E2 = −∂2
xx B− ∂x4π j2,

∂2
tt E2 = −∂t∂x B− ∂t4π j2,

and

{
∂2

tt E2 = −∂t∂x B− ∂t4π j2,

∂x∂t B = −∂2
xx E2,

respectively. Subtracting either of the resulting equations we see that both E2

and B, satisfying the wave equation, admit closed form solution of d’ Alembert
type. The closed form solution for E1 is yet simpler. Hence (by uniqueness of
the solution for the wave equation), we have now both existence and unique-
ness. Our first attempt is to use simple algebraic manipulation and derive
existence and uniqueness for the Maxwell’s equations system, without requir-
ing the higher regularity (r = 2) than what is present in the equations, that is,
with r = 1 only.

2.3. Reduced Regularity Requirements and d’Alembert Form
To show the uniqueness with lower regularity assumption, let F = E2 + B

and G = E2 − B. From the equations for E2 and B, we get:{
∂t F + ∂x F = j2(t, x), F(0, x) = E0

2(x) + B0(x)

∂tG − ∂xG = j2(t, x), G(0, x) = E0
2(x) − B0(x).

Then E2 = 1
2 (F + G) and B = 1

2 (F − G), will have closed form solutions of
d’Alembert forms:

E2(t, x) = 1
2
(
E0

2(x − t) + E0
2(x + t) + B0(x − t) − B0(x + t)

)+

+1
2

∫ t

0
j2(τ, x + τ − t) + j2(τ, x + t − τ )dτ,

B(t, x) = 1
2
(
E0

2(x − t) − E0
2(x + t) + B0(x − t) + B0(x + t)

)+

+1
2

∫ t

0
j2(τ, x + τ − t) − j2(τ, x + t − τ ) dτ.

Here, the equations for E1 yield locally, that is, for x ∈ [x0, x1]:

E1(t, x) =
∫ x

x0

(∫
f (t, y, v)dv − n(y)

)
dy.

This is not a crucial restriction in our study, since our discretizations concerns,
spatially, bounded domains.
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6 M. Asadzadeh

3. THE STREAMLINE DIFFUSION METHOD

Despite the representations for the field functions of the Maxwell’s equations,
the realistic investigation of the solution for the Vlasov-Maxwell system is
through numerical approaches. In this regard, we shall consider the study of a
finite element method based on a weak form that enhance the regularity of the
hyperbolic type problems, through introducing diffusion corresponding terms
in the equation, whence having a regularizing effect. To this end, we shall as-
sume that (x, v) ∈ 	x × 	v ⊂ R × R

2 (when only Maxwell’s equations are con-
sidered, we just drop all v components and 	v), that f , E2, B, and n have com-
pact support in 	x and that f has compact support in 	v. Since

∫
ρ(0, x)dx = 0,

it follows that also E1 has compact support in 	x.
Let 	 := 	x × 	v be the phase-space domain and consider a triangulation

Th := {τ = τx × τv} of 	 into shape regular elements τ = τx × τv, with τx and
τv being shape regular triangulation of 	x and 	v, respectively. Further for
t ∈ [0, T ] we let 0 = t0 < t1 < . . . < tM−1 < tM = T be a partition of [0, T ]. For
m = 1, . . . , M, we denote the subinterval (tm−1, tm] by Im. Now we define the
finite element subdivision of the slab Sm := 	 × Im by

Ch := {K|K := τ × Im, τ ∈ Th}.

For k = 0, 1, . . . , we define the finite element space over each Sm as

Vh = {w ∈ H : w|K ∈ Pk(τ ) × Pk(Im); ∀K = τ × Im ∈ Ch},

where H := 
M
m=1 H1(Sm), or

∏M
m=1 L2(Sm) with Sm = Im × 	 = (tm−1, tm) × 	.

Finally we define

Ṽh := { f ∈ [H]3 : fi|K ∈ Pk(τ ) × Pk(Im); ∀K = τ × Im ∈ Ch; i = 1, 2, 3},

to be the vector version of the finite element space corresponding to the discrete
versions of unknowns (E1, E2, B) or ( f, E2, B). We shall also use the following
notation

( f, g)m = ( f, g)Im; ‖g‖m = (g, g)1/2
m

< f, g >m=
(

f (·, ·, tm), g(·, ·, tm)
)
; |g|m =< g, g >

1/2
m

[g] := g+ − g−; g± = lims→0± g(x, v, t + s)

< f ∓, g∓ >�±= ∫
�± f ∓g∓|Gh · n|dv (∗) < f ∓, g∓ >λ±= ∫

Im
(∗) dt.

Note that ( f, g)D := ∫
D fg (D any domain). In this way we have a discretiza-

tion environment, suitable for the SD method in which we employ a modi-
fied version of the test functions. We have studied the SD method in Vlasov-
Poisson and Vlasov-Poisson-Fokker-Planck settings in Asadzadeh (1990) and
Asadzadeh and Kowalczyk (2005). We have tried to avoid overlappings and
presented only the novelty aspects required in the VM system. For a thorough
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A Canonical Form for Maxwell Equations 7

study of the SD method, we refer to Asadzadeh and Asadzadeh and Kowal-
czyk. The SD method was introduced by Brooks and Hughes (1982) for the fluid
problems. A more elaborated approach is given by Hughes, Franca, and Hul-
bert (1989) in a monograph volume. A rigorous mathematical analysis of the
method for the two-dimensional Euler and Navier-Stokes equations was given
by Johnson and Saranen (1986). The choice of the stabilization parameter in
SD-modification in a simple geometry can found in for example, Hansbo (1994).
Other relevant studies in this direction, for example convergence of the SD
method for conservation laws is given by Szepessy (1991). Linear nonconform-
ing finite element method for Maxwell’s equations in two dimensions is consid-
ered in Hansbo and Rylander (2010), where the focus has been on numerical
tests with a brief discussion on theoretical aspects and no convergence analy-
sis included. Further related studies can be found in Asadzadeh and Sopasakis
(2007) as well as some recent studies by this author and Asadzadeh, Rostamy,
and Zabihi (2011) and with Asadzadeh and Kazemi (2013) and the references
therein.

3.1. Streamline Diffusion for Maxwell Equations in Vector
Analysis Form
In this section, 	 = 	x, we state the basic SD results for the Maxwell’s

equations in the one-half dimensional case and give some of the main ideas
in the proofs. The detailed proofs, although following the path of analy-
sis in Asadzadeh (1990); Asadzadeh and Kowalczyk (2005); Asadzadeh and
Sopasakis (2007); Asadzadeh et al. (2011); and Asadzadeh and Kazemi (2013),
are too lengthy to be included in this note and are the subject of a forthcoming
paper. To proceed we set

M1 =

⎛
⎜⎜⎜⎜⎝

0 0 0

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎟⎟⎠ , M2 =

⎛
⎜⎜⎜⎜⎝

1 0 0

0 0 0

0 0 1

0 1 0

⎞
⎟⎟⎟⎟⎠ ,

and let W = (E1, E2, B)T , W0 = (E0
1 , E0

2 , B0)T , and b = (ρ, j1, j2, 0)T . Then, the
Maxwell equations can then be written, in the concise form, as{

M1Wt + M2Wx = b

W(0, x) = W0(x).
(3.1)

The SD method for the Maxwell equations can now be formulated as follows:
Find Wh ∈ Ṽh such that for m = 1, . . . , M,

(M1Wh
t + M2Wh

x , Û + δ(M1Ut + M2Ux))m + 〈Wh
+,U+〉m
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8 M. Asadzadeh

= (b, Û + δ(M1Ut + M2Ux))m + 〈Wh
−,U+〉, ∀U ∈ Ṽh,

where, Û = (U1,U1,U2,U3)T and δ is a multiple of the mesh parameter h.

Remark 3.1. The choice of δ is, however, a more delicate task and being an
h-dependent stabilization factor has an impact in the convergence estimates
as well. For our purpose, with Vlasov- or transport-type equations (also for the
case of Euler and Navier-Stokes problems as in Johnson and Saranen (1986),
it suffices to choose δ ∼ h. For Elastoplast-plasticity and some other models,
arising, for example, in mechanical engineering problems, the term involving
the parameter δ will have a more involved and different form. For details about
the stabilization parameter see Principe and Codina (2010) and the references
therein.

Thus, we have a variational formulation with the test functions of the
form ĝ + δ(M1gt + M2gx). To simplify the presentation we introduce the bilin-
ear form

B̃(W,U ) :=
M−1∑
m=0

(M1Wt + M2Wx, Û + δ(M1Ut + M2Ux))m

+
M−1∑
m=1

〈[W],U+〉m + 〈W+,U+〉0, (3.2)

and define the linear form

L̃(b,U ) :=
M−1∑
m=0

(b, Û + δ(M1Ut + M2Ux))m + 〈W0,U+〉0. (3.3)

Thus, in short, we reformulate the SD problem. Find Wh ∈ Ṽh such that

B̃(Wh,U ) = L̃(b,U ), ∀U ∈ Ṽh. (3.4)

Then, the triplenorm will be an adequate measuring instrument:

|||U |||2 = 1
2

(
|U+|20 + |U−|2M +

M−1∑
m=1

|[U ]|2m + 2δ

M−1∑
m=0

‖M1Ut + M2Ux‖2
m

)
,

where [U ] = U+ − U− is the jump with U± = lims→0+ U (x ± s).
It is the spirit of Reisz representation and Lax-Milgram theorems to guar-

antee existence of a unique solution for the discretized equation (3.4) via the
following lemma:
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A Canonical Form for Maxwell Equations 9

Lemma 3.1. For any constant C we have for U ∈ H,

‖U‖2
m ≤

(
|U−|2m+1 + 1

C
‖M1Ut + M2Ux‖2

m

)
he2Ch. (3.5)

Further, the following coercivity relation holds true

B̃(U,U ) = |||U |||2 ∀U ∈ H, H := 
M
m=1 H1(Sm). (3.6)

Proof. The estimate (3.5) is a generalized version of the Poincare inequality
stated for the slab Sm. To derive Poincare inequality one needs to restrict the
constant C to depend on the size of 	 and take sufficiently small h. Then, the
exponential factor is a bounded constant. The proof of (3.5) follows by the same
calculus an in the next section, where we derive the corresponding inequal-
ity for the Vlasov-Maxwell system. As for the coercivity estimate (3.6), by the
definition of B̃,

B̃(U,U ) =
M−1∑
m=0

(
(M1Ut + M2Ux, Û )m + δ‖M1Ut + M2Ux‖2

m

)

+
M−1∑
m=1

〈[U ],U+〉m + |U+|20.

Using partial integration we get

M−1∑
m=0

(M1Ut, Û )m +
M−1∑
m=1

〈[U ],U+〉m + |U+|20 = 1
2

(
M−1∑
m=0

|[U ]|2m + |U−|2M + |U+|20
)

.

(3.7)

On the other hand, since U (t, x) = 0 on I × ∂	x, we have that

M−1∑
m=0

(M2Ux, Û )m = 0. (3.8)

Now, (3.6) follows adding the relations (3.7) and (3.8). �
Remark 3.2. The conventional coercivity is usually an inequality of the form
B̃(ξ, ξ ) ≥ |||ξ |||2, rather than the equality (3.6). Then, one may employ the cor-
responding Galerkin orthogonality and estimate the triple norm of the error.
In the previous setting, we are just on the borderline of being able to carry out
the error estimate procedure. Some other approaches are given in Asadzadeh
and Kazemi (2013). Note that the triple norm does not contain L2-norm. The
relation (3.5) guarantees a type of L2-control. This, however, is on a price of the
exponential coefficient there. A more clean L2-estimate, h independent coeffi-
cient and with no exponential factor, can be obtained using the usual Poincare
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10 M. Asadzadeh

inequality. This is adequate due to the fact that all involved functions (fields)
and data are assumed to have compact supports. Therefore we may assume
larger bounded domain and vanishing boundary data.

Now using the Lemma 3.1 and the Lax-Milgram theorem we can show
that:

Lemma 3.2. For any h > 0 the problem (3.4) has a solution and if h is small
enough the solution is unique.

Remark 3.3. Note that by introducing the streamline diffusion term, the bi-
linear form B̃(·, ·), is no longer symmetric. Therefore using the Riesz repre-
sentation theorem (a scalar product Based approach for the existence of unit
solution) does not work.

For the error analysis of Maxwell equations, in addition to the Lemma 3.1,
following stability bounds are also needed: We set QT = [0, T ] × 	x, by some
standard inequalities (e.g., Cauchy-Schwarz and triangle inequalities) we can
derive

‖E1‖2
QT

≤ C
(

‖ f ‖2
QT

+ T
∫

	x

|n(x)|2dx
)

,

and

‖E2‖2
QT

≤ CT
(∫

	x

|E0
2(x)|2dx +

∫
	x

|B0(x)|2dx + ‖v̂2 f ‖2
QT

)
.

In a similar way we get, for i = 1, 2, that

‖v̂i B‖2
QT

≤ CT
(∫

	x

|B0(x)|2dx +
∫

	x

|E0
2(x)|2dx + ‖v̂2 f ‖2

QT

)
.

These inequalities are the main ingredients to perform error analysis. Then,
the proof of the following convergence theorem rely on the interpolation (η) and
projection (ξ ) error estimates in the following split: let Wh be the SD solution
for (3.4) and W̃ an interpolant of W, set

W − Wh = (W − W̃) − (Wh − W̃ ) := η − ξ.

Theorem 3.1. If Wh is a solution to (3.4) and the exact solution W of (3.1)
satisfies ‖W‖k+1 ≤ C, then there exists a constant C such that

|||W − Wh||| ≤ Chk+1/2, W ∈ Hk+1(	x). (3.9)
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A Canonical Form for Maxwell Equations 11

Proof. We may choose the interpolant W̃ ∈ Ṽh, then it follows that the in-
terpolation error satisfies the previous bound, that is, |||η||| ≤ Chk+1/2, see, for
example, Ciarlet (1980; p. 124). Hence it suffices to show that ξ (the error of
a the approximate solution and the interpolant) also satisfies the same bound.
To this end, we show that the |||ξ ||| is dominated by |||η|||. First we note that,
for U ∈ [H]3, (3.2) and (3.3) are the two sides in

B̃(W,U ) = L̃(W,U ), (3.10)

so that restricting U to Ṽh and subtracting (3.4) from it, we end up with the
Galerkin orthogonality relation

B̃(W − Wh,U ) ≡ B̃(e,U ) = 0, ∀ U ∈ Ṽh, (3.11)

where, e = W − Wh is the finite element error. Using this relation with U =
Wh − W̃(= ξ ) we have that B̃(ξ, ξ ) = B̃(η − e, ξ ) = B̃(η, ξ ). Thus by (3.6) |||ξ ||| =
B̃(η, ξ ) and hence

|||ξ |||2 = B̃(η, ξ ) =
M−1∑
m=0

(M1ηt + M2ηx, ξ̂ + δ(M1ξt + M2ξx))m

+
M−1∑
m=0

〈[η], ξ+〉m + 〈η+, ξ+〉0. (3.12)

Further, integrating by parts

(M1ηt, ξ̂ )m = 〈η−, ξ−〉m+1〈η+, ξ+〉m − (η, ξ )m, (3.13)

and since both η and ξ are compactly supported in 	x,

(M2ηx, ξ̂ )m = (ηx, ξ )m = −(η, ξx)m. (3.14)

Inserting in (3.12) and rearranging the terms we get that

B̃(η, ξ ) ≤ |〈η−, ξ−〉M −
M−1∑
m=0

〈η−, [ξ ]〉m

+
M−1∑
m=0

(η̂, M1ξt + M2ξx)m + δ((M1ηt + M2ηx, M1ξt + M2ξx)m|.

From this, by some standard inequality, we can derive

|||ξ |||2 ≤ 1
4

|||ξ |||2 +
M−1∑
m=0

(
4|η|2m+1 + 8

δ
‖η‖2

m + 4δ‖M1ηt + M2ηx‖2
)

.
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12 M. Asadzadeh

Now, by a kick-back argument and the fact that η-terms on the right hand
side, as interpolation error, all satisfy the error bound (3.9) and are included in
|||η|||2, we get the desired result. �

4. STREAMLINE DIFFUSION FOR THE VLASOV-MAXWELL SYSTEM

We have already studied the Maxwell equations in the Vlasov-Maxwell system.
Hence, it remains to consider the Vlasov equation:⎧⎪⎪⎨
⎪⎪⎩

ft + v̂1 fx + (E1 + v̂2 B) fv1 + (E2 − v̂1 B) fv2 = 0, in 	T := (0, T ) × 	x × 	v,

f (0, x, v) = f0(x, v) ≥ 0, in 	0 := 	 × {0},
f (t, x, v) = fb(t, x, v), on (0, T ) × ∂	.

(4.1)

Introducing a phase-space characteristic direction G := (v̂1, E1 + v̂2 B, E2 −
v̂1 B) and the total derivative ∇ f := (∇x f,∇v f ) or, more specifically, in our case
∇ f := ( fx, fv1 , fv2 ), we end up with a concise form of the first equation in (4.1):

ft + G · ∇ f = 0, in 	T := 	 × (0, T ) := 	x × 	v × (0, T ).

Now the streamline diffusion method for the Vlasov part can be formu-
lated. Find f h ∈ Vh such that for m = 1, . . . , M,(

f h
t + G( f h) · ∇ f h, g + δ(gt + G( f h) · ∇g)

)
m + 〈 f h

+, g+〉m = 〈 f h
−, g+〉m, ∀g ∈ Vh,

with G( f h) := (v̂1, Eh
1 + v̂2 Bh, Eh

2 − v̂1 Bh). Now in a similar way as for the
Maxwell equations we introduce the bilinear form

B(G; f, g) :=
M∑

m=1

( ft + G · ∇ f, g + δ(gt + G( f h) · ∇g))m

+
M∑

m=1

〈[ f ], g+〉m + 〈 f+, g+〉0 (4.2)

and the linear form

L(g) := 〈 f 0, g+〉0. (4.3)

Hence, in short we have the weak formulation. Find f ∈ V (= H), such that

B(G( f ); f, g) = L(g), ∀g ∈ V . (4.4)

The streamline diffusion method can now be formulated in the following
concise form. Find f h ∈ Vh such that

B(G( f h); f h, g) = L(g), ∀g ∈ Vh. (4.5)
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A Canonical Form for Maxwell Equations 13

In this part a natural measuring environment is given as

|||g|||2V := 1
2

(
|g+|20 + |g−|2M +

M−1∑
m=1

|[g]|2m

+ 2δ

M∑
m=1

||gt + G( f h) · ∇g||2m +
∫

∂	×I
g2|Gh · n| dνds

)
,

where n is the outward unit normal to the boundary. The outline of the conver-
gence estimates rely again on existence of interpolation/projection of the exact
solution 
f ∈ F in a certain finite dimensional function space, F . Our finite di-
mensional space will be piecewise polynomial space Vh and for a finite element
approximation, fh ∈ Vh, of f we have that the error can be split as

f − f̃ = ( f − 
f ) − ( fh − 
f −) ≡ θ + ζ ; ζ ∈ Vh.

We discretize 	T using streamline diffusion method with test functions of
the form u + δ(ut + G( f̃ ) · ∇u), and δ ∼ h, the mesh size. Then the error analysis
consists of the following two steps:

(i) Use approximation theory to derive sharp error bounds for the inter-
polant θ : |||θ |||V ≤ |||data|||V .

(ii) Establish the ζ -term by the projection error: |||ζ |||V ≤ C|||θ |||V .

Observe that (i) and (ii) work only if ut is included inside test function. A
multiplier without the ut-term (i.e., a test function of the form u + δ(G( f̃ ) · ∇u))
sought for some time iteration, which, generating accumulative error, deterio-
rates the optimality of the convergence.

4.1. Stability and Convergence
In the stationary problems (with no ft), the modification test function u +

δ(Gh · ∇u) together with Gh · ∇ fh introduces a term of the form δ(Gh · ∇ fh, Gh ·
∇u) := δ( f h

γ , uγ ), (γ := Gh, ζγ := γ · ∇ζ ), interpreted as resulting from a diffu-
sion −δ fγ γ acting only in the streamline direction γ : Motivation for the use of
the name streamline diffusion.

As a result, the SD test function adds numerical dissipation in the vicin-
ity of large gradients improving convergence rates. The corresponding stabil-
ity and coercivity results in this case will take the following form (see also
Asadzadeh and Kowalczyk, 2005, and Asadzadeh and Kazemi, 2013):

Lemma 4.1. (Stability and Coercivity) For any constant C we have for u ∈
H that

||u||2	T
≤
[

1
C1

||ut + G( f h) · ∇u||2 +
M−1∑
m=1

|[u]|2m +
∫

∂	×I
u2|Gh · n|

]
δeC1δ,

∀C1 ≥ 0. (4.6)
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14 M. Asadzadeh

We can also prove the following coercivity:

B(G( f h); u, u) ≥ 1
2

|||u|||2V , ∀u ∈ H ∀C1 ≥ 0. (4.7)

Proof. Here, the proof of the coercivity estimate follows the same path as
that of the (3.6) in the previous section. As for the stability estimate (4.6),
the following layout would work both for Poincare inequality (3.5) and with a
general constant as in here. To this end for each slab Sm, that is, for tm < t <

tm+1, we may write

‖u(t)‖2
	 = |u|2m+1 −

∫ tm+1

t

∂

∂s
‖u(s)‖2

	 ds

= |u|2m+1−2
∫ tm+1

t
[(ut + G( f ) · ∇u, u)m−1

2

∫
∂	

u2|G( f ) · n| dσ−〈u+, u+〉−� ] ds

≤ |u|2m+1 + 1
C

‖ut + +G( f h) · ∇u‖2
m + C

∫ tm+1

t
‖u(s)‖ ds. (4.8)

Now, a Gronwall inequality applied for t ∈ Im = (tm, tm+1), integration over Im

and summing over m = 0, 1, . . . , M yields the desired result. �
As in the case of Maxwell’s equations, the existence of a unique solution

is again a consequence of the Lax-Milgram theorem and the error analysis,
although technical, rely on similar estimates as in those of the previous sec-
tion (we leave the reader to work out the details, see also some relevant esti-
mates in Asadzadeh and Kowalczyk (2005); Asadzadeh and Sopasakis (2007);
Asadzadeh et al. (2011); and Asadzadeh and Kazemi (2013). Finally, similar
procedure as in the proof of Theorem 3.1 yields the main result of this section:

Theorem 4.1 Let f h be the SD approximate solution satisfying (4.5) and as-
sume that there is a constant C such the exact solution f for (4.4) and the pro-
jection/interpolation error satisfies the bound

‖∇ f ‖∞ + ‖G( f )‖∞ + ‖∇η‖∞ ≤ C.

then, for sufficiently small h, we have that

||| f − f h|||V ≤ Chk+1/2|| f ||Hk+1(	T ).

5. CONCLUSION

We have considered approximate solutions for a one and one-half dimensional
Vlasov-Maxwell system of equations using the streamline-diffusion finite ele-
ment method. This geometry was chosen in order to have a simpler approach
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A Canonical Form for Maxwell Equations 15

to the existence of a unique solution for Maxwell’s equations with a low regu-
larity requirement. We have discussed the particular role played by the field
equations in Maxwell’s system. Their physical interpretation was the reason
for avoiding the conventional fixed-point approaches used for the Vlasov-type
systems. To circumvent such uncertainty we considered instead a simpler
geometry. To have an insight on examining the method, we studied the SD
procedure for Maxwell’s equation and the Vlasov-Maxwell system separately.
We have proved coercivity and stability estimates required to prove optimal
convergence rates. In a forthcoming paper, concerning a posteriori error esti-
mates, we shall consider other geometries, include the discontinuous Galerkin
approach and introduced results of some implementations.
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