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ABSTRACT
In this paper we study stability and convergence for hp-streamline
diffusion (SD) finite element method for the, relativistic, time-
dependent Vlasov–Maxwell (VM) system. We consider spatial
domain Xx � R3 and velocities v 2 Xv � R3: The objective is to
show globally optimal a priori error bound of order Oðh=pÞsþ1=2,
for the SD approximation of the VM system; where h ð¼
maxK hKÞ is the mesh size and p ð¼ maxK pKÞ is the spectral
order. Our estimates rely on the local version with hK being the
diameter of the phase-space-time element K and pK the spectral
order for K. The optimal hp estimates require an exact solution in
the Sobolev space Hsþ1ðXÞ: Numerical implementations, per-
formed for examples in one space- and two velocity dimensions,
are justifying the robustness of the theoretical results.

KEYWORDS
Vlasov–Maxwell; stability;
convergence; hp method

1. Introduction

In the SD method the weak form is modified by adding a multiple of the
streaming part in the equation, to the test function. So we obtain a multiple
of streaming terms in both test and trial functions. This can be viewed as
an extra diffusion in the streaming direction in the original equation.
Hence, the name of the method (the streamline diffusion). Such an extra
diffusion would improve both the stability and convergence properties of
the underlying Galerkin scheme. It is well known that the standard
Galerkin method, used for hyperbolic problems, has a suboptimal behavior:
Converges as Oðhs�1Þ (versus OðhsÞ for the elliptic and parabolic problems
with exact solution in the same space: HsðXÞ). The SD method improves
this drawback by Oðh1=2Þ, also, having an upwinding character, enhances
the stability. The properties that are achieved by the discontinuous
Galerkin as well. The hp-approach is to capture local behavior in the sense
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that: in the vicinity of singularities refined mesh h is combined with the
lower spectral order (small p), whereas in more smooth regions higher
order polynomials (large p) and non-refined (large h) meshes are used.
Hence, the hp-approach may be viewed as a kind of automatic adaptivity.
The Vlasov–Maxwell (VM) system describing the time evolution of colli-

sionless plasma is formulated as

@tf þ v̂ � rxf þ qðEþ c�1v̂ � BÞ � rvf ¼ 0,

@tE ¼ crx � B� j, rx � E ¼ q,

@tB ¼ �crx � E, rx � B ¼ 0

(1.1)

with, physically relevant, initial data f ð0, x, vÞ ¼ f 0ðx, vÞ � 0, Eð0, xÞ ¼
E0ðxÞ,Bð0, xÞ ¼ B0ðxÞ: Here f is the density, in phase space, time of par-
ticles with charge q, mass m and velocity

v̂ ¼ m2 þ c�2jvj2
� ��1=2

v v is momentumð Þ:

Moreover, c is the speed of light and the charge and current densities: q
and j are

q t, xð Þ ¼ 4p
ð
qf dv and j t, xð Þ ¼ 4p

ð
qf v̂ dv: (1.2)

The Vlasov–Maxwell equations arise in several context such as, e.g., con-
tinuum, plasma physics and rarefied gas dynamics, where the main assump-
tion underlying the model is that collisions are rare and therefore negligible.
The system (1.1) is modeling the motion of a collisionless plasma, e.g., a
high-temperature, low-density, ionized gas. The mathematical challenge in
study of the Vlasov–Maxwell system is the presence of the nonlinear term:
Eþ v̂ � Bð Þ � rvf : In the case of divergence free field, this term is written as
divv Eþ v̂ � Bð Þf

� �
: A thorough mathematical analysis, with such nonlinear-

ity, is studied by Di Perna and Lions in DiPerna and Lions (1989).
An outline of the remaining part of this paper is as follows: In Section 2

we present the canonical form of the equations and state the numerical
approximation strategy. Section 3 describes hp and SD strategies. Section 4
is devoted to the approximation of the projection error. In Section 5 we
study the convergence of the constructed schemes. In our concluding
Section 6 we implement some numerical examples in a lower dimensional
case that justifies our theoretical study.

2. Canonical forms

As a general framework we introduce similar convective forms f or both
Vlasov and Maxwell equations. The convection coefficients are nonlinear
vector functions for the Vlasov equation and constant sparse multiple
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matrices in the Maxwell case. Despite physical diversities, these coefficients
are exhibiting a common property: they both are divergence free, a prop-
erty that substantially simplifies the analysis. Let E ¼ E1,E2,E3ð ÞT ,B ¼
B1,B2,B3ð ÞT , j ¼ j1, j2, j3ð ÞT , then the Maxwell’s equations can be written as

@tE1 ¼ @2B3 � @3B2 � j1,

@tE2 ¼ @3B1 � @1B3 � j2,

@tE3 ¼ @1B2 � @2B1 � j3,

and

@tB1 ¼ �@2E3 þ @3E2,

@tB2 ¼ �@3E1 þ @1E3,

@tB3 ¼ �@1E2 þ @2E1,

8><
>:

8><
>:

where @i denotes the derivative with respect to xi. We also introduce 6� 6
symmetric matrices Mk, k ¼ 1, 2, 3:

M1ð Þ35 ¼ M1ð Þ53 ¼ �1, else M1ð Þij ¼ M1ð Þji ¼ 0,

M2ð Þ16 ¼ M2ð Þ61 ¼ �1, M2ð Þ34 ¼ M2ð Þ43 ¼ 1, else M2ð Þij ¼ M2ð Þji ¼ 0,

M3ð Þ24 ¼ M3ð Þ42 ¼ �1, M3ð Þ15 ¼ M3ð Þ51 ¼ 1, else M3ð Þij ¼ M3ð Þji ¼ 0:

8>><
>>:

(2.1)

To write the Maxwell equations in the matrix-vector form, we introduce
the matrix-vector notation M ¼ M1,M2,M3ð Þ, and set E ¼ E1,E2,E3ð Þ,
B ¼ B1,B2,B3ð Þ, j ¼ j1, j2, j3ð Þ, 0 ¼ 0, 0, 0ð Þ, b ¼ j, 0ð Þ: Further let W ¼
E,Bð ÞT and use the notations for the initial values E0,B0,W0: Then

@tWþM � rW ¼ b,

W 0, xð Þ ¼ W0 xð Þ:

(
(2.2)

Note that (2.2) is convective with, matrix-vector form, divergent free
(DivM ¼ 0) convection coefficient.
The Vlasov possesses a similar structure, but with nonlinear coefficient

vectors depending on x and v:

@tf þ v̂ � rxf þ Eþ v̂ � Bð Þ � rvf ¼ 0,

f 0, x, vð Þ ¼ f 0 x, vð Þ � 0,

(
(2.3)

which can be rewritten in a compact form as

@tf þ G fð Þ � rf ¼ 0: (2.4)

where rf ¼ rxf ,rvfð Þ is the total gradient and G fð Þ ¼ v̂,Eþ v̂ � Bð Þ is
divergence free:

div G fð Þ ¼
Xd
i¼1

@v̂
@xi

þ
X2d
i¼dþ1

@ Eþ v̂ � Bð Þ
@vi�d

¼ rv v̂ � Bð Þ ¼ 0: (2.5)

Throughout the paper C will denote a generic constant, not necessarily
the same at each occurrence, unless otherwise explicitly specified.
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2.1. The numerical approximation strategy

Consider a function F in an infinite dimensional Hilbert (or Banach) space
F : We want to approximate F with a function ~F in a finite dimensional
subspace ~F of F : To this end, first we assume a classical form approxima-
tion (an interpolant, or a projection, e.g. L2- or Ritz-projection) PF 2 ~F of
F. Then, roughly, the idea is i) to use (or establish) a theoretical error esti-
mate, in a certain norm, for the interpolation or projection error F �PF,
and ii) split the numerical error as

F � ~F ¼ F �PFð Þ þ PF � ~Fð Þ :¼ gþ n,

and prove that there is a constant C such that

jjnjj � Cjjgjj: (2.6)

The intermediate (theoretical) part, i.e., control of jjgjj, is the most cru-
cial step in the efficiency of the numerical approximation procedure. The
numerical approach gets its reliability from the stability of the constructed
numerical method and its accuracy from the convergence analysis.

3. The SD and hp structures

3.1. Constructing finite element spaces

For numerical studies we need to restrict the variables to bounded
domains: Xx � R3 and Xv � R3, as the space and velocity, respectively. We
assume that f t, x, vð Þ,Ei t, xð Þ and Bi t, xð Þ, for i¼ 1, 2, 3, have compact sup-
ports in Xx and that f t, x, vð Þ has compact support in both Xx and Xv.
Assume that h 0 < h < 1ð Þ, and let Tx

h ¼ fsxg and Tv
h ¼ fsvg be finite

element subdivisions of Xx with elements sx and Xv with elements sv,
respectively. Then Th ¼ Tx

h � Tv
h ¼ fsx � svg ¼ fsg is a subdivision of X.

(with a, phase-space, mesh size h). Let now 0 ¼ t0 < t1 < ::: < tN�1 < tN ¼
T be a partition of the time interval ½0,T� into sub-intervals In ¼ tn�1, tn�,ð
with jInj :¼ tn � tn�1 ¼: kn 	 h, n ¼ 1, :::,N: Further let Ch be the corre-
sponding subdivision of QT ¼ ½0,T� � X into the prismatic elements K ¼
In � s, with hK ¼ diam K as the mesh parameter. We also define a piece-
wise constant mesh function h t, x, vð Þ :¼ hK , t, x, vð Þ 2 K: Finally, induced
from Ch, we introduce ~Ch as the finite element subdivision of ½0,T� � Xx:

Remark 3.1. From now on, the discrete schemes are the finite element
approximations of Equations (2.2) and (2.3) with x, v, tð Þ 2 0,T� � Xx � Xv,ð
associated with initial and boundary conditions. Assuming also that f has
compact support in the velocity space we get homogeneous Dirichlet bound-
ary condition for Xv.
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To formulate variational (weak) form of the VM system we introduce
the product spaces

H0 ¼
YN
n¼1

H1
0 Xnð Þ and ~H0 ¼

YN
n¼1

H1
0
~Xn

� �
,

where Xn :¼ In � Xx � Xv, ~Xn :¼ In � Xx, and for X :¼ Xx � Xv

H1
0 In � Xð Þ :¼ fw 2 H1 In � Xð Þ;w ¼ 0 on @Xg:

For k ¼ 0, 1, 2, :::, we define the finite element spaces for the Maxwell’s
equations (resp. Vlasov equation) as being the space of piecewise polyno-
mials that are continuous in x (resp. in x and v) with possible discontinu-
ities at the interior time levels tn, n ¼ 1, :::,N � 1:

~Vh ¼ fg 2 ~H0

� �6
; gij~K 2 Pp~K Inð Þ � Pp~K sxð Þ, 8~K ¼ In � sx 2 ~Ch, 1 � i � 6g,

with the extension for the Vlasov part and with s ¼ sx � sv as

Vh ¼ fg 2 H0; gjK 2 PpK Inð Þ � PpK sxð Þ � PpK svð Þ, 8K ¼ In � s 2 Chg:

where PpK �ð Þ is the set of polynomial of degree at most pK on the underly-
ing set. Here we allow the degree of polynomial to vary from elementwise.
Therefore we may define the piecewise constant function p t, x, vð Þ :¼ pK:
Finally we shall use the following notation:

f , gð Þn ¼ f , gð ÞSn , kgkn ¼ g , gð Þ1=2n

hf , gin ¼ f tn, :::ð Þ, g tn, :::ð Þð ÞX, jgjn ¼ hg , gi1=2n ,

where, for n ¼ 1, :::,N, Sn :¼ ~Xn, for the Maxwell’s equations and Sn :¼ Xn

in the Vlasov case.

3.2. The SD strategy

The idea of the weak form for a differential equation, e.g., variational for-
mulation and the finite element methods, rely on the basic structure of the
Fourier transformation: to multiply the function f by a basis function e�ixn

and integrate. Then for each n 2 R we extract an information, f̂ nð Þ, from
the function f (these are the Fourier coefficients when considering Fourier
series). In this way we get an “excessive amount (1) of information,”
which (i) is unrealistic to tackle and (ii) contains a great deal of unneces-
sary data. The remedy is a clever choice of a finite number of, treatable,
multipliers that provides the most crucial information needed. This is
basically the goal of the Galerkin approach with finitely many multipliers.
However, here we need to extract the information from the PDE itself
rather than its solution. We seek an approximate solution for a PDE in a

JOURNAL OF COMPUTATIONAL AND THEORETICAL TRANSPORT 5



finite dimensional space (trial space) with the multipliers being in the same
or a closely related finite dimensional space known as the test function
space. The idea with the SD method is to multiply the underlying PDE by
a sum of the test function and a multiple of an expression as the streaming
term in the PDE, with the solution is replaced by the test function, say g.
Hence, we consider a common form for (2.2) and (2.4), viz.

Ft þ l � rF ¼ b, (3.1)

and formulate the SD scheme to find the solution F such that

Ft þ l � rF, g þ dl � rgð Þ ¼ b, g þ dl � rgð Þ: (3.2)

Expanding Equation (3.2) we get a term of the form d l � rF, l � rgð Þ:
Setting g¼ F, this term can be interpreted as coming from a diffusion term
�dDlF, of order d, in the streamline direction l, hence the name of
the method.

3.3. The hp approach

Here, we introduce the main function spaces employed in hp-studies for
approximating the projection errors, (see, e.g. Houston et al. 2000): Let P
be a partition of XT ¼ 0,Tð Þ � Xx � Xv into open patches P which are

images of canonical “cubes”: P̂ ¼ �1, 1ð Þ2dþ1
:¼ Îð Þ2dþ1

, d ¼ 1, 2, 3, under
smooth bijections FP:

8P 2 P : P ¼ FP P̂ð Þ:

We construct a mesh T :¼ [P2PT P on XT by subdividing each P̂ ¼
�1, 1ð Þ2dþ1, into 2dþ 1-dimensional generalized quadrilateral elements ŝ,
or 2d þ 1-dimensional prisms. We label them as ŝ which are affine equiva-
lent to P̂, and call the mesh T̂ P (on P̂). Then, on each P 2 P we define a
mesh T P by setting

8P 2 P : T P :¼ fsjs ¼ FP ŝð Þ, ŝ 2 T̂ Pg:

Each ŝ sð Þ is an image of the domain P̂ under an affine mapping Aŝ :
P̂ ! ŝ Fs ¼ FP 
 Aŝ : P̂ ! s

� �
: Next we define the space

FP ¼ fFP : P 2 Pg,
and the polynomial space

Ap ¼ spanf x̂ , v̂, t̂ð Þa : 0 � ai � p, 1 � i � 2d þ 1g,
where x̂, v̂, t̂ð Þ 2 P̂ :¼ f x̂, v̂, t̂ð Þ 2 Rd � Rd � Rþ : jx̂jj � 1 & jv̂jj � 1, t̂ �
1 j ¼ 1, :::, dg, and a ¼ a1, a2, :::, a2dþ1ð Þ is multi-index Moreover let p be
a polynomial degree vector in T ,
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p ¼ fps : s 2 T g,
and define the continuous hp-finite element spaces

Sp, k XT , T , FPð Þ :¼ ff 2 Hk XTð Þ : f js 
 Fs 2 Aps , s 2 T g, k ¼ 0, 1, :::,

for polynomials with degree vector p, and with

Sp, k XT , T , FPð Þ :¼ ff 2 Sp, k XT , T , FPð Þ : p ¼ p, p, :::, pð Þg,

for the uniform polynomial degree ps ¼ p, 8s, p > 1: Finally we denote
by jjf jjk, Î and jf jk, Î the Hk Îð Þ norm and seminorm on Î , respectively (we
shall suppress k¼ 0, corresponding to the L2-norm). We also denote by
Sp Îð Þ the set of polynomials of degree p on Î : In the Maxwell case one
needs to replace the domain XT ¼ Xx � Xv � 0,Tð Þ by ~XT ¼ Xx � 0,Tð Þ:

4. Approximation of the projection error

The projection error estimates are of analytic nature and often predictable,
however too involved to derive. In this section we provide estimates, with-
out proofs, for jjgjj and jjDgjj, where D :¼ rx,rv, d=dtð Þ denotes the total
gradient operator. We denote by pipf the 1-dimensional H1-projection of f
onto the polynomials of degree p in the ith coordinate, where 1 � i � d
would correspond to xi’s for the spatial variable, d þ 1 � i � 2d to vi’s for
the velocity, and i ¼ 2d þ 1 for the time variable. We shall apply the tensor
product in 2d þ 1-dimensions to the following one-dimensional results by
Schwab (1998).

Proposition 4.1. Let f 2 Hkþ1 Îð Þ, Î ¼ �1, 1ð Þ for some k � 0. Then, for
every p � 1, there exists a projection ppf 2 Sp Îð Þ such that, for any
0 � s � min p, kð Þ,

kf 0 � ppf
� �0k2Î � p� sð Þ!

pþ sð Þ!
jf j2sþ1, Î , (4.1)

kf � ppf k2Î �
1

p pþ 1ð Þ
p� sð Þ!
pþ sð Þ!

jf j2sþ1, Î : (4.2)

The theorem below is a generalized version of Proposition 4.1, in 2d þ 1

dimensions with Pp ¼
Q2dþ1

i¼1 pip: the tensor product projectors and binary

multi-index jmjl �
Pl

n¼1mn, with mn ¼ 0 or 1, is derived in Asadzadeh
and Sopasakis (2007).

Theorem 4.2. Let T h ¼ [K be a partition of the domain D � RN , and K 2
T h be an image of the N -dimensional canonical hypercube R̂ :¼ �1, 1ð ÞN ,
with N -dimensional mesh T R̂ , under the bijection GK : s ¼ GK R̂ð Þ. For the
polynomial degree distribution r ¼ frK j K 2 T hg and 8K 2 T h, let f jK 2
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HkKþ1 Kð Þ for some kK � 1. Then, for rK � 1 and 0 � sK � min rK , kKð Þ we
have

jjgjj2 � C
X
K2T h

hK
2

� �2sKþ2

U1 rK , sKð Þjjf̂ jj2sKþ1, K̂ ,

jjDgjj2 � C
X
K2T h

hK
2

� �2sK

U2 rK , sKð Þjjf̂ jj2sKþ1, K̂ ,

with f̂ ¼ f 
 Gs,K ¼ Gs K̂ð Þ, jj � jjsKþ1, K̂ is the Sobolev norm in HsKþ1 K̂ð Þ
and

U1 p, sð Þ ¼ N
XN
i¼1

2i�1
X

jmji�1�i�1

ajmji�1þ1
p bjmji�1

,

U2 p, sð Þ ¼ N
XN
i¼1

XN
j¼1

2j
X

jmjj�1�j�1
mi¼1

a
jmjj�1
p bjmjj�1

:

where @jmji�1 ¼ @m1
1 @m2

2 � � � @mi�1
i�1 , ap ¼ 1

p pþ1ð Þ , and bjmjk ¼
p�sþjmjkð Þ!
pþs�jmjkð Þ! :

The proof is based on a scaling argument for an affine mapping and a
generalization of the Proposition 4.1.

Remark 4.3. The above estimates relying on Sobolev inequalities are dimen-
sion dependent and give rise to singularities in higher dimensions. In add-
ition, the bound for s (0 � s � min p, kð Þ) and the fact that the spectral order
p cannot be chosen very large, limits the value of jmjk in bjmjk to jmjk <
pþ s: This yields additional bounds for the indices of the interior sums.
Using Stirling’s formula, see Houston et al. (2000), one can show that

max U2 p, sð Þ,U2 p, sð Þ
� �

� Cp�2s:

An estimate that is crucial in deriving p-version of hp estimates.

5. Convergence analysis

Due to the common structure for the Maxwell (2.2) and Vlasov (2.4) equa-
tions, and since the hp-SD approach has been considered for (2.4) in
Asadzadeh and Sopasakis (2007), below we give the details only in the
Maxwell case (2.2).

5.1. hp-method for Maxwell equations

Starting with, sufficiently smooth, f 0, b0 and W0, let f h, i, bh, i and Wh, i

denote the approximations on the ith iteration step (i> 0) for f, b and W,

8 M. ASADZADEH ET AL.



respectively. The h version of the SD method on the ith step for the
Maxwell’s part (with the short operator notation: M � r :¼

P3
‘¼1M‘@‘,

recall that M‘ are the 6� 6 matrices in (2.1)) can be formulated as: find
Wh, i 2 ~Vh such that

~B Wh, i, g
� �

¼ ~L bh, i�1; g
� �

8g 2 ~Vh, (5.1)

where g ¼ g1, :::, g6ð ÞT , with the bilinear form ~B defined as

~B W, gð Þ ¼
XN�1

n¼0

ð@tW þM � rW, g þ d @tg þM � rgð ÞÞn þ
XN�1

n¼1

h W½ �, gþim

þ hWþ, gþi0:

½W� ¼ Wþ �W� denotes the jump (g6 t, xð Þ ¼ lims!06 g t þ s, xð Þ), and the

linear form ~L is given by

~L b; gð Þ ¼
XN�1

n¼0

b, g þ d @tg þM � rgð ÞÞn þ hW0
, gþi0:

�
Let now �, �ð ÞK denote the L2 product over K and define a nonnegative

piecewise constant function d by

djK ¼ dK , for K 2 ~Ch:

We may formulate a finite element method based on the local space-
time elements. Then, the problem (5.1) would have an alternative formula-
tion replacing in the definitions for ~B and ~L the sum of the inner products
�, �ð Þn involving dK by the corresponding sum

P
K2~Ch

�, �ð ÞK and all d by dK.
Then, (5.1) will be rewritten as

~B W, gð Þ ¼
X
K2~Ch

@tW þM � rW, g þ dK @tg þM � rgð Þð ÞK

þ
XN�1

n¼1

h W½ �, gþin þ hWþ, gþi0,
(5.2)

and the solution W of Equation (2.2) satisfies the variational formulation

~B W, gð Þ ¼ ~L b; gð Þ 8g 2 ~Vh: (5.3)

Subtracting Equation (5.1) from Equation (5.3) we end up with the fol-
lowing relation:

~B W �Wh, i, g
� �

¼ ~L b; gð Þ � ~L bh, i�1; g
� �

8g 2 ~Vh: (5.4)

Finally, with jumps at the time levels t ¼ tn, n ¼ 1, :::,N � 1, we intro-
duce the computational norm
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jjjgjjj2 ¼ 1
2

jgþj20 þ jg�j2N þ
XN�1

n¼1

j g½ �j2n

 !
þ
X
K2~Ch

dKjj@tg þM � rgjj2K:

Lemma 5.1. [Well-posedness] The bilinear form ~B �, �ð Þ satisfies the
M-coercivity relation

~B g, gð Þ ¼ jjjgjjj2, 8g 2 ~H0:

Proof. We split ~B, viz.

~B g, gð Þ ¼
X
K2~Ch

dKk@tg þM � rgk2K þ A1 þ A2,

with Ai, i ¼ 1, 2 defined as

A1 :¼
XN�1

n¼0

@tg, gð Þ þ
XN�1

n¼1

h g½ �, gþin þ jgþj20 ¼
1
2

XN�1

n¼1

j g½ �j2n þ jg�j2N þ jgþj20

 !

A2 :¼
XM�1

m¼0

M � rg , gð Þn ¼ 0,

(5.5)

where we used integration by parts and in the latter also g t, xð Þ ¼ 0 on I �
@Xx: Then, the proof follows adding all above terms and the definition
of jjjgjjjM: w

Let now ~W be an interpolant of W in the finite dimensional space ~Vh

and denote by Wh, i a solution to (5.1). Further, set ~g ¼ ~g1, :::, ~g6ð ÞT , ~n ¼
~n1, :::, ~n6
� �T

and introduce a split of the error ~e, viz.

~e ¼ W �Wh, i ¼ W � ~Wð Þ � Wh, i � ~Wð Þ ¼ ~g � ~n:

Now we can state and prove our main result: the hp-convergence
theorem for the Maxwell’s equations.

Theorem 5.2. Assume that W 2 Hkþ1 ½0,T� � Xð Þ, dK ¼ C1
hK
pK

for some con-
stant C1 > 0, and pKhK � C2 < 1 for some constant C2 > 0. Then there
exists a constant C> 0 such that

jjjW �Wh, ijjj2 � C
X
K2~Ch

h2sKþ1
K p�1

K UM pK , sKð ÞkWk2sKþ1,K þ Ckf � f h, i�1k2QT
,

where UM ¼ max U1,U2ð Þ with N ¼ dim Xx þ 1 for U1 and U2 (defined in
Theorem 4.2) and C is independent of pK, hK and sK.
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Proof. By the coercivity Lemma 5.1 and (5.4) we have that

jjj~njjj2 ¼ ~B ~n, ~n
� �

¼ ~B ~g, ~n
� �

þ ~B ~n � ~g, ~n
� �

¼ ~B ~g, ~n
� �

� ~L b; ~n
� �

þ ~L bh, i�1; ~n
� �

:

We start estimating the first term on the right-hand side:

~B ~g, ~n
� �

¼
X
K2~Ch

@t~g þM � r~g, ~n þ dK @t~n þM � r~n
� �� �

K þ
XN�1

n¼1

h ~g½ �, ~nþin

þ h~gþ, ~nþi0:

Integration by parts: @t~g, ~n
� �

n ¼ h~g�, ~n�inþ1 � h~gþ, ~nþin � ~g, @t~n
� �

n:
That ~g and ~n have compact support in Xx yields M � r~g, ~n

� �
n ¼

� ~g,M � r~n
� �

n: Inserting in ~B ~g, ~n
� �

, by standard inequalities

j~B ~g, ~n
� �

j � 1
16

jjj~njjj2 þ 32
XN�1

n¼0

j~g�j2nþ1

þ
X
K2~Ch

32
dK

k~gk2K þ 32dKk@t~g þM � r~gk2K
� �

:

With a similar argument we can bound the second term as

j~L bh, i�1; ~n
� �

� ~L b; ~n
� �

j � 1
16

jjj~njjj2 þ
X
K2~Ch

C
2
þ 8dK

� �
kb� bh, i�1k2K

þ
XN�1

n¼0

1
2C

k~gk2n þ
1
2C

k~ek2n
� �

:

The above inequalities and a Poincar�e inequality, with properly chosen C
and bound on pKhK , yield

jjj~njjj2 � 1
2
jjj~ejjj2 þ Ckf � f h, i�1k2QT

þ C
XN�1

n¼0

j~g�j2nþ1 þ hj~e�j2nþ1

� 	

þ C
X
K2~Ch

1þ d�1
K

� �
k~gk2K þ dKk@t~g þM � r~gk2K

� 	
,

jjj~ejjj2 � jjj~gjjj2 þ jjj~njjj2 � 1
2
jjj~ejjj2 þ Ckf � f h, i�1k2QT

þ C
XN
n¼1

hj~e�j2n þ C J1 þ J2ð Þ,

(5.6)

where in the latter I1 and I2 are the interpolation error terms given by:
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I1 :¼
X
K2~Ch

d�1
K k~gk2K þ dKk@t~g þM � r~gk2K

� 	
,

I2 :¼ j~gþj20 þ
XN�1

n¼0

j~g�j2nþ1 þ
XN�1

n¼1

j ~g½ �j2n:

To bound I1 we use the estimates in Theorem 4.2 and get

I1 � C
X
K2~Ch

hK
2

� �2sK

UM pK , sKð Þp�2
K d�1

K h2K þ dK
� �

kWk2sKþ1,K : (5.7)

By trace and inverse inequalities combined with interpolation estimates
and Theorem 4.2 we end up with

I2 � C
X
K2~Ch

hK
2

� �2sKþ1

U1=2
M pK , sKð Þp�1

K U1=2
M pK , sKð Þ þ p�2

K UM pK , sKð Þ
� 	" #

kWk2skþ1,K ,

(5.8)

Now, a kick-back argument and the estimates (5.7) and (5.8) gives

jjj~ejjj2 � C
X
K2~Ch

h2sKþ1
K p�1

K UM pK , sKð ÞkWk2sKþ1,K þ Ck f � f h, i�1k2QT

þ C
XN
n¼1

hj~e�j2n: (5.9)

Finally it is easy to verify the discrete Gr€onwall’s inequality,

j~e�j2‘ � C
X
K2~Ch

h2sKþ1
K p�1

K UM pK , sKð ÞkWk2sKþ1,K þ Ck f � f h, i�1k2QT

for ‘ ¼ 1, :::,N: Plugging these inequalities into (5.9) completes the proof. w

Corollary 5.3. By the above theorem and the estimate in Schwab (1998), we
can derive UM pK , sKð Þ � P�2sK

n and hence, suppressing the subscripts in finial
setting get a hp error estimate as

jjj~ejjj � C
h
p

� �sþ1=2

, (5.10)

which is the most desired form of optimal hp error estimate.

5.1.1. Vlasov–Maxwell equations
As mentioned in the introduction, for the Vlasov part, we omit all details
and state the final result:
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Theorem 5.4. Let f h, i be the discrete solution to the Vlasov equation at the
iteration step i and assume that the exact solution f of (2.3) is in the Sobolev
class HKþ1 QTð Þ and satisfies the bound

rf1 þ Gðf Þ1 þrg1 � C: (5.11)

Further assume that the parameter dK on each K satisfies dK ¼ C1
hK
pK

for
some positive constant C1 with pKhK � C2 < 1 for some constant C2 > 0.
Then there exists a generic constant C> 0 such that

jjjf � f h, ijjj2V � C

 X
K2~Ch

h2sKþ1
K p�1

K UM pK , sKð ÞkWk2sKþ1,K þ phkf � f h, i�1k2QT

þ
X
K2Ch

h2sKþ1
K p�1

K UV pK , sKð Þkf k2sKþ1,K

!
:

(5.12)

Here, 0 � sK � min pK , kð Þ and the subscripts V or M in the triple norms
as well as U:s is to emphasize the quantities for the Vlasov or Maxwell part.
Here, UV ¼ max U1,U2ð Þ with N ¼ dimXx þ dimXv þ 1 for U1 and U2 as
defined in Theorem 4.2.
We omit the proof which is a lengthy extension of the proof of the main

result in Asadzadeh and Sopasakis (2007), replacing the contribution of
scalar Fokker-Planck term with that of the Maxwell’s system.

5.2. Conservation of charge

In this section we state the conservation of charge (mass conserva-
tion) result.

Theorem 5.5. For any T> 0 and the initial data f 0 as in the convergence
theorem, the discrete solution f h 2 Vh of the Vlasov equation satisfiesð

X
f h T, x, vð Þ dxdv ¼

ð
X
f 0 x, vð Þ dxdv:

Proof. Let B be the convex open set such that f h t, x, vð Þ ¼ 0 for all t 2 ½0,T�
and x, vð Þ 2 X n B: Let g 2 Vh such that g t, x, vð Þ ¼ 1 for all t 2 ½0,T� and
x, vð Þ 2 B: Taking this g as a test function in the variational formulation of
the Vlasov equation and using the fact that div G ¼ 0 we get the result. w

6. Numerical results

We present in this section results of some numerical implementations that
justify the accuracy of the SD method. The computations are performed for
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the simplified case of one spatial variable and two velocities (cf., Standar
2016), which takes the following form:

@tf þ v1@xf þ E1 þ v2Bð Þ@v1 f þ E2 � v1Bð Þ@v2 f ¼ 0,

@tE1 ¼ �
ð
v1fdv ¼ �j1 t, xð Þ,

@tE2 þ @xB ¼ �
ð
v2fdv ¼ �j2 t, xð Þ,

@tBþ @xE2 ¼ 0,

where f ¼ f t, x, v1, v2ð Þ,E1 ¼ E1 t, xð Þ,E2 ¼ E2 t, xð Þ, and B ¼ B t, xð Þ where
we take x 2 Xx � R and v ¼ v1, v2ð Þ 2 Xv � R2: Here we consider the non-
relativistic case since there is an excessive amount of literature available to
compare the numerical results. Our results are also valid in this case. We
consider the following, somewhat general, initial conditions:

f 0, x, v1, v2ð Þ ¼ 1
pb

e�v21=b½le� v2�v0, 1ð Þ2=b þ 1� lð Þe� v2þv0, 2ð Þ2=b�,

E1 0, xð Þ ¼ E2 0, xð Þ ¼ 0, B 0, xð Þ ¼ �b sin k0x1ð Þ:

They correspond to the streaming Weibel instability (cf Cheng et al.
2014) with the specific values for the parameters: b ¼ 0:01 and b¼ 0.001.
Our implementations are performed for x 2 ½0, L�, L ¼ 2p=k0 and the fol-
lowing two parameter sets:

case 1: l ¼ 0:5, v0, 1 ¼ v0, 2 ¼ �0:3, k0 ¼ 0:2,

case 2: l ¼ 1=6, v0, 1 ¼ �0:5, v0, 2 ¼ �0:1, k0 ¼ 0:2:

We assume periodic boundary condition in x, which we normalized in
the computations taking x 2 ½0, 1�: The accuracy tests are performed for
Xv ¼ ½�1, 1�2, whereas for the other test we set Xv ¼ ½�1:1, 1:1�2:

6.1. Accuracy tests

For the above setting, the Vlasov–Maxwell system is reversible in the time
variable. Hence, with the initial condition f 0, x, vð Þ, E(0, x), B(0, x), yield,
for t¼T, the solution f T, x, vð Þ, E(T, x), and B(T, x). Taking f T, x, � vð Þ,

Table 1. L1 and L2 errors for different polynomial degrees and fixed mesh sizes set H1.
Error Degree f E1 E2 B

L1 p¼ 1 3.801e-1 7.086e-4 1.599e-6 1.645e-5
p¼ 2 1.614e-1 3.248e-9 1.770e-7 9.092e-7
p¼ 3 1.891e-2 2.295e-10 9.753e-9 3.321e-8

L2 p¼ 1 7.302e-1 6.204e-7 3.517e-12 4.303e-10
p¼ 2 1.632e-1 1.498e-17 4.113e-14 1.070e-12
p¼ 3 2.833e-3 6.648e-20 1.185e-16 2.186e-15
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E(T, x), �B T, xð Þ as solution at t¼ 0, we recover f 0, x, � vð Þ, E(0, x),
�B 0, xð Þ at t¼T.
We run the calculation for T¼ 5 and show L1 and L2 errors of solutions

for several choices of degree of polynomials p and mesh parameters ht, hx,
and hv. For all calculations we used the uniform degrees p in all cells of
uniform meshes. We present the results for the following choice of mesh
sizes sets: H1 corresponds to ht ¼ hx ¼ 0:1 and hv ¼

ffiffiffi
2

p
=6; H2 corresponds

to ht ¼ hx ¼ 0:05 and hv ¼
ffiffiffi
2

p
=12; H3 corresponds to ht ¼ hx ¼ 0:025

and hv ¼
ffiffiffi
2

p
=24:

Table 1 lists the errors for the fixed mesh set H1 and increasing degree
of finite elements polynomial approximation, whereas in Table 2 we list the
errors for the fixed degree p¼ 1 and different mesh sizes.
The tables show the convergence of our hp-SD algorithm for all consid-

ered cases. We present the results for one value of the stability parameter
d ¼ 0:05, since its choice does not influence importantly the accuracy, but
only the stability of the method.

6.2. Conservation properties

To verify the conservation properties of our scheme we run the tests for
the streaming Weibel instability. The results are shown in Figure 1 for the
mass and Figure 2 for the total energy. Both moments are very well con-
served up to time t 	 70 for case 1 and t 	 75 for case 2, when the

Table 2. L1 and L2 errors for different mesh sizes and fixed polynomial degree p¼ 1.
Error Mesh sizes set f E1 E2 B

L1 H1 3.801e-1 7.086e-4 1.599e-6 1.645e-5
H2 1.629e-1 8.304e-10 1.791e-7 8.387e-6
H3 4.324e-2 2.016e-10 4.750e-8 2.099e-6

L2 H1 7.302e-1 6.204e-7 3.517e-12 4.303e-10
H2 1.939e-1 8.520e-19 3.956e-14 9.298e-11
H3 1.444e-2 5.014e-20 2.784e-15 5.850e-12
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Figure 1. Charge vs. time for case 1 (left) and case 2 (right) of the streaming Weibel instability.
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instabilities occur. After that the error for the mass is less then 2 � 10�4,
however we can observe the large decay in the total energy.

7. Conclusions

This study is devoted to the hp streamline diffusion for the relativistic
Vlasov–Maxwell system in 3D. Our objective is to present space-time (for
Maxwell’s) and phase-space-time (for VM system) discretization schemes that

have optimal order of convergence (O h=p
� �sþ1=2
� 	

for solutions in

Hsþ1 Xð Þ), where h is the mesh size and p the spectral order. The adaptivity in
a priori regime is based on refining in the vicinity of singularities combined
with lower order approximating polynomials and nonrefined mesh with a
higher spectral order in smooth regions. To our knowledge, except in some
work in convection–diffusion problems, e.g. Asadzadeh and Sopasakis (2007),
Houston et al. (2000), such approach is not considered elsewhere.
The results are justified, in lower dimensional cases, through the presented

accuracy and the streaming Weibel instability tests. In all our simulations we
used uniformly spaced grids in all variables and uniform degree of polynomials,
and in the future paper we plan to examine the non-uniform grids and
degree cases.
The full-dimensions are too complex and expensive to experiment.

However, the theoretical analysis and numerical justifications in lower
dimensions are indicating the robustness of the considered schemes.
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