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In this article, we derive equations approximating the Boltzmann equation for charged
particle transport under the continuous slowing down assumption. The objective is to
obtain analytical expressions that approximate the solution to the Boltzmann equa-
tion. The analytical expressions found are based on the Fermi-Eyges solution, but in-
clude correction factors to account for energy loss and spread. Numerical tests are also
performed to investigate the validity of the approximations.

Keywords Fermi-Eyges equation; energy loss straggling; analytical solution

1. INTRODUCTION

Since its introduction by Fermi in 1941 (quoted by Rossi and Greisen, 1941)
and generalization by Eyges (1948), the Fermi-Eyges equation for charged par-
ticle transport has attracted much attention. The main advantage of the equa-
tion is the existence of an analytical solution, both for the original Dirac delta-
function boundary condition and for Gaussian boundary conditions (ICRU,
1984). In many cases, the Fermi-Eyges solution gives good enough estimates of
the fluence of charged particles to be of use in dose calculations, both for elec-
trons (ICRU, 1984; Hogstrom et al., 1981) and for light ions (Luo and Brahme,
1993; Carlsson et al., 1997). Still, there is a need for more accurate analytical
expressions to get quick estimates of fluence and dose distribution. Therefore,
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326 T. Gebäck and M. Asadzadeh

there have been attempts at deriving correction factors for the Fermi-Eyges so-
lution to increase the accuracy of predictions. One such factor was derived by
Kempe and Brahme (2010) to include absorption and energy loss in the model.
However, the derivation by Kempe and Brahme was somewhat unclear math-
ematically and the underlying assumptions were not apparent. Therefore, the
first part of this article is devoted to derive the same correction factor as Kempe
and Brahme, with clearly stated assumptions and a mathematical treatment
that answers some of the remaining questions.

In the second part, the analysis is extended to include energy loss strag-
gling; and an analytical correction factor for this case is also derived. The re-
sulting analytical expression gives an estimate of the energy loss and spread in
the particle beam, which is not included in the original Fermi-Eyges solution.
In Section 3, we also compare the expression with numerical solutions to check
the validity of the underlying assumptions.

2. DERIVATION OF ENERGY-DEPENDENT CORRECTION FACTORS

2.1. Basic Setup and Assumptions
We assume that a charged particle beam is normally incident in the z-

direction on the surface of a homogeneous semi-infinite medium at z = 0. This
situation is described by the following charged particle transport equation for
the fluence f (r,�, E) of particles at position r = (x, y, z), moving in direction
� ∈ S2 with kinetic energy E ≥ 0. The continuous slowing down assumption
(CSDA) with energy-loss straggling (ELS) yields derivatives in energy so that
the transport equation takes the form

� · ∇ f (r,�, E) + σa(E) f (r,�, E) − ∂

∂E
(S(E) f (r,�, E)) − 1

2
∂2

∂E2 (ω(E) f (r,�, E))

=
∫

S2
σs(E,�′ ·�)( f (r,�′, E) − f (r,�, E))d�′, (2.1)

where S(E) is the stopping power, and ω(E) is the energy-straggling coefficient
(corresponding to CSDA and ELS, respectively, cf. Luo and Brahme, 1992).
Furthermore, σs is the scattering cross-section, and σa is the absorption cross-
section, which may for example model the fragmentation of light ions or ther-
malization of particles below a certain cut-off energy.

We wish to apply the boundary condition

f (r,�, E)
∣∣
z=0 = G1(x, y,�)G2(E), (2.2)

where G1(x, y,�) is a Gaussian as for the original Fermi-Eyges equation
(ICRU, 1984) to be specified next, and G2(E) will be either a Dirac function or a
Gaussian.
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Solutions for the Pencil-Beam Equation 327

A general closed form analytical solution for (2.1)–(2.2) is not available.
Our aim here is, under certain assumptions, to derive approximations for (2.1)
that we can solve analytically. Then, we show that such obtained analytical
expressions yield a good approximate solution for the Equation (2.1)–(2.2). To
this end, we will make the following approximations:

A1. The collision integral will be approximated using the Fermi-Eyges
operator.

A2. In the scattering cross-section, σs(E,�′ ·�), we will replace the energy E by
the depth-dependent mean energy Ea(z) and assume an explicit dependence
on the depth z.

A3. The straggling term, ∂2(ω f )
∂E2 , will be ignored in Section 2.2. In Sections 2.3

and 3, however, it will be included in order to approximate the spread in
energies.

A4. The narrow energy spectrum approximation (NESA) will be applied in Sec-
tion 2.3 in order to obtain an analytical solution. In Section 3, its validity
will be investigated using numerical computations.

Using the approximations A1–A3, Equation (2.1) turns into the following
equation for the fluence f = f (r, θx, θy, E), where (θx, θy) is the projection of the
particle movement direction, �, onto the (x, y)-plane.

∂ f
∂z

+ θx
∂ f
∂x

+ θy
∂ f
∂y

+ σa(E) f − ∂

∂E
(S(E) f ) = T (z)

(
∂2 f
∂θ2

x
+ ∂2 f
∂θ2

y

)
. (2.3)

Here,

T (z) =
∫ 1

−1
σs(Ea(z), µ) (1 − µ)dµ, µ = cos(�′ ·�)

2.2. Ignoring Energy-Loss Straggling
In order to solve Equation (2.3), we note that it is in fact a separable equa-

tion, where we may single out the energy dependence and seek a solution of
the form

f (r, θx, θy, E) = g(E)h(r, θx, θy). (2.4)

Assuming further that g(E) �= 0 and h(r, θx, θy) �= 0, we may now rewrite Equa-
tion (2.3) as

∂h
∂z + θx

∂h
∂x + θy

∂h
∂y − T (z)

(
∂2h
∂θ2

x
+ ∂2h

∂θ2
y

)
h(r, θx, θy)

=
∂
∂E

(
S(E)g(E)

)− σa(E)g(E)
g(E)

. (2.5)

Now, as the left-hand side depends on r, θy, θz, and the right-hand side de-
pends on E only, they must both be equal to a constant, λ. Thus, we end up
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328 T. Gebäck and M. Asadzadeh

with the two equations

∂

∂E

(
S(E)g(E)

)− σa(E)g(E) = λg(E) (2.6)

∂h
∂z

+ θx
∂h
∂x

+ θy
∂h
∂y

− T (z)

(
∂2h
∂θ2

x
+ ∂2h
∂θ2

y

)
= λh(r, θx, θy), (2.7)

which we will now solve separately.
To solve Equation (2.6), we set g̃(E) = S(E)g(E), giving us the equation

∂ g̃
∂E

(E) − λ+ σa(E)
S(E)

g̃(E) = 0. (2.8)

This equation is easily solved by the method of integrating factor, giving the
solution

g̃(E) = g̃(E0) exp

(
−
∫ E0

E

λ+ σa(E′)
S(E′)

dE′
)
. (2.9)

Returning to g(E), and introducing the CSDA range,

R(E) =
∫ E

0

dE′

S(E′)
, (2.10)

we get

g(E) = g(E0)
S(E0)
S(E)

exp

(
λ (R(E) − R(E0)) −

∫ E0

E

σa(E′)
S(E′)

dE′
)
. (2.11)

Now we turn to Equation (2.7). This equation is almost the Fermi-Eyges
equation, which may be solved by separating the x and y directions and apply-
ing the Fourier transform in both x and θx (Eyges, 1948).

Performing the same steps here, we look for solutions h(r, θx, θy) =
H(z, x, θx)H(z, y, θy), where H(z, ξ, θ ) satisfies

∂H
∂z

(z, ξ, θ ) + θ
∂H
∂ξ

(z, ξ, θ ) − T (z)
∂2 H
∂θ2 (z, ξ, θ ) = λ

2
H(z, ξ, θ ), (2.12)

with a Gaussian initial condition

H(0, ξ, θ ) = C exp
(−(a1ξ

2 + a2ξθ + a3θ
2)
)

(2.13)

with the same coefficients ai ∈ R and C > 0 in both x- and y-directions. Both the
spacial distribution and the angular distribution are thus circular symmetric
about the z-axis, although there may be a correlation between radial offset and
motion angle, if a2 �= 0.
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Solutions for the Pencil-Beam Equation 329

By applying the Fourier-transform in both y and θy, and proceeding as in
Eyges original paper (Eyges, 1948), with the addition of the Gaussian initial
condition (see Brahme, 1975), we get the solution

h(z, ρ,�) = A2

4π2 eλz
exp

(− |ρ|2
2ξ2(z)

)
ξ2(z)

exp
(− 1

2B̃(z)

∣∣� − θξ (z)
ξ2(z)

ρ
∣∣2)

B̃(z)
, (2.14)

where B̃(z) = θ2(z) − (θξ (z))2/ξ2(z), and we have introduced cylindrical coordi-
nates ρ = (x, y) = |ρ|(cosφ, sinφ), � = (θx, θy) = �(cosψ, sinψ). Furthermore,
θ2(z), θξ (z), and ξ2(z) are the second moments of the separated solution
H(z, ξ, θ ), which are related to the coefficients of the initial condition through
ξ2(0) = 2a1/D, θξ (0) = a2/D, θ2(0) = 2a3/D, where D = 4a1a3 − a2

2 is the dis-
criminant. A = 2πC/D is the integral of H(0, ξ, θ ), that is

A =
∫ ∞

−∞

∫ ∞

−∞
H(0, ξ, θ ) dθ dξ.

The z-dependence of the second moments is explicitly given by

θ2(z) = θ2(0) +
∫ z

0
T (z′) dz′ (2.15)

θξ (z) = θξ (0) + θ2(0)z +
∫ z

0
(z − z′)T (z′) dz′ (2.16)

ξ2(z) = ξ2(0) + 2θξ (0)z + θ2(0)z2 +
∫ z

0
(z − z′)2T (z′) dz′. (2.17)

Equation (2.14) is the ordinary Fermi-Eyges solution for a Gaussian initial
condition, multiplied by a factor eλz. Therefore, we write

h(z, ρ,�) = eλzhFE(z, ρ,�), (2.18)

where hFE is the Fermi-Eyges solution.
Combining Equations (2.11) and (2.14) as in (2.4), we get the solution to

(2.3) as

f (z, ρ,�, E)

= g(E0)
S(E0)
S(E)

eλ(z+R(E)−R(E0)) exp

(
−
∫ E0

E

σa(E′)
S(E′)

dE′
)

hFE(z, ρ,�). (2.19)

However, in order to fulfill the boundary condition (2.2), with G2(E) =
δ(E − E0) for some initial energy E0, we introduce a relationship between z
and E through the CSDA range R(E) defined by (2.10), as

z(E) = R(E0) − R(E). (2.20)
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330 T. Gebäck and M. Asadzadeh

This corresponds to studying the path of a monoenergetic particle beam, which
remains monoenergetic for all z as there is no mixing of energies in (2.3). Using
(2.20) will make the first exponential factor containing λ in (2.19) disappear, so
that the value of λ is irrelevant. Furthermore, we may set g(E0) = 1, since the
initial value at z = 0 (where E = E0) is now determined by A in (2.14).

Thus, our approximate solution to (2.3) and (2.2) is

f (ρ,�, E) = S(E0)
S(E)

exp

(
−
∫ E0

E

σa(E′)
S(E′)

dE′
)

hFE(R(E0) − R(E), ρ,�).(2.21)

Remark 2.1. (The classical Fermi-Eyges problem)
When T (z) = T is constant, (2.7) would correspond to the Fermi equation

in its classical setting, viz

∂hF

∂z
+ θx

∂hF

∂x
+ θy

∂hF

∂y
= σtr

2

(
∂2hF

∂θ2
x

+ ∂2hF

∂θ2
y

)
, (2.22)

with σtr = 2T being the transport cross-section. The main virtue of the Fermi
approximation is that by artificially extending the range of θx and θy to the
entire real line and by Fourier transforming with respect to x, y, θx, and θy, the
Equation (2.22) associated with the Dirac boundary data

hF(0, x, y, θx, θy) = δ(x)δ(y)δ(θx)δ(θy) (2.23)

admits the exact solution, (cf. Rossi and Greisen, 1941; see also Börgers and
Larsen, 1996),

hF(x, y, z, θx, θy)

= 3
π2σ 2

trz4
exp

[
− 2
σtr

(
θ2

x + θ2
y

z
− 3

xθx + yθy

z2 + 3
x2 + y2

z3

)]
. (2.24)

Thus, for a constant T, hFE may be presented as the rather simpler form (2.24)
(with σtr = 2T = constant) than Equation (2.14). Solution (2.24) is Gaussian in
x and y for fixed z, θx, and θy, and Gaussian in θx and θy for fixed x, y, and z.
Eyges (1948) obtained a closed-form solution for the case of σtr = σtr(z), which
corresponds to (2.14). The only discrepancy is in the shape of boundary data
(2.23) and the one arising from (2.13).

It is not generally possible to derive an exact closed-form solution for a more
general case of σtr = σtr(x, y, z), i.e., when the assumption A2 is replaced by a
more general one, assuming that the energy is a function of the spatial variable
r = (x, y, z).
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Solutions for the Pencil-Beam Equation 331

2.3. Including the Energy-Loss Straggling Term
In this section we include the energy loss straggling term: − 1

2
∂2(ω(E) f )
∂E2 in

Equation (2.3) and write the basic equation for charged particle beams under
assumptions A1–A2

∂ f
∂z

+ θx
∂ f
∂x

+ θy
∂ f
∂y

− ∂

∂E

(
S(E) f

)− 1
2
∂2(ω(E) f )
∂E2

= T (z)

(
∂2 f
∂θ2

x
+ ∂2 f
∂θ2

y

)
− σa(E) f. (2.25)

Since this is a second-order equation in E, we now need a boundary condition
at E = 0, so in addition to (2.2) we assume

f (r,�,0) = 0 (2.26)

and f → 0 as E → ∞.
Now following the previous procedure for the derivation of the equation for

h(r, θy, θz), we make a more general ansatz:

f (x, θx, y, θy, z, E) = hFE(z, ρ,�) · Z(z, E) �= 0, (2.27)

where hFE is the Fermi-Eyges solution. Here differentiating in z yields

∂ f
∂z

= ∂hFE

∂z
Z + ∂Z

∂z
hFE. (2.28)

Inserting (2.27)–(2.28) in (2.25), we end up with the equation

ϒ[hFE] · Z + hFE

(∂Z
∂z

− ∂(S(E)Z)
∂E

− 1
2
∂2(ω(E)Z)
∂E2 + σa(E)Z

)
= 0, (2.29)

where ϒ[hFE] stands for the Fermi-Eyges Equation ((2.7) with λ = 0) and is
identically zero. Hence, recalling hFE �= 0 we have the partial differential equa-
tion for Z given by:⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂Z
∂z

− ∂(SZ)
∂E

− 1
2
∂2(ωZ)
∂E2 + σa(E)Z = 0, (z, E) ∈ [0,∞) × [0,∞),

Z(0, E) = G2(E), E ≥ 0,

Z(z,0) = 0, z ≥ 0.

(2.30)

We wish to apply the Fourier transform, and therefore need to extend the prob-
lem to E ∈ R. In order to retain the boundary condition Z(z,0) = 0, we look for
solutions Z that are odd in E, so that Z(z,−E) = −Z(z, E). Applying the Fourier
transform, i.e., letting F in E(Ẑ(z, ξ ) := FZ(z, E)), we get

∂ Ẑ
∂z

− iξF(S · Z) + ξ2

2
F(ω · Z) + F(σa · Z) = 0. (2.31)
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332 T. Gebäck and M. Asadzadeh

Now, we invoke the NESA, (an approximate version of the fundamental theo-
rem of calculus cf., e.g., Asadzadeh et al., 2010),

F
(
w(E) · Z(E)

)
≈ w(Ea(z)) · Ẑ(z, ξ ), (2.32)

where Ea(z) is the average energy at depth z given by (2.37) next, and write an
approximation for Equation (2.31) in the form of

∂ Ẑ
∂z

+
(

− iξS(Ea(z)) + ξ2

2
· ω(Ea(z)) + σa(Ea(z))

)
Ẑ = 0. (2.33)

Equation (2.33) admits the analytical solution

Ẑ(z, ξ ) = C0 · exp(−�(z, ξ )), (2.34)

with �(z, ξ )given by

�(z, ξ ) = −iξ
∫ z

0
S(Ea(z)) dz′ + ξ2

2

∫ z

0
ω(Ea(z′)) dz′

+
∫ z

0
σa(Ea(z′)) dz′ + C(ξ ) ≡ iξEa(z) + ξ2

2
�(z) +�a(z) (2.35)

where C(ξ ) has been chosen according to (2.37) next. Finally, using the inverse
Fourier transform, and remembering that we look for solutions Z(z, E), which
are odd in E, we get the approximate solution for (2.30) under the NESA, as

Z(z, E) = C0√
2π�(z)

exp(−�a(z))
(

exp
(

− 1
2

(E − Ea(z))2

�(z)

)
− exp

(
− 1

2
(E + Ea(z))2

�(z)

))
, (2.36)

where

�a(z) =
∫ z

0
σa(Ea(z′)) dz′, Ea(z) = E0 −

∫ z

0
S(Ea(z′)) dz′,

�(z) = �0 +
∫ z

0
ω(Ea(z′)) dz′. (2.37)

Thus, recalling the ansatz (2.27), we have obtained the final approximate
solution as the product of the right-hand sides of (2.14) (with λ = 0) and (2.36).
Note that the boundary condition (2.2) is satisfied with

G2(E) = C0√
2π�0

(
exp

(
−1

2
(E − E0)2

�0

)
− exp

(
−1

2
(E + E0)2

�0

))
. (2.38)

If �0 is small enough compared to E2
0 , so that the second term has negligible

influence for E > 0, this is a Gaussian energy distribution centered around
E = E0, with width determined by �0 and with integral C0.
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Solutions for the Pencil-Beam Equation 333

3. NUMERICAL RESULTS

In order to assess the accuracy of the NESA in (2.33), we have performed
numerical computations for Equation (2.31) using the finite element method.
The equation was solved treating z as a time variable with a backward Euler
scheme, and with piece-wise linear (CG1) elements in E (see, e.g., Eriksson
et al., 1996). A nonuniform grid was used, with smaller mesh size for small E
and z. The number of grid points was 800 × 800. The cross-sections, stopping
power and straggling coefficients used in the computations model a beam of
electrons incident into water, and were taken from Luo and Brahme (1992).
The parameter values for the initial condition (2.38) were chosen as

(Figure 1): E0 = 20 MeV, �0 = 0.7 MeV2, C0 =
√

2π�0,

(Figure 2): E0 = 50 MeV, �0 = 4.4 MeV2, C0 =
√

2π�0,

Figure 1: Level curves for the analytical solution Zanal given by (2.36) under the narrow
energy spectrum approximation (NESA) (top left), and the corresponding numerical solution
ZFEM to equation (2.30) (top right). The initial energy was E0 = 20 MeV. The cross-sections for
electrons in water were used with the absorption cross-section? a = 0. The dashed thick lines
are the curves E = Ea(z), and the solid thick lines are the average energies for the respective
solutions. The figure at the bottom shows level curves for the relative error e = |ZFEM-Zanal|/
(ZFEM+Zanal).
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where C0 was chosen to get the maximum function value of 1. The other bound-
ary values were set to Z|E=0 = Z|E=Emax

= 0, where Emax > E0 was chosen large
enough not to influence the solution appreciably.

Figures 1 and 2 show level curves for the numerical solution and the an-
alytical (approximate) solution (2.36) for initial energies 20 MeV and 50 MeV,
respectively. The solutions agree quite well overall, especially for the lower en-
ergy. However, the numerical solution is not symmetric about Ea(z), while the
analytical solution is in the beginning, before the boundary condition at E = 0
has any impact. Also, the trajectories for the average energy (red curves) dif-
fer slightly. Finally, the numerical solution is affected by the different cross-
sections for low energies, while the symmetric energy distribution of the ana-
lytical solution ignores these effects as the cross-sections are evaluated only at
Ea(z).

The figures also show the relative error, defined as e = | fFEM −
fexact|/( fFEM + fexact) in order to avoid extremely large values where one of the

Figure 2: Level curves for the analytical solution Zanal given by (2.36) under the narrow
energy spectrum approximation (NESA) (top left), and the corresponding numerical solution
ZFEM to equation (2.30) (top right). The initial energy was E0 = 50 MeV. The cross-sections for
electrons in water were used with the absorption cross-section? a = 0. The dashed thick lines
are the curves E = Ea(z), and the solid thick lines are the average energies for the respective
solutions. The figure at the bottom shows level curves for the relative error e = |ZFEM-Zanal|/
(ZFEM+Zanal).
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solutions (or both) is close to zero. The relative error is about 10% or less in the
central area, but becomes large where the solution approaches zero due to the
fact that the analytical and numerical solutions decay differently.

4. CONCLUSIONS

We have derived approximate analytical solutions to the charged particle
transport equation under the continuous slowing down assumption, with and
without energy loss straggling. These solutions may be used to get more accu-
rate results for fluence and dose, while retaining the simplicity of the Fermi-
Eyges solution.

The analysis performed in Section 2.2 shows that the results by Kempe and
Brahme (2010) are essentially valid. They introduced a factor ε(E), which was
then assumed to be zero without further motivation. Our analysis shows that
this assumption gives correct results when the energy-loss straggling term is
ignored, and there is no need to introduce ε(E) in the first place.

By including the energy-loss straggling in Section 2.3, we have also investi-
gated a more general case and have derived a more general energy-dependent
correction factor. Numerical investigations show that although several approx-
imations are used in order to achieve a closed form solution, this solution gives
a generally good approximation, at least for the energies and cross-sections
used here.

Kempe and Brahme (2010) compared the analytical solution to results of
Monte Carlo calculations for light ion beams and showed good agreement for
the absorbed dose. The solution including energy loss straggling presented
here has yet to be compared to Monte Carlo data, but should improve the
accuracy of the solution and make it applicable to cases where straggling is
important. Such comparisons are the subject of future work.
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