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ABSTRACT. We study stability and convergence of hp-streamline diffusion (SD)
finite element, and Nitsche’s schemes for the three dimensional, relativistic (3
spatial dimension and 3 velocities), time dependent Vlasov-Maxwell system and
Maxwell’s equations, respectively. For the hp scheme for the Vlasov-Maxwell
system, assuming that the exact solution is in the Sobolev space H+1(Q), we
derive global a priori error bound of order @(h/p)*T1/2, where h(= maxy hx)
is the mesh parameter and p(= maxy px) is the spectral order. This estimate
is based on the local version with hx = diam K being the diameter of the
phase-space-time clement K and py is the spectral order (the degree of ap-
proximating finite element polynomial) for K. As for the Nitsche’s scheme, by
a simple calculus of the field equations, first we convert the Maxwell’s system
to an elliptic type equation. Then, combining the Nitsche’s method for the
spatial discretization with a second order time scheme, we obtain optimal con-
vergence of O(h? +k2), where h is the spatial mesh size and k is the time step.
Here, as in the classical literature, the second order time scheme requires higher
order regularity assumptions. Numerical justification of the results, in lower
dimensions, is presented and is also the subject of a forthcoming computational
work [22].

1. Introduction. We study stability and convergence for some specific finite ele-
ment schemes for a model problem for the three dimensional, relativistic, Vlasov-
Maxwell (VM) system with 3-dimensional spatial domain (x € Q, C R®) and
3-dimensional velocities domain (v € 2, C R®). The objective is two-fold:
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i) Numerical investigations of the hp-version of the streamline diffusion (SD) finite
clement method for VM where both Maxwell’s and Vlasov equations are discretized
using a space-velocity-time scheme both in h (mesh size) and in p (spatial order)
versions. In this part we derive optimal a priori error bounds for a SD scheme in a
Ly-based norm.

it) The study of the combined effect of Nitsche’s symmetrization (cf [23] and [5])
in the spatial scheme for a Galerkin method and a time discretization, for a second
order pde obtained through the combined Maxwell’s fields.

The SD method was suggested by Hughes and Brooks in [20] for the fluid prob-
lems. The method was further developed (by T. Houghs and co-workers) to include
several engineering problems. A thorough mathematical analysis was first given by
Johnson et al in [21] in a study of the Navier-Stokes equations and was extended
to most pdes with hyperbolic nature, where, e.g., [1)-[4] and [26] are relevant in the
present study. In the SD method the test function is modified by adding a multiple
of the streaming part in the equation, in terms of the test function, to it. Then,
in the weak formulation we obtain a multiple of streaming terms in test and trial
functions. This can be viewed as an extra diffusion term in the streaming direction
in the original equation. Hence, the name of the method (the streamline diffu-
sion). Such an extra diffusion would improve both the stability and convergence
properties of the underlying Galerkin scheme. It is well known that the standard
Galerkin method has a weaker convergence property for the hyperbolic problems:
O(h*~1) versus O(h®) for the elliptic and parabolic problems with exact solution
in the Sobolev space H*(2). The SD method improves this weak convergence to
O(h*~1/2) and also, having an upwinding character, enhances the stability.

These two properties are achieved by discontinuous Galerkin as well (see, e.g.,
[7]). The hp-approach is to capture local behaviour in the sense that: in the vicinity
of singularities refined mesh A is combined with the lower order (small p) polynomial
approximations, whereas in more smooth regions higher order polynomials (large
p) and non-refined (large h) meshes are used. In a sense the hp-approach may be
interpreted as a kind of automatic theoretical adaptivity.

The Vlasov-Maxwell (VM) system which describes the time evolution of colli-
sionless plasma is formulated as

Ouf +9-Vaf +q(E4c 19 x B)-V,f =0,

OE =cVy x B—1j, V. E=p, (1)

6,B=—cV; X E, Vz-B=0
with properly assigned initial data f(0,z,v) = f°(z,v) > 0, E(0,z) = E°=),
B(0,z) = B%x). Here f is the density, in phase space, time of particles with
charge ¢, mass m and velocity

b= (m?+c 2} V2% (v is momentum).
Further, c is the speed of light and the charge and current densities p and j are
given by
p(t, ) =47r/qfd'u and j(¢,x) =47r/qf1")dv.

The phase-space variables may have different dimension: (z,v) € R% x RY d<d.

The Vlasov-Maxwell equations arise in several branches of continuum physics,
c.g. in astrophysics or rarefied gas dynamics. The main assumption underlying the
model is that collisions are rare and therefore negligible. In this setting the above
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system describes the motion of a collisionless plasma, e.g., a high-temperature, low-
density, ionized gas.

For a thorough mathematical study of VM models we refer to DiPerna and Lions
[13] and a most recent work by Glassey and co-workers [16]-[17] and the references
therein. The results in [16] are for a lower dimensional model where the interest lies
in classical solutions, and are based on compactness and regularity assumptions on
the initial density and fields.

The main mathematical concern in dealing with the Vlasov-Maxwell system is
related to the nonlinear term (E + 9 x B) -V, f (we assumed ¢ = 1) which can be
written in the divergence free form, viz. (E+9 x B) -V, f = div, ((E +0x B)f).
In [13] the nonlinear form (F + ¢ x B)f is analysed.

Numerical approaches for the VM system have been considered by several authors
in different setting. The most relevant studies to this work are given by Gamba and
co-workers [10] devoted to a discontinuous Galerkin approach, and Standar in [24]
where the stability and a priori error estimates for the h version of SD method
for VM are derived. As some related studies we mention the analysis of a one
dimensional model problem for the relativistic VM system in an interval given by
Filbet and co-workers in [15]. Also in a very recent work [11] Degond and co-workers
study a particle-in-cell method for the Vlasov-Maxwell system.

The studies on classical numerical approaches for a very much related model: the
Vlasov-Poisson (VP) system, can serve as a guideline on the realistic expectations
and relevant schemes for the Vlasov-Maxwell system. In this setting, to mention
some, the convergence results for the semi-Lagrangian schemes by Besse [6] and
Charles and co-authors [9], a throughout work on finite volume method by Filbet
[14], as well as the discontinuous Galerkin work of Blanca Ayuso de Dios and co-
workers in [12] and the finite element studies by Zaki and co-workers in [27] are of
particular interest in numerical study of VM system.

An outline of this paper is as follows. We gather notation and assumptions in
Section 2. In Section 3 we formulate the SD schemes for both Maxwell’s equations
and the Vlasov-Maxwell system. Section 4 is on stability and convergence of the
hp SD finite element method of the Maxwell’s equations, based on a space-time
iterative scheme. We insert such approximated field function in the drift term
in Vlasov-Maxwell equation and prove stability and derive optimal convergence
rates in the SD phase-space-time discretization scheme. Section 5 is devoted to
the study of a Nitsche scheme combined with a time discretization for a second
order pde obtained from the Maxwell’s equations. Here, we rely on a modified form
of the Ritz projection and derive optimal error estimates for the Nitsche scheme
in spatial discretization. Assuming additional regularities in time we also prove
optimal convergence of a second order time scheme for the fields. Finally, in our
concluding Section 6 we present some numerical tests of the studied schemes in
lower dimensional geometry.

2. Notation and assumptions. The divergence equations in (1) can be derived
from the rest of the equations, assuming that the initial data E° and B° satisfy
corresponding divergence equations. Hence we will consider the following relativistic
Vlasov-Maxwell system in R¢ (in the paper we focus on the dimension d = 3, but
one can easily obtain the analogous results for d = 2):

Ouf +0-Vof +(E+9x B)-Vof =0,
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OFE =V, xB—j
0B=-Vy;xE

with % = (1+|v|2)™Y/2v and ji(t,z) = | o dv, where for simplicity we set the charge
q and all constants equal to one.

Our objective is to use an iterative scheme to approximate the solution of the
Vlasov-Maxwell (henceforth referred as VM) equations. First we take a guess for
the density f and then calculate the corresponding j. Next, we plug these quantities
into the Maxwell’s equations and solve these equations. Finally, we solve the Vlasov
equation with the such approximated F and B as coeflicients.

We start from the Maxwell’s part. Set E = (FEy, Ea, E3)T, B = (B1, Ba, B3)7,
J = (J1,J2,73)T. Then the Maxwell’s equations in (2) can be written in the following
form:

(2)

0ty = 02 B3 — 03B2 — j1,
Oty = 03B1 — 01 B3 — ja,
O0iE3 = 01Bs — 02 B; — s,
0,B1 = —0:E3 + 03 Fs,
0yBy = —03E1 + 0, E3,
OiB3 = —01 2 + 02 F,

where 0; denotes the derivative with respect to z;. Hence defining the matrices

00 0 0 0 O 0 0000 -1
00 0 0 0 1 0 0000 O
00 0 0 -1 0 0 0010 O
Mi=1490 00 00| M=|09 0100 0]
00 =10 0 0 0 0000 O
01 0 0 0 O -1 0000 O
0 0 0 0 10
0 0 0 -1 00
0 0 0 0 00O
Ms=149 10 0 0 0
1 0 0 0 00
0 0 0 0 00O

and letting W = (EBi, Es, E3, By, B2, B3)T, W° = (EY,E3, EY, BY, B, B§)T and
b= (=41, —ja2, —j3,0,0,0)T, the Maxwell’s equations can be written as the system
OW + MWW + M2, W + M39sW = b,
_ /0 ®3)
W(0,z) = W"(z),
which, in a concise desired form, is the convection system:
AW + M - VW =1, (4)
with M = (M, Mo, M3). Now we return to the Vlasov equation given by
Of+0-Vof+(E+9%x B)-V,f =0, )
£(0,z,v) = fO(z,v) > 0.
For simplicity, we introduce the notation

G(f) = (9, E+9 x B)
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and define the total gradient
Vf=(Vaf,Vuf),
so that, we can rewrite the Vlasov equation in compact form as
f+G(f)-Vf=0. (6)

Note that (6) is a homogeneous scalar version of (4). Further note that, as M in
(4), G is divergence free

d 2d
&9 dE+9xB) _ . B
VG(f) = ; 7.t i=;{-1 e =V (9 x B) = 0. (7)

Throughout this paper C will denote a generic constant, not necessarily the same
at each occurrence, and independent of the parameters in the equations, unless
otherwise explicitly specified.

3. Hp-streamline diffusion method. Let Q, C R® and Q, C R® denote the
space and velocity domains, respectively. We assume that f(t, z,v), E;(t, z), B;i(t,z)
for i = 1,2,3 have compact supports in £, and that f(¢,z,v) has compact support
in Q,.

Now we will introduce a finite element structure on Q = @, x Q. Let TfF = {7}
and T = {7,} be finite element subdivisions of {2, with elements 7, and 2, with
clements 7, respectively. Then Tj, = TF x Ty = {7, x 7,} = {7} is a subdivision
of Q. Let 0 =t9 <t < ... <tp_1 <ty =T be a partition of [0,T] into sub-
intervals I,, = (tm,tm+1], m =0,...,M — 1. Further let C; be the corresponding
subdivision of Q1 = [0, 7] x Q into elements K = I, X 7, with hx = diam K as the
mesh parameter. We also define a piecewise constant mesh function h(t, z,v) := hg,
(t,z,v) € K. Finally, we introduce C}, as the finite element subdivision of [0, T]x (2.

Remark 1. Henceforth, the discrete problems are the finite element approximations
for the equations (3) and (5) formulated for (z,v,t) € (0,T] x sz x £y, associated
with initial and corresponding boundary data. Here one may assume that f has
compact support in the velocity space R, and hence assume homogeneous Dirichlet
boundary condition for £2,.

Thus to define an adequate finite element space we let

M-1 M-1
Ho= [] HE(Im x Qe x Q) and Ho= [ H(Im x ),
m=0 m=0

where
H(Im x Q) = {w € H';w =0 on 6Q}.

Here Q stands for cither 2, or 2, x Q,. For k& = 0,1,2,..., we define the finite
element spaces for the Maxwell’s equations (resp. Vlasov equation) as the space
of piecewise polynomials which are continuous in z (resp. in 2 and v) and with
possible discontinuities at the interior time levels ¢,,,, m=1,..., M:

Vi = {9 € [Hol% gil g € Pop(Im) X Pp (3), VK = Iy x 75 € Gy, 1 <4 <6},
with the extension for the Vlasov part and with 7 = 7, X 7, viz:

Vi = {9 € Ho; 9lx € Poge(Im) X Ppye (Tz) X Py (1), VK = L, x 7 € Cp}-
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where P, (+) is the set of polynomial of degree at most px on the given set. In this
setting we allow the degree of polynomial to vary from cell to cell, hence we define
the piecewise constant function p(t, z,v) := px. We shall also use some notation

(f,9)m = (f,9)8m> lgllm = (g,9)2

and

(£, 9)m = (Ftms-- ), gltms - Nas  9lm = (9,901,
where S, = I, x €, is the slab at m-th level, m =0,...,M — 1, and 2 stands for
Q. in Maxwell’s equations and 2, x €, for the Vlasov case.

3.1. Maxwell equations. Define f** b"% and W™?¢ as the approximation on the
i-th step of f, b and W, respectively. The global hp version of the streamline
diffusion method on the i-th step for the Maxwell’s part can now be formulated as
follows: find W € V, such that for m =0,1,...,M — 1,

3 3
(atWhﬂ‘ + > MW, g+5(Bg+ Y ]V[lalg)) + (WP, g4 )m =

=1 I=1 m
3
- (bh‘i‘l,g +6@g+) sz")zg)) + (W9 ) m, Vg EVh, (8)
=1 ™

where g = (g1, ..,96)7, 9+ (¢,z) = lim,_ o+ g(t + s, 7). The problem (8) is equiva-

lent to: find Wh* € Vj, such that

BW™i, g) = LM g9) Vg€V, 9)
where the bilinear form is defined as
3 M—1 3 3
B(W,g) =Y (BtW +> MOW,g+5(Bg+ Y ]V[lalg))
m=0 =1 =1 m

M-1
+ Z (W], 94)m + (Wi, 94)0

and the linear form by

M-1 3
Lbg) =) (b,g +6(0g+ ), J\/fzazg))m +(W°, g4)o,
m=0 =1

where (W] =W, — W_.
Now let (,-)x denote the La-inner product over K and define a non-negative
piecewise constant function § by

6|K = (SK, for K € C~h,

i.e. di is a non-negative constant on clement K. Counting for the local character of
the parameters hy, px and dx, to formulate a finite element method based on the
local space-time elements, the problem (9) would have an alternative formulation
where we replace in the definitions for B and £ the sum of the inner products (-, )m
involving dx by the corresponding sum ) Eéh(-, )k and all 6 by . Thus we have
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the problem (9) where in the bilinear, and linear, forms the first sum is replaced by
eréh as, e.g.,

3 3
BW,g)= 3 (8 + > MW, g+ 6x(Bg+ Y Midhg))

KeCy =1 =1 "
M-1
+ Y (W], 94)m + (W, g4)o-
m=1

We also have that the solution W of the equation (3) satisfies
B(W,g) = L(b;g) Vg€ Vi
Subtracting (9) from this equation, we end up with the following relation
BW — Whi g) = L(b;g) — L™ Y5g9) Vge W, (10)

which is of vital importance in the error analysis.
Now assuming jump discontinuities at the time levels t = t,,, m=1,..., M —1,
the suitable norm for stability and convergence would read as follows:

M-1 3
1
lgllEe = 5 (19+13 + lo-Br + D NlglZ+2 > oxclldeg + > Midugll ).
m=1 KeCp =

3.2. Vlasov-Maxwell equations. The hp-streamline diffusion method on the i-
th step for the Vlasov part (5) can be formulated as follows: find ™ € V}, such
that for m=0,1,...,M -1,

(Buf™ + G(M71) - V£, g + 8(Bug + G(FM ) - w>)m
g m = (g )m Vg E VR (11)

The problem (11) is equivalent to: find f™* € Vj, such that

B(G(f™*1); f,9) = L(9) Vg € Vi, (12)
where the trilinear form B is defined as
M-1 A
BGif.9)= Y. (8 +G-Vf,g+60g+G(f) - Vg))

= ’ (13)
M—1

= Z (If], g+)m + {f+, 9+)o
m=1

and the linear form L is given by

L(g) = (% g+)o-

Analogously as for the Maxwell’s equations we reformulate (12) considering
phase-space-time finite element discretization. This yields replacing the first sum
in (13) by a sum over the prismatic elements K € Cp, of the form ). and thus
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: . M-1
having the terms with Y., Z5 (,-)m replaced by Y pcc, (- ). Hence

K

BGif,9)= Y (0 +G - Vf,q+bxc(Bug + G(F) - V)
KeCy,
M-1

=t Z ([f]:g-i—)m + <f+1g+>0-

Therefore, the adequate norm to derive stability and convergence estimates for the
Vlasov equation will be the following triple norm:

M-1
1 S
gl = 5 (lo+ld +1o-Br + 3 llsl+2 Y- Scllfeg + (") - Vgl ).

m=1 KecC,

4. Stability and convergence of hp-SDFEM.

4.1. Maxwell equations.
Lemma 4.1 (M-coercivity). The bilinear form B(-, -) satisfies the coercivity relation
Bg,9) = llglli: Vg € Ho.

Proof. By definition of B we have that

M-1 3
B(g,9) =Y (Big+ Y  Midig,9)m
m=0 =1
3 M—1
+ > dxllog+ Y Midiglk + > Alg) g+)m + lg+15-
KeCy =1 m=1
Integrating by parts we get that
M-1 M—1 1, M1
> @0,9)+ X (9 g m 1ol = 5 (2 1gllZ + o=l + 19+ 13)
m=0 m=1 m=1
and since g(t,z) = 0 on I x 89, we have that
M-1
> (Mg, g)m =0, forl=1,2,3. (14)
m=0
Then, the proof follows immediately through adding all above terms. O

Lemma 4.2 (Poincaré-type M-estimate). For any positive constant C we have that
for g € Ho,

3
1
912, < (I9-Ber + 51009+ Midigll% ) he™
=1
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Proof. For t;, <t < tym+1, we may write

tm+41 d

9, =lo-Pss = [ Sl ds
+ S

st 3
gy — 2/ (Bsg+ > Midig, g)ads
t =1

2 1 . 2 Pt s
<lg-Burs + glog+ > Mgl +C [ ol
=1 t
where in the second equality we used (14). Finally, by Grénwall’s lemma we have
that

3
1
lo@I, < (l9-Buwa + Fl0g + > MidigliZ, )"
=1
Now, integrating over [t tm+1] We obtain the desired result. O

We proceed to the error analysis. First, let W be an interpolant of W in the
finite dimensional discrete function space Vj;, and denote by W"¢ a solution to (9).
Then we represent the error as the following split

E=W —Wh =W —-W) - (Wh - W) =7-¢
where 7 = (71, ..,76)T is the interpolation error and E=(&,...,&)T.
To estimate the convergence rate for both the Maxwell’s and the Vlasov-Maxwell
equations we use the Theorem 3.2 from [4]. As a consequence of this Theorem
we have the following bounds for the interpolation error n = f — f of a function

f € HE1([0, T x Q) (where Q stands for Q,, in the Maxwell’s equations and €, x €2,
for the Vlasov case) and its gradient:

2s 2
A0 ) 3 2 15
Inll><Cy 5 1(pxc SEF 541,565 (15)
K
2 hx 2exe 2
IDnl?<Cy - Do (prcs S5 41,56 (16)
K

where the sums are taken over all space-time elements of the triangulation of the
domain, [0,T] x £, 0 < sy < min(pg, k), with px being the local spectral order.
Closed formulas for ®; and ®, are given in Theorem 3.2 of [4]. A less involved
formula for ®; can be found in [18].

To proceed we state and prove the following intermediate result for the Maxwell’s
equations.

Proposition 1. Assume that W € H**1([0,T] x Q). Moreover on each K, the
parameter 8 satisfies 0 = Clﬁ—ﬁ for some constant C1 > 0 with pghx < Cy <1
for some constant Cy > 0. Then there exists a constant C > 0 independent of pk,
hx and sy such that

W — Wi < ¢S e prt Om(pr, si)lW 21,5 + CIF = o
KeCy
where ®p; = max(®y, ®2) with N = dim Q, + 1 for &1 and Py (recall that M, as a

subscript in the triple norm above, is to emphasis that it concerns the triple norm
of the Mazwell’s equations).
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Proof. We have by Lemma 4.1 and (10) that

IENZ; = B(E, &) = B(7,€) — L(b;€) + LM 8).
We start with the term
3 3
B8 =Y (0 + 3 Mo €+ 8k (@ + Y Midid))

KeCy, =1 =1
M-1

+ Z ([ﬁ]vg-F)m + <ﬁ+1é+)0-
m=1
Partial integration gives the identities
(0077, )m = / [ )izt dw — (7, 8eE)m = (i, €)1 — (71 Ex)m — (7, Oeb)m

and
(M7, &) = — (7, MiO1E)m,

since 77 and f have compact support in .. Inserting these equations into the
expression for B(7, £) we end up with the following equality

M-1
| (77 §)| I(ﬁ €—>1\/[ - Z(ﬁ—a[&])m
m=1
M-1
Z 7,0 + Z ME)m + Y 6xc (007 + Z M0y, B, + Z Mioi€) |
m= I(ECh
Further, using some standard inequalities it follows that
M—1
1B(7, ) < lIEN+32 Y bt 3 (5 |1n||K+3vaK||am+ZMlamnx)

KeCy =1

Now let us estimate the second term

£ = 08l = | 3 (8" = b€+ bx at£+ZMlazf) |

KeCp
{ M-1
=% IElI1R: + Z + 865 )|1b — b % + Z ||77||2 i C||é||12n)
Kely, m=0

The above two inequalities and Lemma 4.2, with properly chosen C and the bound
on prhy, imply the estimate

c 1z T s ch,i—
ENR: < S ENRy + E|]|C|||12v1 +CIIf = ™y,
M-1

+C Z (7= 21+ hlE-[3gr) +C Z ( 1+ )”77”1(‘|‘5K||3t77+ZMlal77”K)

m=0 KGCh =1
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Hiding the £-term on the right hand side in the é—term on the left hand side, gives
us the following inequality

M-1
£ Lo 2 Lyi— = =
ENs < SIENR+ CIf = £y +C Y (g + hle[asa)
m=0
3
+C 3 (U + 8Nl + dxcloi + Y Midilk ).
Kely =1

Thus, we have estimated |||€]||3;. This implies that

M

3 B 5 1. i 3
ellZe < Wl + NENR: < 5Hellls +CIf — 23, +C Y hle-l2,
m=1
M-1 3 M-1
+O ([ B 3 V- Poa+ DGR il +6xc 0+ M) + Y 11ill)-
m=0 KeC), =1 m=1

(17)
Now we have to estimate the interpolation error terms:
3
Jo= 30 (85l + éxcllod+ Y Midilk )
1=1

KeCy,
M-1 M-1

iela + D =P + Y [
m=0 m=1

For the term J; we use (15) and (16) to get

Jz:

h 25K B _
Jh<C Y TK) Ou(pre, s )P (O B + 8k ) W 21, (18)
KeCy,

To estimate the term J, we use the trace estimate combined with the inverse in-
equality and get

6
I3 < (X IVl Il +h Il ), (19)
1=1
to obtain
hic \* 172 hie V5T 1 g
J2<C Z o> o7 (px, sK) o rx M Pk, 5K)
KeCy -

hye 25K +2
s (B) T st sn)| W, (20

where for all terms in J; we combined (19) with (15) and (16).
Now, moving the triple norm of & on the right hand side of (17) to the left hand
side and using estimates (18) and (20) it follows that

el < C > e pt omlpic, sillW 1241, x
KeCy,
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M
+C|If = MG, +C D hle-f. (21)

m=1
The next step is to apply a discrete Gronwall lemma of the form: suppose {ag}{”
satisfies
¢
ag<C1+C2Y ajh, £=1,...,M.
j=1
If h < 1/2C5, then we have that
ap < 201624 E-1DR for f=1,..., M.
The discrete Gronwall’s lemma yields
le-lf < C D R ot emprc, s IW I i + CIlF = £ o
KeCp
for £ =1,...,M. Plugging these inequalities into (21) will give the stated error

estimate and the proof is complete. O

Remark 2. Proposition 1 and Lemma 4.2, with properly chosen C and the bound
on prhy, with the definition of ||| - |||m imply the following Lo-norm error estimate

W — W3, q, <CY W< pt dm(pr, s W2, 41,
KeCp

+Cphl|f = Mg, (22)
4.2. Vlasov-Maxwell equations. The main result of this section is as follows:

Theorem 4.3. Let f™* be a solution to (12) and assume that the exact solution f
of (5) is in the Sobolev class H***(Qr) and satisfies the bound

IV flleo + 1G(F)llo + VAo < C, (23)

and the parameter 0 on each K satisfies g = Cl%ﬁf for some positive constant
Cy with pxhx < Cy < 1 for some constant Cy > 0. Then there exists a constant
C > 0 independent of px, sk and hyx such that

If = 018 <o DR pt om(prc, s)IW 21, + PRI = 747G,
KeCy

+ Zh%‘““p;@v@,{,3K>||f||§,(+1,f<), (24)
KecCy

where 0 < sx < min(pg, k) and the subscript V in the triple norm above, as well
as a subscript for ® is to emphasize that these quantities are in the Viasov part.
Here, &y = max(®y, B3) with N = dimQ, + dim Q,, + 1 for @1 and Ps.

We postpone the proof of the theorem and first state and prove the following
auxiliary results:

Lemma 4.4 (V-coercivity). We have that
BG(f"1);9,9) = gl Vg € Ho.

Proof. Taking into account that VG(f™*~1) =0, g is zero on 99 and following the
proof of Lemma 4.1 we get the desired result. O
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Lemma 4.5 (Poincaré-type V-estimate). For any constant C we have for g € Ho,

1 L, i— v
912, < (lo-Euss + 51189 + G - Vg2, ) e
Proof. The proof is similar to that of Lemma 4.2 and therefore is omitted. O

Now we proceed with the error analysis that yields the proof of the Theorem 4.3.

To this end we let f be an interpolant of f and set
e=f-fM=(-H-U""-H=n-¢
Proof of Theorem /.5. By (12) and Lemma 4.4 we get that
ENR = BG(*71);6,8) = L&) = BG(f 1) £,6) = Ty + T,
where
Ty = B(G(f™*1)in,€)
and
T; = B(G(f); £,€) — BG(f™1); £,€).

We start with the term Tj. Integrating by parts and using the facts that n and &
are zero on 9N and VG(fMi~1) = 0, we get

Ty= Y (0m+G("1)  Vn, 6 + 6k (8 + G(F™71) - VE))
KecCy
M-1

+ ) Al Ex)m + (10 xdo

M-1

= _(T]: atg + G(fh’i_l) ' v&)QT + <7’—1€—>JVI - Z <77—1 [E])m
m=1

+ 3 8k (B + G(F"Y) - Vi, 0 + G(fH1) - VE) .

KeCy

Now using Cauchy-Schwarz inequality we obtain the estimate

M
1 - h,i—
(12l < 21 + O 3 In-B+ e + 3 (clown + G - V) ),
m=1 KeCn

where for the last term we have the bound

0en + G(f™*1) - Vnl|x <
<18l x + IG(F)lcoIVnll i + IVl IGUF™1) = G(f)ll- (25)

Next we estimate 75:

5] < D7 6x|((G(F) = GU™MTY) - V,8€ + G(f"71) - VE) |

KeCy

+]((G(F) = G ) - V,6) o, |
< O(bxllG() — GBIV I + Y o + G - Velfk)

KeCy

+CIG() = U Hllar IV Fleoliéll -
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To proceed we need to estimate |G(f) — G(f"~1)||a,. By the definition of G we
have that _ | |
G(f) — G(f»*1) = (0, E — E™ + 6 x (B — BM)),

which gives
IG(f) — G B, < CUE - EM |13, + 119 x (B = B")3,).
Hence using (22) we obtain
IG(f) = G NG, < C D hEHUnm(px, sk) + Cphllf — 477G,  (26)
KeCy,
where we denote
Uy (px, sx) = P Pm(r, SE)W 2 1,

Now combining the estimates for 73 and T, together with (25), (26) and (23) we
have

Nz < —|||§|||v + Cllélly, + CZ hEE Uy (prc, i) + Cphll f — £ I,
KeChn

+cz -2 +C 3 (65 Il + éxc (19uml + 1 9ml%) )-

I(GC)L

Moving the triple norm to the left hand side and estimating ||§||QT < C(||e||QT +
Inll3,.), will give us the following inequality

% < Cllell3, + Cliallg, +C > ke Un(px, sic) + Cphl f — g,

I(GC}L
M
+CY P+ C S (65 Ml + bxc (10l + Vi) )-
m=1 KeC,

We now estimate |||el||v as follows

llell < 20ElR; + 2l <
< Clelly +Clinlld, +C 3 W+ Uu(p, sic) + Cohllf — £ I,

KeCpn
M M-1
+CY In-lB+CY (51?1||77||2}< +0x (|1 8ml% + IIVWII?()) Flnels+ D 1l
m=1 I(Eéh m=1

Using Lemma 4.5 for the term ||e[|%,. with an appropriately chosen constant C' and
the bound on pxhy we get

M
1 S LI
llell? < sllelli} +ChY° le—2,+C Y h3x Onm(pi, sx) +Cphllf — g,
m=1 Keé),
M—1
+Cllnl%, +CZ -2+ e+ D bl
m=1 m=1

+0 (it Inli + b (19enl + I9l%) ).

KeC),
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Recalling (15) and (16) for all 7-terms we obtain (in a similar way as in the proof
of Proposition 1 for the terms J; and Jz)

llellfy < OhZ le_ |2, +C Y W P On(px, sx) + CohIIf — B
Kec,,

+C Y REE P Oy (pic, 1) FII2 41,
KeCp

Now we use the discrete Gronwall lemma stated in the proof of Proposition 1 and
we get the following inequality

lllelll¥ < CZ h??KHpKl‘I’M(pIG sic)|[W1I3 k+1,K T Cph||f — fh’i_1”2QT

KeC),
2sx+1, —
+C Z th;<+ P}(lq’V(PKy 51()||f||§,(+1,1(,
KecCy,
which gives the desired result and completes the proof of Theorem 4.3. O

Corollary 1. Under the assumptions of Theorem 4.3 we have

If = £ < C D W3 ot Sm(prc, sk )W 31,5 + C (PR)°
KeCy,

+C YR Rt Oy (px, sk F e,
KeCyp,

Proof. Using Lemma 4.5 with a properly chosen constant C' and the bound on pxhk
we get
IF = A2 s, € 8+ CpRIF — 712,500

where S denotes the terms with sums from the right hand side of (24). Using this
inequality repeatedly will give us

I = 3 1, < CS + C(ph)’,
which ends the proof. a

Remark 3 (The DG approach). The whole theory developed in the previous
sections work for the streamline diffusion based discontinuous Galerkin (SDDG)
method as well. In this method our approximations are also allowed to have jump
discontinuities across the inter-element boundaries. Then the norms, including the
sum over such jump terms, are much more involved. However, as we mentioned
above, the analysis although lengthy follow the same path.

5. Nitsche’s method for Maxwell equations. Alternative, yet more desirable
numerical scheme for the Maxwell’s equations can be obtained using a symmetrizing
penalty approach known as Nitsche’s method. This, however is not applicable
directly, since symmetrization is not adequate in the weak formulation for the first
order hyperbolic differential equations. To circumvent this it requires to render the
Maxwell equations to second order pdes through cross-differentiations. This cannot
be extended to the Vlasov part due to the, first order, hyperbolic nature of the
Vlasov equation, and therefore Nitsche’s scheme is not relevant for a whole system
involving Vlasov equation. Nevertheless, the advantages of the symmetrizing for
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the modified Maxwell equations, are overwhelming, see, e.g., [25]. Therefore below
we include analysis of the Nitsche’s approach for the modified Maxwell.
Recall that we have the Maxwell’s equations given by

By -V x B=—j],
Bt + VI x FE=0.
We differentiate the first equation with respect to time to get

By — Vg X By = =i, (27)
and plug the second Maxwell’s equation into the equation (27) to obtain
Ey+ Ve X (Ve X E) = —j;. (28)

Multiplying (28) with g € H(curl, ;) = {v € Lo(Q) : Vo x v € La(9)} and
integrating over (2, yields

/Ett-gdz+/ me(vsz)-gdxz—/ ji - gdz. (29)
Qa Qu Qa

Now recall the Green’s formula

/u-mevda:——/ szu-vdmz—/(uxn)-vds,
Qz

where n = n(z) is the unit outward normal to the boundary at the point z € 9§2,.
Apply Green’s formula to (29)

/Ett‘gda:—l-/ VIXE-VIngJI—/ VIXE-(an)dsz—/ ji - gdz.
Q Qu Jr, Qq

This relation being non-symmetric (see the contribution from the boundary terms)
causes severe restrictions in, e.g., deriving stability estimates. To circumvent such
draw-backs Nitsche introduced a symmetrized scheme for elliptic and parabolic
problems (see [23]), which is also known as the penalty method. This can be seen
in, e.g., [8] and [25]. In our case Nitsche’s method is performed by the add of extra
boundary terms making the bilinear form symmetric and coercive, viz.

/Ett~gd:v+/ VIXE-Vngd:L'—/ Ve X E-(gxn)ds
2. Q I

—/(Exn)-szgds+1/ E~gds=—/ Je - gdz.
e h Jr, Qz

Here v is a constant that will be specified later. Now, we define the symmetric
bilinear form

a,(E,g):z/Q VEXE-szgda:—/F Ve X E-(gxn)ds

—/ (Exn)-szgds+l/ E-gds
T, h Jr,

and the element space of piecewise linear polynomials
‘/}Lm = {g € I{(Curla QIL) : gl‘l’z € Pl(Tcu)a VT:E € led}

Thus, we can formulate the semi-discrete problem as: for each fixed ¢, find EMt,) e
V¥, such that

(Bl 9. +a(B", g) = =(jt,9)a, Vg€V (30)
It is straightforward to observe the consistency of the method.
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Lemma 5.1 (Consistency). The ezact solution E of (28) satisfies
(Bt 9)a. +a(E,9) = —(jt, 9)o. Vg € H(curl, Qz).
Now, defining the mesh dependent discrete norm

2|2,

lgll? = Ve x gll&, + Ik

we have
-
a(9,9) = IV= x gllf, = 2(Va x 9,9 x )., + 7 llI7,

> [V x glig, —2IW*Vz x glv. Ih7Y2g x alle, +7Ih7 glIf,

A%

1 _ -
IVz % gllf, — =KV x gllt, — ol Y29 x nlE, +lIh g,
a-C

«

v

Ve % gllE, + (v = 4a) IR 2glIR,,
where in the last inequality we used the following trace estimate:
1RY2V5 x glIf, < ClIVe x gll5, Vg€ Vil
and the trivial inequality
In=72g x n|lf, < 4h72glIR, Vg € La(Ta). (31)

Now, if we choose the constants v and «, such that v > 4o and o > C, then we
have proved the following coercivity result.

Lemma 5.2 (Coercivity). If vy is large enough, then there exists a constant C' > 0,
such that
a(g,9) > Cllgll;, Vg e Vy.

To have continuity of the form a(-,-) we need to define a mesh dependent triple
norm as
llglll? = llgll7 + 1R/2 V2 x g, -

Then we have the following lemma.

Lemma 5.3 (Continuity). The bilinear form a(-,-) is continuous with respect to
the triple norm ||| - |||» end we have the following estimate

la(u, v)| < (9 +Nlllnlllvlla-
Proof. Using inequality (31) and simple algebra we get the result:
la(u, v)| <[V % ulla, |Va X vlla, + [B*Va x ule, |B720 x nlr,
+ B 2w x n|r, |R2 Ve x vllr, +~[1h e, |72,
<lkelllnlllwllln + 4lllellislilollln + 4lllllinlilolle + iz o]l
<9+ Dllllllnlllvlln-

For the triple norm ||| - ||| we have the following inverse estimate

llglllx < Ch™Mlglle..,

which holds for all g € V. We note that the trace estimate implies the coercivity
of the form a(-,-) also in the triple norm.
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5.1. A modified Ritz projection. Let us define a projection @, : H(curl, ;) —
Vii by
a(Qnu,v) = a(u,v) Yv € V.
We have the following error estimates for the projection Qp:
Lemma 5.4. There exists a constant C, such that
llu— Quulla, + hlllu — Quullln < CR?|lullm2(q,)- (32)
Proof. Consider the stationary problem
VX (Ve Xx@)=f in Q,
=0 on [';.

The Nitsche formulation for this problem is given by: Find " € V)?, such that

a(p™,x) = (f,x) Vx €V (33)
Further, we have the Galerkin orthogonality
a(p—¢",x)=0 VxeVy. (34)

Hence, the projection @ can be seen as the solution operator of (33). We therefore
need an a priori error estimate of (33). To this end we split the error into two terms
=" = (p=TIne)+(Inp—¢") = n+&, where I, is the standard nodal interpolation
operator. By coercivity, continuity of a(-, ) and the Galerkin orthogonality (34) we
have that

€l < Ca(€, €) = —Ca(€,m) < CllENlnlll-

It follows that |||€]||» < Cllnll|x, so it remains to estimate |||7|||». Below we estimate
each term in [||n|||,, separately. For the interpolation error we have

Ve x 7ll%, <2(Venllf, < CR? [l q,)-
As for the boundary integrals, by the trace inequality we have the estimates
In72q)12, < CIB~2nllo, B~ 20l i e,
< C (K20l + bR s )
< CR?|lgllf2 .y
and similarly
10172V, xnli2, < € (W29, x oll3, + BIRY2Vo(Va x )R, )
< CR2|lelt(q, )

where, in both estimates, in the last inequalities we have used the interpolation
estimates. Summing up we end up with

Imllln < Chllell a2 @.)-

It remains to estimate the error in the Lp-norm. To this end we consider the
auxiliary problem

Ve X (Ve X ) =p—¢" in Q,
=0 on I',.
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Multiplying the first equation with ¢ — " and integrating over 2, yields
o — "3, = (0= ", Va x (Vo x ¥))a,
= (Vo X (9 = ¢"), Vo x ), — (¢ — ¢") x 0, Vo x P)r,
=a(p - " 9) = alp - ", Y — Iny)
< lle = " llalll = Tl
< CR2|lell i (@) 1]l 520 -
By the stability of the elliptic problem
¥l 20,y < Cllo = ¢*lla.
the estimate for the Lo-norm follows. O
5.2. Convergence. Let us split the error as
E—E" = (E - QyE)+ (QuE—E") =p+0.
In order to bound 6 we note that
(6 ). + a6, X) = (QuEut, X2, + a(QnE, X) — (B, X, — a(E",X)
= (QnEw, x)0. + a(QrE, X) — (Eit, X)a. — a(E, )
= —(psts X)a.
for x € V}¥. We choose x = 6; to get
(044, 61)q, + a(8,6:) = —(ptt, Gt)QI;

which leads to

N =
Q..Ig___

: (16:115, +a(6,9)) < llpulla. 10:la.
[

Integrating in time over [0,¢] and noting that 8(0) = 6;(0) = 0 we get the following
estimate

16: (), + a(0(2), 6(2)) < 2/0 llossll. 116510, ds

i
<2 ssl|.d 0
<2 [ lowsln.ds max. 1o, (3)

t 2
1
52( / ||pss|1nzds) +—2—(Sg}3§] ||ef,||nx)

Since this holds for all ¢ € [0, T and a(6(t),6(¢)) > 0, we have

1 2 J ’
= 0 <2 55|/,
5 (mes 100, ) < ( | Wpula. )

Inserting this into (35) and using Lemma 5.4 leads to

2

T 2 T 2
16: )13, + a(6(2),0(t)) < 4 (/ ||Pss||0xd5> <4 (C'hz/ ||Ess||f-12(0z)ds> .
Jo 0

It follows that
T
16:(®)lla, < CI2 / | ool 20 ds (36)
0
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and -
16l < CH [ 1By
Next we note that

d d, o d .
i = = 2 6
g lflla. = Zl6lla, = & /QII *dz

=2 / 8- 0,dz < 2/[0lla, 6elln.-
R

2[16lle

After cancellation and integration we have

1 T
0@)le. < [ 16.(5)la ds < OWt | | Buclzmcopds. (37)
0 0
Now we have the following a priori error estimates theorem.

Theorem 5.5. Let E and E" be the solutions of (28) and (30), respectively, such
that E(t), E¢(t) € H?(Qy) and By € Ly ((0,T); H*(Qg)). Then, there ezists a
positive constant C such that fort > 0,

T
IE@) - E*@®)llo, < CRE®)]| 2 0.) +Ch2t/ | Essll 22y ds,
0
T
I1E:(t) — B )l < CH?|IE(t)l| 20, + Chz/ (| Bssll 2 (0)ds:
0

T
IIE®) — B (®)lln < CRIE®)| 20y + CH? / 1 Bsoll 2 ds-

The proof follows from (36)-(37) together with Lemma 5.4.

Remark 4. For the magnetic field B we get a slightly different system of equations,
but the same error estimates will hold.

5.3. Time discretization. Let {t,,}*_, be a uniform partition of [0,T] of step
size k = T/M. Before formulating the fully discrete problem, we introduce the
following notations of difference quotients

m m—1
= U’ —u
m
8t’u = ——k ;
m m—1 m—2
BRym = W~ 2u +u
@ = k2 i
m m—1 m—2
om U+ 2u +u
u = s
4

where u™ = u(tpy). Then a fully discrete problem reads as follows: for m =
2,3,..., M, find £™ such that

(FFe™, x) +a(E™x) = =07 x) VX € Vi (38)
The choices of the first two approximations £° and €' will be discussed later.
To proceed we split the error as
6T’L = Em _ gm — (ET’L — Q}LETTL) + (QhETI’L _ 5771) = pm + e’m.

Then, the crucial step in error analysis is to bound ™. A procedure performed
along the proof of the main result of this section:
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Theorem 5.6. Let E and £™ be the solutions of (28) and (38), respectively. Under
the assumptions of Theorem 5.5, assuming moreover that By € Ly ((O,T); H2(QI)),
By € L1 ((0,T); Ly(9)) and that £ is chosen such that |6 ||q, < C(h® +k?), we
have the following error estimate

|E@m) — M. < C(h+ k).

Proof. We use Lemma 5.4 to estimate p™, hence it remains to estimate 6. To do
so we note that

(@26™, %) + (6™, x) = (F2QuE™, x) + a(QuE™, Xx) — (FF€™, x) — a(E™, )

= (O7QrE™, x) + a(@rE™, x) — (5" x)
= (7QuE™,x) + a(@rE™, X) — (B¢ ™4, x) — a(B™ 1, x)
= @™ 0 + a0, ),

where w™ = §2QnE™ — Ef7~'. Choose

X = 0™ — 072 = k(B,g™ + F,6™1) = (6™ + 6™1) — (671 + 072,
Then we have
(@26, 6™ — 672) 1 a(§™, 07 — 4™=) =2 (B4™ ~ 84", 6™ — 672)
+a(6™, 0™ — g™2)

:(wm’ om — 9171—2)
2

k _
+ Za(anhEm, ™ — g™ 2),

(39)

We define the discrete energy
= 1
E™ = ”atgmnéz 4 Za(em 4 Gm_l, o™ 4+ Bm—l).

Now, if in the left hand side of (39) we use the second form of x in the first term
and the third form in the second term, and in the right hand side we use the second
form of x in both terms, then we get

.3 _ _
E™ —E™! = k(w™, 0,6™ + 8:6™ ) + %a(@thEm, D™ + 8,6 71).

We estimate the right hand side using the continuity of a(,-), with C, = (9 +7),
and the inverse inequality for the triple norm to get

E™ —E™ <klw™la, (10:6™ ], + 10:6™ |,
k3 ) mn 5 gm a3 pm—
+CGZ|Hat2QhE e (NG™ Il + 118:6™ 1)
Sk”wmnﬂx (, /]Em _{_,/Em—l)

k3h—2 N2 m o gm a5 opm—1
+ Co=——10:QnE™ I, (19:6™ lla, +110:6 le.)
m k3h—2 a2 m =
< (Ko™ la, +Ca—g— 182 QuE™la, ) (VE™ + VE™T).

After cancellation it follows that

k3h=2 _
VE™ < VE 4 ko™ o, + Ca=—— 10, QuE™ |0, -



126 M. ASADZADEH, P. KOWALCZYK AND C. STANDAR

Tterating the above inequality leads to

k3R

m
VE™ SVE +E D [olla, + Ca—y

=2

—9 m ]
> 102QnE e, (40)
j=2

Now we estimate the terms on the right hand side. Let us begin with w’ and split
it as
wl = (Qun— 1)P2E + (827 — EI7") =: wi +wi.

We write w] in the following way

; 1 B ; ) t; ti-1
Wl = (Qun— D) — 257 + BI%) = %(Qh ) </ " B,dt —/ E, dt) .
tj—1 tj—2

Summing over j and using Lemma 5.4 gives

e 4 1 [t 2CR2 [t
e lofle, 33 [ 1@ DBla,at < 255 [ Bl at
j=2 j=2vti-2

As for w) we use Taylor expansion of E¥ and E7~2 in polynomials of degree 2 about
t;—1. Then, due to cancellations, we end up with

. il t tj—1
w) = o (/t (t —tj—1)* By dt — /t (t —tj—1)* B dt) .

Once again summing over j leads to

m i 1 m t] k t1n
k 2ln, € = t—t;-1)%||E dt<—/ E dt.
3l < g2 J =t 1 Bda, de < 3 [ Bl

The third term in (40) will be estimated as follows

O N BR2 S, i1
1 2 NFQE o, < =3 e la. + 1B o

Jj=2 j=2

It remains to estimate E!, which depends on how £° and &' are chosen. Let
£9 = Q4 E° and assume that £' is chosen such that |6 [|q, < C(h?+k?). Then we
have

9! 1 1 1
1 _— 2 - 1 91y < —||1pt Z1hp?t
VE \/ |13, + 7a(6%,6%) < £ 116" la + 516"l

1 1\, . N . W
<=4+ = <oz =N
< (k+2h> lo 1|9,_c(k+2h> (h? + k2)

We combine the above estimates to get ||0:0™ |, < C(h+k) for m=2,3,..., M,
assuming that k is proportional to k. Finally, if we use the following estimate

m

6™, < 16Mle, +& D 18:67 |1, ,

i=2

then we also have that ||0™|q, < C(h+ k). Summing up we have the desired result
and the proof is complete. ]
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Remark 5. If we assume extra regularity on F we can prove that
|E(tm) — E™la. < C(h* +E?).

More precisely, we need to assume that we have both Ey; € Ly ((O, T);H 2(Qm)), and
Byt € Ly ((0,T); La(£2;)) and that £ is chosen such that ||61|lq, < C(h3 + &3).

6. Numerical results. Here we present some numerical results justifying the ac-
curacy of our method. We performed the calculations for the simplified case of one
space variable and two velocities variables, i.e. the one and one-half dimensional
Vlasov-Maxwell system (cf [24]), which takes the following form:

atf =+ ’Ulaxf + (E1 + UzB)aulf + (E2 = le)avzf = O,
OBy = — / ufdv = —j1 (t,2),

8,E‘2 =+ c")zB = —/’Ugfdv = —jz(t, 23),
8,B + 0,B> =0,

where f = f(t,z,v1,v2), B1 = Ei(t,z), By = Eq(t,z), E1 = B(t,z) with z € Q; C

R and v = (v1,v2) € §y C R2. We assume here the non-relativistic case of the

Vlasov-Maxwell system, since there is a wider literature available to compare the

numerical test with. We note that our theoretical results are also valid in this case.
The initial conditions are given by

F(0,z,v1,v2) = Lﬂe_”f/ﬁ [Mc‘(vz_“"’l)z/ﬁ +(1- u)e—(”2+“°'2)2/ﬁ] ;
T,
E1 (0, IIJ) = EQ(O,I) = O, B(O, :L) =-b sin(kozl),

which corresponds to the streaming Weibel instability (cf [10]) with # = 0.01 and
b= 0.001. We perform the calculations for two sets of values of parameters:

case 1: K= 0.5, Vo,1 = V0,2 = —0.3, ko = 0.2,
case 2: p=1/6, vo,1 = —0.5, vo2 =—0.1, ko =0.2,

with z € [0, L], L = 2m/kg. Periodic boundary condition is assumed for z variable,
which we normalized in our computations taking = € [0,1]. For the accuracy test
we set Q, = [—1, 1], whereas for the other test we set Q, = [—1.1,1.1]%

6.1. Accuracy tests. The Vlasov-Maxwell system is reversible in time for the
above. Thus denoting the initial conditions as f(0,z,v), F(0,z), B(0,z), we get
at time ¢+ = T the solution f(T,z,v), E(T,z), B(T,z). Now, taking f(T,z,—v),
E(T,z), —B(T,z) as the initial solution at ¢ = 0, we recover f(0,z, —v), E(0,z),
—B(0,z)att="T.

Using this theoretical fact we run the calculation for T' = 5 and show the L
and Ly errors of solutions for several choices of degree of polynomials p and mesh
parameters hy, hy, h,. For all calculations we used the uniform degrees p in all cells
of uniform meshes. We present the results for the following choice of mesh sizes sets:
H, corresponds to hy = hy = 0.1 and h, = V2 /6; Hz corresponds to h; = hy = 0.05
and h, = \/5/12; Hj corresponds to hy = hg = 0.025 and h, = v/2/24.

Table 1 lists the errors for the fixed mesh set H; and increasing degree of finite
clements polynomial approximation, whereas in Table 2 we list the errors for the
fixed degree p = 1 of polynomial approximation and different mesh sizes.
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TABLE 1. L; and Ly errors for different polynomial degrees and
fixed mesh sizes set Hj.

Error Degree f Ey By B
L p=1 3.80le-l1 7.086e-4 1.599e-6 1.645e-5
p=2 1.614e-1 3.248e-9 1.770e-7  9.092e-7
p=3 1.89le-2 2295e-10 9.7563e-9 3.321e-8
Lo p=1 7.302-1 6.204e-7 3.517e-12 4.303e-10
=2 1.632e-1 1.498e-17 4.113e-14 1.070e-12
3 2.833¢-3 6.648¢-20 1.185¢-16 2.186e-15

TABLE 2. L; and Lg errors for different mesh sizes and fixed poly-
nomial degree p = 1.

Error Mesh sizes set f Ey ) B
Ly H, 3.801le-1 7.086e-4 1.599e-6  1.645e-5
H, 1.629¢-1 8.304e-10 1.791e-7  8.387e-6
Hs 4.324e-2  2.016e-10 4.750e-8  2.099e-6
Loy H; 7.302e-1 6.204e-7 3.517e-12 4.303e-10
Hy 1.939¢-1 8.520e-19 3.956e-14 9.298e-11
Hj 1.444e-2 5.014¢-20 2.784e-15 5.850e-12

We can see from the tables the convergence of our method for all functions. We
present the results for one value of the stability parameter 6 = 0.05, since its choice
does not influence importantly (in some reasonable interval of values) the accuracy,
but only the stability of the method.

6.2. Streaming Weibel instability tests. In this section we present the prelimi-
nary results for the streaming Weibel instability tests. More results will be included
in the forthcoming paper [22].

We present the time evolution of the magnetic, electric and kinetic energies for
both cases of parameters values. The calculations were carried out for the mesh sizes
hy = 1/20, hy = 1/30, h, = v/2-11/300 with p = 1. We plot the components of elec-
tric energy E; = 5+ fOL E?dzy,i= 1,2, and the magnetic energy B = 5 fOL B?dz,
in Figure 1. The kinetic energy is showed in Figure 2 as the separate components
defined by K; = 5% fOL Ja, v2fdvdzy, i = 1,2. The qualitative behaviour of the
time evolution of both the electromagnetic and kinetic energies is in agreement with
the theory and the results presented in [10] for different numerical methods.

7. Conclusion. This paper concerns two approaches in the numerical investigation
for the Vlasov-Maxwell system. The first study is devoted to the hp streamline dif-
fusion method for the relativistic Vlasov-Maxwell system in full 3-dimensions. Our
objective is to present unified phase-space (for Maxwell’s equations) and phase-
space-time (for the Vlasov-Maxwell system) discretization schemes that have opti-
mal order convergence for the hyperbolic problems ( O(h*~1/2) for solutions in the
Sobolev space H*(2) ) with strong stability properties and adaptivity features. The
adaptivity in the a priori regime is based on refined mesh in the vicinity of singular-
ities combined with lower order approximating polynomials and non-refined mesh
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FIGURE 1. Magnetic (B) and electric (E1, E») energy for case 1
(left) and case 2 (right).
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FIGURE 2. Kinetic energy for case 1 (left) and case 2 (right).

with higher spectral order in smooth regions. In this way we have constructed a fi-
nite element mesh with several improving properties, e.g. stability, convergence and
adaptivity, gathered in it. To our knowledge, except in some work in convection-
diffusion problems, sece e.g. [19] and our study in [4], such approach is not considered
for this type of equations elsewhere.

The second study concerns a penalty method for the Maxwell’s equations, which
is based on a certain Nitsche type symmetrization scheme. In this part we have
combined the field equations to a second order pde. For this equation we derive
a second order spatial approximation for the Nitsche’s scheme. We also prove a
second order temporal discretization, assuming a somewhat more regular-in-time
field functions. Even this approach is not considered in any other work for the VM
system.

The results are justified in lower dimensional cases through the accuracy and the
streaming Weibel instability tests presented in this paper and through implementing
some numerical examples in the forthcoming paper, see [22]. The full-dimensions
are too expensive to experiment. However, the theoretical analysis and numeri-
cal justifications in low dimensions are indicating the robustness of the considered
schemes.
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