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Spherical Harmonics and a
Semidiscrete Finite Element
Approximation for the
Transport Equation

Mohammad Asadzadeh and Tobias Gebäck
Department of Mathematics, Chalmers University of Technology and University
of Gothenburg, Göteborg, Sweden

This work is the first part in a series of two articles, where the objective is to con-
struct, analyze, and implement realistic particle transport models relevant in appli-
cations in radiation cancer therapy. Here we use spherical harmonics and derive an
energy-dependent model problem for the transport equation. Then we show stability
and derive optimal convergence rates for semidiscrete (discretization in energy) finite
element approximations of this model problem. The fully discrete problem that also
considers the study of finite element discretizations in radial and spatial domains as
well is the subject of a forthcoming article.

Keywords spherical harmonics; transport equation; finite element method; charged
particle beams

1. INTRODUCTION

This study concerns the mathematical modeling and numerical approxima-
tions of charged particle beams of interest in radiation therapy. We, primar-
ily, assume the study of energy-dependent radiation particle beams (electrons
and ions) under the continuous slowing down approximation (CSDA). Roughly
speaking, in this approximation, it is assumed that the particle loses its energy
continuously along the length of its trajectory.

Our objective is two-fold: First we wish to derive a convection-diffusion
model for the charged particle transport. A classical idea has been using
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54 M. Asadzadeh and T. Gebäck

asymptotic expansions to replace the scattering integral in the transport equa-
tion by a diffusion term, as, for example, in Pomraning’s approach (1992).
These approaches have been of a heuristic nature. We employ spherical har-
monic expansions and derive a more general, nonasymptotic and mathemati-
cally rigorous system of convection-diffusion-absorption equations for the coef-
ficient vectors/matrices. Next, we focus on a canonical equation in the system
and discretize it in the energy variable using the finite element method. Hence,
we obtain a semidiscrete problem for which we have derived stability estimates
and optimal convergence rates.

Former approaches modeling particle beams for radiation therapy appli-
cations are considering forward-peaked and/or broad beams. In this regard,
for example, Prinja and Pomraning (1992) considered asymptotic scaling for
forward-peaked transport, Börgers and Larsen (1996) derived the Fermi pencil
beam equation, Asadzadeh and colleagues (2010b) studied Galerkin methods
for broad beam transport, Asadzadeh and associates (2010a) extended the bi-
partition model for high energy electrons by Luo and Brahme (1992) to high
energy ions and inhomogeneous media, and finally Kempe and Brahme (2010)
studied the solution of the Boltzmann equation for light ions. In all these stud-
ies ion particles are considered to be normally incident at the boundary of a
semi-infinite medium.

In a previous study (Asadzadeh et al., 2010a) we considered a detailed
study of the bipartition model for ion transport. A related approach, based on
a split of the scattering cross-section into the hard and soft parts, is given by
Larsen and Liang (2007).

An outline of this article is as follows. In Section 2 we start with a trans-
port equation model under CSDA and expand the solution function in spherical
harmonics. In the subsequent Sections 3 and 4, we continue the spherical har-
monic expansions procedure for the convection term and the collision integral,
respectively. Section 5 is devoted to the extension of the source term for sec-
ondary particles. In Section 6 we state the system of equations, and finally in
our concluding Section 7 we prove stability estimates and derive optimal con-
vergence rates for a semidiscrete scheme for the discretization in the energy
variable.

2. THE TRANSPORT EQUATION

Our objective is to solve the transport equation for the fluence differential
f (x, r,�, E) of charged particles symmetrically distributed around the x-axis
at distance r from the same axis, traveling in direction � ∈ S2 with energy E,
using the CSDA. We also define the angle ψ such that{

y = r cosψ
z = r sinψ.
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Spherical Harmonics and a Semidiscrete Finite Element Approximation 55

The equation is

� · ∇ f − 1
2
∂2ω(E) f
∂E2 − ∂S(E) f

∂E
= C f (x, r, E) + Q(x, r,�, E), (2.1)

where ω(E) is the energy loss straggling, S(E) is the stopping power, (see Luo
and Brahme, 1992 and the references therein), and Q(x, r,�, E) is a source
term, either for incident primary electrons or for secondary electrons created
in collisions between primary electrons and matter. Furthermore,

C f (x, r,�, E) =
∫

4π
σs(E,� ·�′)

(
f (x, r,�′, E) − f (x, r,�, E)

)
d�′ (2.2)

is the collision factor, depending on the elastic scattering cross-section σs.
Our first step will be to expand f into a series of spherical harmonics using

spherical coordinates� = �(θ, ϕ) = (cos θ, sin θ cosϕ, sin θ sinϕ), where θ is the
angle from the x-axis,

f (x, r,�, E) =
∞∑

n=0

n∑
m=0

(n − m)!
(n + m)!

2n + 1
4π

αman,m(x, r, E) cos(mϕ)Pm
n (cos θ )

≡
∞∑

n=0

n∑
m=0

ãn,m(x, r, E)Y m
n (�), (2.3)

with

αm =
{

1 m = 0,
2 m ≥ 1,

where we have assumed that f is symmetric in ϕ so that the sin(mϕ) terms
vanish (although the analysis that follows is essentially valid for sin(mϕ) terms
too). The coefficients an,m are given by

an,m(x, r, E) =
∫ 1

−1

∫ 2π

0
f (x, r,�, E)Pm

n (cos θ ) cos(mϕ) dϕ d(cos θ ).

We use the following definition for the associated Legendre functions

Pm
n (µ) = (1 − µ2)m/2 dmPn(µ)

dµm , (2.4)

Pn(µ) = P0
n (µ) = 2−n

[ n
2 ]∑

k=0

(−1)k
(

n
k

)(
2n − 2k

n

)
µn−2k. (2.5)

Note that Pm
n (µ) ≡ 0 if m> n.
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56 M. Asadzadeh and T. Gebäck

3. EXPANDING THE CONVECTION TERM

To evaluate the term � · ∇ f in (2.1), we note that if f is rotationally symmetric
(independent of ψ), then

� · ∇ f (x,�, E) = cos θ
∂ f
∂x

+ sin θ cos ν
∂ f
∂r
,

where ν = ϕ − ψ , and hence we expand f = f (x, r, θ, ν, E) in spherical harmon-
ics in the variables (θ, ν), and get a sum of terms of the kind

cos θ Y m
n (θ, ν) and sin θ cos ν Y m

n (θ, ν).

We then wish to multiply the equation by Y k
j (θ, ν) and integrate to get a system

of equations for the coefficients aj,k(x, r, E). We then end up with

∫ π

0

∫ 2π

0

(
cos θ

∂ f
∂x

+ sin θ cos ν
∂ f
∂r

)
Pk

j (cos θ ) cos(kν) dν sin θ dθ

=
∞∑

n=0

n∑
m=0

(n − m)!
(n + m)!

2n + 1
4π

αm

×
∫ π

0

∫ 2π

0

(
cos θ

∂an,m

∂x
+ sin θ cos ν

∂an,m

∂r

)
Pk

j (cos θ ) cos(kν)Pm
n (cos θ )

cos(mν) dν sin θ dθ

=
∑

n≥k−1

(
Ak

n, j
∂an,k

∂x
+ B+,k

n, j
∂an,k+1

∂r
+ B−,k

n, j
∂an,k−1

∂r

)
, (3.1)

where

Ak
n, j = (n − k)!

(n + k)!
2n + 1

2

∫ π

0
cos θPk

j (cos θ )Pk
n (cos θ ) sin θ dθ, (3.2)

B±,k
n, j = (n − (k ± 1))!

(n + (k ± 1))!
2n + 1

4

∫ π

0
cos θPk

j (cos θ )Pk±1
n (cos θ ) sin θ dθ, (3.3)

since

∫ 2π

0

(
1

cos ν

)
cos(kν) cos(mν)dν =

{
2πα−1

m δmk

πα−1
m (δm,k+1 + δm,k−1),

where δmk is the Kronecker delta.
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Spherical Harmonics and a Semidiscrete Finite Element Approximation 57

3.1 The Coefficients Ak
n,j

To evaluate the integral in (3.2), we set µ = cos θ and note that (see
Holland, 1990)

µPm
n (µ) = n − m+ 1

2n + 1
Pm

n+1(µ) + n + m
2n + 1

Pm
n−1(µ), (3.4)

and since the associated Legendre polynomials are orthogonal, namely∫ 1

−1
Pm

j (µ)Pm
n (µ) dµ = ( j + m)!

( j − m)!
2

2 j + 1
δ jn,

the first part of the sum (3.1) becomes

∑
n≥k

Ak
n, j
∂an,k

∂x
=

∑
n≥k

(n − k)!
(n + k)!

2n + 1
2

∂an,k

∂x

∫ π

0
cos θPk

j (cos θ )Pk
n (cos θ ) sin θ dθ

=
∑
n≥k

( j + k)!
( j − k)!

2
2 j + 1

(n − k)!
(n + k)!

2n + 1
2

(
n − k + 1

2n + 1
∂an,k

∂x
δn+1, j + n + k

2n + 1
∂an,k

∂x
δn−1, j

)

= j + k
2 j + 1

∂aj−1,k

∂x
+ j − k + 1

2 j + 1
∂aj+1,k

∂x
, (3.5)

for k ≤ j, where the term with aj−1,k disappears if k = j.

3.2 The Coefficients B±,k
n,j

Similarly, we wish to evaluate the sums

∑
n≥k−1

B±,k
n, j
∂an,k±1

∂r
=

∑
n≥k±1

(n − (k ± 1))!
(n + (k ± 1))!

2n + 1
4

∂an,k±1

∂r

×
∫ π

0
sin θPk

j (cos θ )Pk±1
n (cos θ ) sin θ dθ, (3.6)

which turns out to be a bit more difficult. We may transform sin θPm
n (cos θ ),

with m = k ± 1 into a linear combination of “pure” Legendre polynomials Pm′
n′

by repeatedly using the relation (see Holland, 1990)

sin θPm
n (cos θ ) = 2(m− 1) cos θPm−1

n (cos θ ) − (n − m+ 2)

× (n + m− 1) sin θPm−2
n (cos θ ), m ≥ 2 (3.7)

as well as (3.4), and finally the two relations

sin θP1
n (cos θ ) = nPn−1(cos θ ) − ncos θPn(cos θ ) (3.8)

sin θPn(cos θ ) = 1
2n + 1

(
P1

n+1(cos θ ) − P1
n−1(cos θ )

)
. (3.9)
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58 M. Asadzadeh and T. Gebäck

The final expressions are

sin θPm
n (µ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2n + 1

(
P1

n+1(µ) − P1
n−1(µ)

)
if m = 0

m/2∑
l=2

qn,m(2l − 1)R2l−1
n (µ) + qn,m(1)

2n + 1
if m even,

×(
(n + 1)(n + 2)P1

n−1(µ) m> 0

− n(n − 1)P1
n+1(µ)

)
(m−1)/2∑

l=1

qn,m(2l)R2l
n (µ) if m odd

+ qn,m(0)
n(n + 1)
2n + 1

(Pn−1(µ) − Pn+1(µ))

(3.10)

with

Rm
n (µ) = 2m

2n + 1
(
(n − m+ 1)Pm

n+1(µ) + (n + m)Pm
n−1(µ)

)
(3.11)

qn,m(l) = (−1)
m−l−1

2
(n − l − 1)!!

(n − m)!!
(n + m− 1)!!

(n + l)!!

if m− l odd, m ≥ l + 1 (3.12)

Here, (·)!! is the double factorial (2n)!! = 2 · 4 · . . . · 2n, (2n + 1)!! = 1 · 3 · . . . ·
(2n + 1).

What now remains in (3.6) is to evaluate the integrals

Ik,p
j,q =

∫ 1

−1
Pk

j (µ)P p
q (µ) dµ,

with the special condition that k + p is even (as can be seen from (3.10), with
m = k ± 1, since if m is odd (even), then all P p

j in the sum (3.10) will have p
even (odd)). The integrals may be evaluated using the definition (2.5) directly
as

Ik,p
j,q =

∫ π

0
(sin θ )k+p+1

(
dk

dµk Pj(µ)
dp

dµp Pq(µ)
)∣∣∣∣

µ=cos θ
dθ

= 2−( j+q)
[ j−k

2 ]∑
κ=0

[ q−p
2 ]∑

λ=0

(−1)κ+λ
(2 j − 2κ)!

κ!( j − κ)!( j − k − 2κ)!
(2q − 2λ)!

λ!(q − λ)!(q − p − 2λ)!

×
∫ π

0
(sin θ )k+p+1(cos θ ) j+q−(p+k)−2(κ+λ) dθ. (3.13)

Now, we note that the last integral is zero if j + q is odd, as we will then inte-
grate an odd power of cos θ from 0 to π . Otherwise, that is if k + p is even and
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Spherical Harmonics and a Semidiscrete Finite Element Approximation 59

j + q is even, we use the formula involving the � function

∫ π/2

0
sin2α+1

θ cos2β+1 θ dθ = �(α + 1)�(β + 1)
2�(α + β + 2)

to end up with (using formula for � function for the integers; see, e.g., Folland,
1992, and Szegö, 1957),

Ik,p
j,q = 2−( j+q−(k+p)/2)

(
k + p

2

)
!

[ j−k
2 ]∑

κ=0

[ q−p
2 ]∑

λ=0

(−1)κ+λ
(2 j − 2κ)!

κ!( j − κ)!( j − k − 2κ)!

× (2q − 2λ)!
λ!(q − λ)!(q − p − 2λ)!

· ( j + q − (k + p) − 2(κ + λ) − 1)!!
( j + q − 2(κ + λ) + 1)!!

. (3.14)

We note that both double factorials contain only odd numbers.
Thus, we conclude

B±,k
n, j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if n + jeven
1
4

(
I1,1

j,n+1(µ) − I1,1
j,n−1(µ)

)
if n + jodd,

− case, k = 1

1
2

(k±1)/2∑
l=2

q̃n,k±1(2l − 1)Jk,2l−1
j,n + q̃n,k±1(1)

4
if n + jodd,

× (
(n + 1)(n + 2)Ik,1

j,n−1 − n(n − 1)Ik,1
j,n+1

)
k odd,

− case: k> 1

1
2

(k±1−1)/2∑
l=1

q̃n,k±1(2l)Jk,2l
j,n if n + j odd,

+ q̃n,k±1(0)
n(n + 1)

4

(
Ik,0

j,n−1 − Ik,0
j,n+1

)
keven

(3.15)

where

Jk,m
j,n = m

(
(n − m+ 1)Ik,m

j,n+1 + (n + m)Ik,m
j,n−1

)
(3.16)

q̃n,m(l) = (n − m)!
(n + m)!

qn,m(l) = (−1)
m−l−1

2
(n − m− 1)!!

(n + m)!!
(n − l − 1)!!

(n + l)!!
. (3.17)

From (3.6) and (3.15) we see that the equation for the coefficient aj,k con-
tains contributions from all coefficients an,m with m = k ± 1 and n + j odd, in
addition to the contribution from (3.5) when m = k and n = j ± 1.
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60 M. Asadzadeh and T. Gebäck

4. EXPANDING THE COLLISION INTEGRAL

Next, we wish to expand the collision integral into spherical harmonics,
namely

C f (x, r,�, E) =
∫

4π
σs(E,� ·�′)

(
f (x, r,�′, E) − f (x, r,�, E)

)
d�′

=
∞∑

n=0

n∑
m=0

Cn,m
f (x, r, E)Y m

n (�), (4.1)

where

Cn,m
f (x, r, E) = (n − m)!

(n + m)!
2n + 1

2π

∫
4π

C f (x, r,�, E)Y m
n (�) d�. (4.2)

By expanding f in its spherical harmonics expansion with coefficients an,m,
we may get a simple expression for the coefficients Cn,m

f . The second term in
(4.1) is easy enough to evaluate, and the first term may be evaluated by ex-
panding σs in Legendre polynomials in terms of � ·�′ and then using the ad-
dition formula for Legendre polynomials (see Holland, 1990). Due to orthogo-
nality of spherical harmonics, the final result simplifies to

Cm,n
f (x, r, E) = 2πan,m(x, r, E)

∫ 1

−1
σs(E, µ)(Pn(µ) − 1) dµ. (4.3)

5. EXPANDING THE SOURCE TERM FOR SECONDARY PARTICLES

Just as for the collision integral in the previous section, we can get a simple for-
mula for the spherical harmonics coefficients of the source term for secondary
particles. The source term is given by Luo (1985),

Q(x, r,�, E) =
∫

4π

∫ E0

2E
σc(E′, E)

1
2π
δ(� ·�′ − φ(E′, E)) fp(x, r,�′, E′) dE′ d�′,

(5.1)

where fp is the fluence of primary electrons, σc is the collision cross-section,
and

φ(E′, E) =
(

E(E′ + 2m0c2)
E′(E + 2m0c2)

)1/2

specifies the direction of motion of the secondary electron with kinetic energy
E′ and direction �′ given a primary electron with kinetic energy E and direc-
tion �, through � ·�′ = φ(E′, E). This follows from conservation of relativistic
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Spherical Harmonics and a Semidiscrete Finite Element Approximation 61

energy and momentum in a collision between the primary electron and a free
electron.

By expanding fp in spherical harmonics with coefficients an,m, we get the
following expression for the coefficients in the expansion for Q

Qn,m(x, r, E) =
∫ E0

2E
σc(E′, E)Pn(φ(E′, E))an,m(x, r, E′) dE′. (5.2)

Note that, in the derivation of this formula, although a Dirac function can-
not be expanded in Legendre polynomials, we can use a sequence of smooth
functions approaching the δ-function, and go to the limit on both sides of the
equation.

6. THE SYSTEM OF EQUATIONS

The transport equation (2.1) may now be written as a system of equations
for the coefficients of the spherical harmonics expansion for the fluence f (see
(2.3)).

The equation for the coefficient aj,k(x, r, E) (with j ≥ k) becomes

∑
n≥k

(
Ak

n, j
∂an,k

∂x
+ Bk

n, j
∂an,k

∂r

)
− 1

2
∂2ω(E)aj,k

∂E2 − ∂S(E)aj,k

∂E

= C j,k
f (x, r, E) + Qj,k(x, r, E). (6.1)

If we let the vector a(x, r, E) contain the coefficients an,m(x, r, E), we can
write this as

A
∂a
∂x

+ B
∂a
∂r

− 1
2
∂2(ω(E)a)
∂E2 − ∂(S(E)a)

∂E
= C(E)a + q(x, r, E), (6.2)

where A and B are matrices containing the coefficients Ak
n, j and B±,k

n, j , respec-
tively, and C(E) is a diagonal matrix.

The sparsity pattern for the matrices A and B can be seen in Figure 1,
with n ≤ N = 10. The elements in each row and column are ordered in chunks
of equal m, m = 0, . . . ,N, and within each chunk, n runs from m to N.

7. THE SEMIDISCRETE PROBLEM: DISCRETIZATION OF aj,i(x,r,E) IN
THE ENERGY VARIABLE

In this section we discretize Equation (6.1) in the energy variable E. In a forth-
coming article we shall study spatial discretization in (x, r).
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62 M. Asadzadeh and T. Gebäck

Figure 1: The non-zero elements of the matrices A and B for N = 10.

7.1 Notation
Equation (6.2) is a degenerate type convection-diffusion equation with

variable coefficients. The source of degeneracy is the single-variable (energy)
diffusion term related to considering the influence of secondary particles. Be-
cause of this structure it is more adequate, first, to study a semidiscrete ap-
proach for the energy variable using a mixed finite element method. To this
end we reformulate Equation (6.2) as a first order system viz,

⎧⎪⎪⎨
⎪⎪⎩

A
∂u
∂x

+ B
∂u
∂r

− 1
2
∂2(ω(E)u)
∂E2 − ∂(S(E)u)

∂E
= C(E)u + q(x, r, E),

v = ∂(ω(E)u)
∂E

.

(7.1)

We use a change of variable as Ẽ = E0 − E and supply the boundary condition
as the energy from its peak u(0) at Ẽ = 0 in the energy interval Ẽ ∈ [0, E0]

corresponding to E0
E↔0, and (x, r) = (0,0). Then, evidently ∂G

∂E = − ∂G
∂ Ẽ

and ∂2G
∂E2 =

∂2G
∂ Ẽ2 . Further, to use the second relation in (7.1) we write

S(E)u = S(E)
ω(E)

ω(E)u ≡ γ (E)ω(E)u. (7.2)
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Spherical Harmonics and a Semidiscrete Finite Element Approximation 63

Thus,

∂(S(E)u)
∂E

= ∂γ (E)
∂E

ω(E)u + γ (E)
∂(ω(E)u)
∂E

. (7.3)

Therefore, with the simplifying notation wβ = ∂w
∂β

, (7.1) can be written as a first
order PDE system⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Aux + Bur − 1
2

vE − γE(E)ω(E)u − γ (E)v = C(E)u + q(x, r, E),

v(x, r, E) = (ω(E)u)E(x, r, E),

u(x, r, E0) = δ(x)δ(r)u0(E0), u(x, r,0) = 0,

v(x, r, E0) = −δ(x)δ(r)v0(E0), u(x, r,0) = 0.

(7.4)

Hence, using the notation � := (A, B), ∇xr = (∂x, ∂r), and D(E) = γE(E)ω(E) +
C(E), we may write the differential equations in (7.4) as⎧⎨

⎩� · ∇xru − 1
2

vE − γ (E)v = D(E)u + q,

v = (ω(E)u)E.

(7.5)

7.1.1 Weak formulation
We use partial integration in E and the notation

(f,g) := (f,g)E =
∫ E0

0
f(x, r, E)g(x, r, E) dE

to write

(� · ∇xrv,w) = (Avx + Bvr,w) = (A(ω(E)u)Ex + B(ω(E)u)Er,w)

= −(A(ω(E)u)x + B(ω(E)u)r,wE) + (Aω(E)u0(E0)x

+ Bω(E)u(E0)r)w(E0)

= −(�ω(E) · ∇xru,wE) + (Aω(E)u0(E0)x + Bω(E)u(E0)r)w(E0)

= −
(

1
2

(ω(E)vE) + S(E)v + D(E)ω(E)u + ω(E)q, ,wE

)

= + (Aω(E)u0(E0)x + Bω(E)u(E0)r)w(E0), ∀w ∈ H1, (7.6)

and

((ω(E)u)E, χE) = (v, χE), ∀χ ∈ H1
0. (7.7)

7.1.2 Energy estimates
We consider finite element subspaces Sh ⊂ H1

0(�), and Wh ⊂ H1(�) with the
following approximation properties: For 1 ≤ p ≤ ∞ and � > 0, s > 0 integers,
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64 M. Asadzadeh and T. Gebäck

there is a constant C independent of h such that (see Ciarlet, 1978)

inf
χ∈Sh

{||g − χ ||Lp(IE) + h||g − χ ||W1,p(IE)} ≤ Ch�+1||g||W �+1,p(IE),

∀g ∈ H1
0 ∩ W �+1,p(IE), (7.8)

and

inf
ζ∈Wh

{||ρ − ζ ||Lp(IE) + h||ρ − ζ ||W1,p(IE)} ≤ Chs+1||ρ||Ws+1,p(IE),

∀ρ ∈ Ws+1,p(IE). (7.9)

Motivated by the weak (variational) formulation (7.6) and (7.7), we define a
pair of semidiscrete finite element approximations {ũh, ṽh} : Ix × Ir → Sh × Wh

for {u,v}, respectively as solution of

(� · ∇xrṽh,w) = −
(

1
2

(ω(E)ṽh,E) + S(E)ṽh + D(E)ω(E)ũh + ω(E)q̃h,wE

)

+ (Aω(E)ũh(E0)x + Bω(E)ũh(E0)r)w(E0), ∀w ∈ Wh, (7.10)

and

((ω(E)ũ)h,E, χE) = (ṽh, χE), ∀χ ∈ Sh. (7.11)

where ũh(·, E0) ∈ Sh is such that

||u(E0) − ũh(E0)|| ≤ C(u(E0)hs. (7.12)

We assume that ω(E) is sufficiently regular, so that the coefficient matrix
corresponding to the left-hand side in (7.11) is invertible. Then (7.10)–(7.11)
yields a system of differential algebraic equations (DAEs) of “index one.” For
the subsequent error analysis, we now define the elliptic projection operators
Qh : H1

0 → Sh for u (see Brenner and Scott, 2008), by

(ω(E)(uE − QhuE), χE) = 0, χ ∈ Sh, (x, r) ∈ Ix × Ir, (7.13)

and Ph : H1 → Wh for v by

A(v − Phv, ρ) = 0, ∀ρ ∈ Wh, (7.14)

where

A(ρ, ζ ) = 1
2

(ω(E)ρE, ζE) + (S(E)ρ, ζE) + (D(E)ω(E)ρ, ζE) +�((ρ, ζ )

= 1
2

(ω(E)ρE, ζE) + ((S(E) + D(E)ω(E))ρ, ζE) +�((ρ, ζ ). (7.15)
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Spherical Harmonics and a Semidiscrete Finite Element Approximation 65

Here � is chosen appropriately so that A is H1-coercive, i.e., there is a param-
eter α0 > 0 such that

A(v,v) ≥ α0|||v|||21. (7.16)

Remark 7.1 Note that in this section all norms are with respect to the energy
variable E.

We let now uh = Qhu, vh = Phv, η = u − uh, and ξ = v − vh. Then the L2-
error estimates for η and ξ are derived using an extended version of a result
by Wheeler (1973).

Lemma 7.1 Let {u,v} be a pair of solutions of (7.5). Further, let {uh,vh} satisfy
(7.10)–(7.11). Then, there is a constant C independent of h such that for j = 0,1

‖η‖ j + ‖∇xvη‖ j ≤ Ch�+1− j(‖u‖�+1 + ‖∇xvu‖�+1), � = 0,1, . . . , (7.17)

and

‖ξ‖ j + ‖∇xvξ‖ j ≤ Chs+1− j(‖v‖s+1 + ‖∇xvv‖s+1), s = 0,1, . . . (7.18)

Further for j = 0,1 and 1 ≤ p ≤ ∞, we have that

‖η‖W j,p(IE) ≤ Ch�+1− j‖u‖W �+1,p(IE), � = 0,1, . . . , (7.19)

‖ξ‖W j,p(IE) ≤ Chs+1− j‖v‖Ws+1,p(IE), s = 0,1, . . . . (7.20)

To derive error estimates for the semidiscrete (discretization in E) approx-
imation, we split the error as

u − ũh = (u − uh) − (ũh − uh) := η − ε

v − ṽh = (v − vh) − (ṽh − vh) := ξ − ν.

Since the estimates for η and ξ are known from the Lemma 6.1, it is enough to
estimate ε and ν. Taking the difference between (7.6) and (7.10) and (7.7) and
(7.11) and using the elliptic projections Qh and Ph satisfying (7.13) and (7.14),
we write the equations for ε and ν as follows:

(� · ∇xr(v − ṽh), ζ )

= −1
2

(ω(E)(v − ṽh)E, ζE) − (S(E)(v − ṽh), ζE)

− (D(E)ω(E)(u − ũh)ζE) − (ω(E)(q − q̃h)ζE), ζ ∈ Wh, (7.21)
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66 M. Asadzadeh and T. Gebäck

and

(ω(E)(u − ũh)E, χE) − (v − ṽh), χE) = 0. (7.22)

Note that

(ω(E)(u − ũh)E, χE) = (ω(E)ηE, χE) − (ω(E)εE, χE),

where using the definition of Qh we have

(ω(E)(uE − uh,E) = (ω(E)(uE − QhuE) = 0. (7.23)

Thus inserting (7.23) in (7.22) we get

−(ω(E)εE, χE) = (ξ, χE) − (ν, χE). (7.24)

Further (7.21) can be written as

(� · ∇xrν, ζ ) = (� · ∇xrξ, ζ ) + 1
2

(ω(E)ξE, ζE) − 1
2

(ω(E)νE, ζE) + (S(E)ξ, ζE)

−((S(E)ν, ζE) + (D(E)ω(E)η, ζE) − (D(E)ω(E)ε, ζE)

+ (ω(E)(q − q̃h), ζE). (7.25)

On the other hand we have that

A(ν, ζ ) = 1
2

(ω(E)νE, ζE) + ((S(E)ν, ζE) + (D(E)ω(E)ν, ζE) +�(ν, ζ ). (7.26)

Adding (7.25) and (7.26) we have that

(� · ∇xrν, ζ ) + A(ν, ζ ) = (� · ∇xrξ, ζ ) + 1
2

(ω(E)ξE, ζE) + (S(E)ξ, ζE)

+ (D(E)ω(E)(η − ε), ζE) + (D(E)ω(E)νE, ζE)

+ (ω(E)(q − q̃h), ζE) +�(ν, ζ ). (7.27)

Now we let ζ = ν use the coercivity assumption and write

(� · ∇xrν, ν) + α0|||ν|||21 ≤ (� · ∇xrν, ν) + A(ν, ν) ≤ (� · ∇xr)‖ξ‖2 + 1
4

(� · ∇xr)‖ν‖2

+ ‖ω(E)1/2ξE‖2 + 1
16

‖ω(E)1/2νE‖2 + 4‖S(E)1/2ξE‖2+ 1
16

‖S(E)1/2νE‖2

+ 4‖D(E)1/2ω(E)1/2η‖2 + 1
16

‖D(E)1/2ω(E)1/2νE‖2

+ 4‖D(E)1/2ω(E)1/2ε‖2 + 1
16

‖D(E)1/2ω(E)1/2νE‖2

+ 1
2

‖D(E)1/2ω(E)1/2ν‖2 + 1
2

‖D(E)1/2ω(E)1/2νE‖2 + ‖�1/2ν‖2

+ |(ω(E)(q − q̃h), νE)|. (7.28)
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Spherical Harmonics and a Semidiscrete Finite Element Approximation 67

The last term in (7.28) is estimated as follows:

|(ω(E)(q − q̃h), νE)| ≤ 4‖ω(E)1/2(q − q̃h)‖2 + 1
16

‖ω(E)1/2νE‖2. (7.29)

Next, we employ a kick-back argument, i.e., we hide all ν-terms in the right,
inside the left-hand side. Except the ε-term, for all remaining ξ and η terms
on the right-hand side, we have theoretical error bounds. Thus it remains to
estimate the ε-term. To this end we let χ = ε in (7.24), then

‖ω(E)1/2εE‖2 ≤ ‖ω(E)−1/2ξ‖‖ω(E)1/2εE‖ + ‖ω(E)−1/2ν‖‖ω(E)1/2εE‖,
so that

‖ω(E)1/2εE‖ ≤ ‖ω(E)−1/2ξ‖ + ‖ω(E)−1/2ν‖. (7.30)

Now for the contribution from the ε-term in (7.28), first we use
Poincare inequality to write ‖D(E)1/2ω(E)1/2ε‖2 ≤ C̃‖D(E)1/2ω(E)1/2εE‖2 ≤
C̃‖D(E)‖∞(‖ω(E)−1/2ξ‖ + ‖ω(E)−1/2ν‖). An alternative estimate for the ε-term
is obtained by letting χE = D(E)εE in (7.24). Then

‖D(E)1/2ω(E)1/2εE‖2 = (ξ, D(E)εE) − (ν, D(E)εE)

= (ω(E)−1/2 D(E)1/2ξ, ω(E)1/2 D(E)1/2εE)

− (ω(E)−1/2 D(E)1/2ν, ω(E)1/2 D(E)1/2εE)

≤ ‖ω(E)−1/2 D(E)1/2ξ‖2 + ‖ω(E)−1/2 D(E)1/2ν‖2

+ 1
2

‖D(E)1/2ω(E)1/2εE‖2. (7.31)

Once again, using Poincare inequality we get

‖D(E)1/2ω(E)1/2ε‖2 ≤ C̃
| minω(E)|2 (‖ω(E)1/2 D(E)1/2ξ‖2

+‖ω(E)1/2 D(E)1/2ν‖2). (7.32)

Inserting (7.29) and (7.32) in (7.28) and rearranging the terms yields

(� · ∇xrν, ν) + α0|||ν|||21
≤ (� · ∇xr)‖ξ‖2 + 1

4
(� · ∇xr)‖ν‖2 + ‖ω(E)1/2ξE‖2

+ 1
8

‖ω(E)1/2νE‖2 + 4‖S(E)1/2ξE‖2 + 1
16

‖S(E)1/2νE‖2

+ 4‖D(E)1/2ω(E)1/2η‖2 + 5
8

‖D(E)1/2ω(E)1/2νE‖2

+ 4‖D(E)1/2ω(E)1/2ε‖2 + 1
2

‖D(E)1/2ω(E)1/2ν‖2
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68 M. Asadzadeh and T. Gebäck

+ C̃
| minω(E)|2 (‖ω(E)1/2 D(E)1/2ξ‖2 + ‖ω(E)1/2 D(E)1/2ν‖2)

+ 4‖ω(E)1/2(q − q̃h)‖2 + ‖�1/2ν‖2. (7.33)

By an elementary calculus one can show that the Poincare constant in here is
C̃ ∼ |IE| = E0. Now assuming that minω(E0) ≥ 2

√
E0, and defining the triple

norm as

|||ν|||1 = [‖ω(E)1/2νE‖2 + ‖S(E)1/2νE‖2 + ‖D(E)1/2ω(E)1/2νE‖2

+‖ω(E)1/2 D(E)1/2ν‖2 + ‖�1/2ν‖2]1/2, (7.34)

we get using a kick-back argument and with α0 ∼ 1 that

‖(� · ∇xr)ν‖2 + α′
0|||ν|||21 ≤ 4‖(� · ∇xr)ξ‖2 + 4‖ω(E)1/2ξE‖2 + 16‖S(E)1/2ξE‖2

+ 4‖ω(E)1/2 D(E)1/2ξ‖2 + 16‖D(E)1/2ω(E)1/2η‖2

+ 16‖ω(E)1/2(q − q̃h)‖2, (7.35)

for some 0 < α′
0 < α0 ∼ 1. Note that the norms of the projection errors, η and

ξ , on the right-hand side in (7.35) are equivalent to their H1-norms (as-
suming that all the energy-dependent coefficients are absolutely bounded:
ω(E) ∈ L∞(IE). S(E) ∈ L∞(IE) and ω(E)D(E) ∈ L∞(IE). Assuming also that the
error in q − q̃h is of the same order as in Lemma 6.1, we can apply Lemma 6.1
and the previous estimates to obtain

‖(� · ∇xr)ν‖2 + α′
0|||ν|||21

≤ Ch2 min(�,s)(‖u‖2
L∞

xr (H�+1) + ‖v‖2
L∞

xr (Hs+1) + ‖∇xr · v‖2
L2

xr (Hs+1)

)
, (7.36)

which yields, e.g., the estimate

‖(u − ũh)(x, r)‖ + ‖(v − ṽh)(x, r)‖
≤ Chmin(�+1,s+1)(‖u‖L∞

xr (H�+1) + ‖v‖L∞
xr (Hs+1) + ‖∇xr · v‖L2

xr (Hs+1)
)
. (7.37)

Hence, using a standard procedure and the previous estimates we may derive
the following a priori error estimates.

Theorem 7.2 Assume that ṽh(0) = PEv0 so that ν(0) = 0. Then there exists a
constant C independent of h such that

‖(v − ṽh)(x, r)‖1 ≤ C(E0)hmin(�+1,s)(‖u‖L∞
xr (H�+1) + ‖v‖L∞

xr (Hs) + ‖∇xr · v‖L2
xr (Hs+1)

)
.

(7.38)
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Spherical Harmonics and a Semidiscrete Finite Element Approximation 69

Theorem 7.3 (a) Under the assumption of the previous theorem, the errors
u − ũh and v − ṽh can be estimated as

‖(u − ũh)(x, r)‖ + ‖(v − ṽh)(x, r)‖ + h‖(v − ṽh)(x, r)‖1 ≤ C(E0)hmin(�+1,s+1)

× (‖u‖L∞
xr (H�+1) + ‖v‖L∞

xr (Hs+1) + ‖∇xr · v‖L2
xr (Hs+1)

)
. (7.39)

(b) For 1 < p ≤ ∞ we have that

‖(u − ũh)(x, r)‖Lp + ‖(v − ṽh)(x, r)‖Lp+ ≤ C(E0)hmin(�+1,s+1)

× (‖u‖L∞
xr (W �+1,p) + ‖v‖L∞

xr (Ws+1,p) + ‖∇xr · v‖L2
xr (Ws+1,p)

)
. (7.40)

These estimates are of optimal order due to the maximal available regular-
ity in the degenerate type convection diffusion equation (see Lions , 1961 and
Pani, 1998).

8. CONCLUSIONS

We have considered solving transport equation for, symmetrically distributed,
charged radiation particles, using the continuous slowing down assumption.
The underlying equation is of the form of a degenerate type (diffusive only in
energy variable) convection-diffusion equation with a collision integral corre-
sponding to the elastic scattering. Both stopping power and energy loss strag-
gling (coefficients in first- and second-order derivatives in energy variable, re-
spectively) were modeled in the equation. We performed spherical harmonic
expansions for the convection term, collision integral, and source term for sec-
ondary collisions and obtained a system of partial differential equations for the
coefficient matrices. We have performed a semidiscrete finite element approxi-
mation of the energy variable and derived optimal convergence rates up to the
maximal available regularity of the exact solution. In summary this approach
was for a general form of energy-dependent transport equation, rather than
assuming forward peaked scattering. The fully discrete (discretization on the
radial variable and penetration direction) approximation as well as numerical
implementations is the subject of future work.
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