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Abstract. This paper concerns the energy deposition of high-energy (e.g.,
≈ 50 − 500 MeV) proton and carbon ions and high-energy electrons (of ≈
50 MeV), in inhomogeneous media. Our goal is to develop a flexible model
incorporated with the analytic theory for ions based on bipartition and Fokker-
Planck developments. Both procedures are leading to convection dominated
convection diffusion equations. We study convergence for semi-discrete and
fully discrete approximations of a such obtained equation, for a broad beam
model, using the standard Galerkin and streamline diffusion finite element
methods. The analytic broad beam model of the light ion absorbed dose were
compared with the results of the modified Monte Carlo (MC) code SHIELD-
HIT+ and those of Galerkin streamline diffusion approach.

1. Introduction. We, primarily, assume a broad beam of forward-directed ions
normally incident at the boundary of a semi infinite medium. As a result of collisions
(due to forward-directness assumption), only, a very small portion of the ions is
scattered to large angles. These are very few ions with a directional change beyond
a certain minimal angle θm, which have a diffusion-like transport behavior and an,
almost, isotropic angular distribution, except at very low energies. The remaining
significant portion of the ion particles, deflecting slightly (< θm) from their original
direction, are convective and referred to as forward-directed ions. The bipartition
model is based on a split, of the scattering integral (kernel), through adding and
subtracting the diffusion ion source to the diffusion and straightforward equations,
respectively, see [15]. A related approach, based on a split of the scattering cross-
section into the hard and soft parts is given in [13].
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In a previous study [2] we considered the bipartition model applied to solving
three types of problems for ion transport in inhomogeneous media: (i) normally
incident ion transport in a slab; (ii) obliquely incident ion transport in a semi-
infinite medium; (iii) energy deposition of ions in a multilayer medium.

In the present paper we consider the case of, forward directed, ions injected into
a medium with large atomic weight. The underlying partial differential equation
is therefore the Boltzmann equation within the Fokker-Planck realm. More specifi-
cally, we shall study the finite element approximations for a broad beam model.

Neutral (photon, i.e. x-ray, and neutron) and charged (electron and ion) particle
beams are extensively used in radiation therapy both for early cancer detection and
dose computation algorithms see, e.g. [12] and [15].

An outline of this paper is as follows: In Section 2 a brief description of the
ion transport model under continuously slowing down assumption (CSDA) and a
derivation for the broad beam model based on Fokker-Planck development are given.
In Section 3 both a semi-discrete and a fully discrete scheme are introduced, finite
element approximations are applied for a convection-diffusion problem of a broad
beam model, where the penetration variable is treated like a time variable. Further,
stability and convergence of the semi-discrete problem are proved. Section 4 is de-
voted to derive optimal error estimates for characteristic Galerkin and streamline
diffusion methods for two versions of the broad beam model. Finally in our conclud-
ing Section 5 we discuss some simulation results for the bipartition and Galerkin
approaches and compare them with results from Monte Carlo simulations.

2. Ion transport models under CSDA. The ion transport describing the actual
process of energetic ions in absorbing media is formulated as follows: Let f(x,v)
denote the ion distribution function at the position x ∈ R3 with velocity v ∈ R3, and
set u := v/ |v| and E = |v|2, then f(x,u, E)du dE represents the ion distribution
at point x ∈ R3, with direction between u and u + du and energy between E and
E + dE. Due to the statistical balance principle we may write the following ion
transport equation derived from the linear transport equation by Lewis and Miller
in [14],

u · ∇xf − ∂(ρf)
∂E

=
1
2

∂2(ωf)
∂E2

+ κN

∫

4π

du′{[f(x,u′, E)− f(x,u, E)]

× σ(E′, E(1− u · u′))}+ Q(x,u, E),
(2.1)

where ρ denotes the stopping power and ω is the energy loss straggling factor, κN ;
is a constant depending on N the number of atoms and σ is the elastic cross section.
We consider an ion beam of energy E0 normally incident on the hypersurface of a
semi-infinite medium. We let the outward normal to the semi-infinite region on the
left to be along the positive x-axis inside the medium (we use the standard notation
x = (x, y, z)). In the bipartition strategy the scattering integral is divided into two
parts, of which one is the comparatively isotropic diffusion ion source, including
almost all of the large-angle scattered ions, the other is the remaining part that
spreads mainly in the forward, small-angle, direction. As physical model, we have
considered a scattering kernel with strong algebraic fall-off behavior from its peaks
at zero angle and zero energy. An example of such a kernel is an inverse power
function approximation for the elastic cross-section, viz

σ(E,u · u′) ≈ CE−2`(1− u · u′)−`−1, (2.2)
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where C is a constant and ` is a positive integer which corresponds to the Jacobian
of the algebraic fall-offs. See [15] and [16] for details. We shall also assume that

Q := Q(x,u, E) =
1
2π

δ(x)δ(E − E0)δ(1− µ), µ = cos(u, ex).

2.1. Ion transport in absorbing isotropic media. Lewis model (2.1) does not
contain absorption term. Absorption has usually a regularizing effect and therefore
tackling (2.1), with no absorption, is of more mathematical interest. However, in
radiation therapy the absorption is of vital importance. Therefore, in what follows,
we consider a modified version of (2.1) that yields an absorption term; σaf below.
Then, the wording inhomogeneous media is because σa may depend on x. To this
approach we relay on a Fokker-Planck development based on asymptotic expansions
of the linear transport equation in isotropic media [16] (extended to anisotropic
media in [5]). From the Fokker-Planck equation we can extract pencil beam or
broad beam models. The pencil beam model is studied in an extensive amount of
literature for the Fermi equation [11] see, e.g. [3]-[6], [13] and [16]-[17]. Here, we
focus on broad beam model using the steady state Fokker-Planck equation

u · ∇xf + σa(E)f(x,u, E) = T (E)
[ ∂

∂µ
(1− µ2)

∂

∂µ
+

1
1− µ2

∂2

∂ϕ2

]
f(x,u, E)

+
∂

∂E

[
S(E)f(x,u, E)

]
+

∂2

∂E2

[
R(E)f(x,u, E)

]

+ Q(x,u, E) +O
(γ2 + εγ + ε3

∆

)
,

(2.3)

where ε ≈ γ ≈ ∆, with ∆ = O(mean free path), are certain smallness parameters,

S(E) = O(ε/∆), T (E) = O(γ/∆) and R(E) = O(ε2/∆). (2.4)

In addition to introducing an absorption term, the justification in considering (2.3)
is to circumvent the difficulties with small mean free path. More specifically, using
asymptotic expansions the integral scattering operator in (2.1) is replaced by a
differential Fokker-Planck operator in (2.3). The effect of this replacement is that
the dominant in and out scattering terms cancel, thus effectively increasing the
mean free path. Then, it is possible to consider numerical meshes of order O(∆).
Physically, the smallness parameter γ is a measure of the peaking of the scattering
kernel in angle, and can be roughly thought of as the deviation from the unity of
the cosine of characteristic scattering angle. Likewise, the smallness parameter ε is
a measure of the peaking of the scattering kernel in energy, and can be thought of
as the characteristic value of the fractional energy change due to a single scattering.

For the broad beam model we have chosen the x-axis as the penetration direction.
Thus, due to symmetry, the broad beam equation is independent of y, z and ϕ, i.e.,

µ
∂

∂x
f(x, µ, E) + σa(E)f(x, µ,E) = T (E)

[ ∂

∂µ
(1− µ2)

∂

∂µ
f(x, µ, E)

]

+
∂

∂E

[
S(E)f(x, µ, E)

]
+

∂2

∂E2

[
R(E)f(x, µ,E)

]
+ Q.

(2.5)

To proceed we consider (2.5) for forward-peaked beams (µ > 0) in a bounded
domain D := {(x, µ,E) : 0 < x < L, 0 < µ < 1, 0 < E < E0}, associated with
physically relevant boundary conditions. Recalling (2.4), our model problem is now

σa(E)f + µ
∂f

∂x
− ∂f

∂E
=

∂

∂µ

[
(1− µ2)

∂

∂µ
f
]

+ ε
∂2f

∂E2
+ Q, in D, (2.6)
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which is of degenerate type with convection in (x,E) and diffusion in (µ,E). Note
also that the term Q is actually supplied as the incident source at the boundary
and is equivalent to a boundary condition. If we disregard forward-peakedness;
µ ∈ [−1, 1] yields a Forward-backward problem (Kolmogorov equation, see [18]).

Since collisions often result nonsmooth changes in the energy and direction of
the particles on each collision site, therefore the discontinuous Galerkin method, in
all three variables x, µ and E, is the most relevant finite element approach for the
numerical study of this problem. However, the broad beam equation models very
small changes in angle and energy, whence the discontinuities in these variables
are not considered to be severe. Hence, in small neighborhoods of the jumps in
energy and direction of the beam, the distribution function is approximated by
continuous spline-type functions preserving beam configurations with the same in-
and outward profiles as the original ones. The discontinuity in position variable x,
as dose delivery site, has often a more sensitive nature and therefore retained. Now
we introduce, the inflow (outflow) boundary

Γ−(+)
β := {x⊥ ∈ Γ := ∂I⊥ : n(x⊥) · β < 0(> 0)}, β = (0,−1), (2.7)

where x⊥ = (µ,E), I⊥ = Iµ×IE , Iµ = [0, 1], IE = [0, E0] and n(x⊥) is the outward
unit normal to the boundary Γ at x⊥ ∈ Γ. The final form of the broad beam model
will then be a boundary value problem where the, homogeneous version of, equation
(2.6) is associated with the boundary conditions,





σaf + µ∂f
∂x − ∂f

∂E = ∂
∂µ

[
(1− µ2) ∂

∂µf
]

+ ε ∂2f
∂E2 , in Ix × I⊥,

f(0, µ, E) = δ(1− µ)δ̃(E − E0), on I⊥,
f(·, µ)|E=0 = ∂

∂E f(·, µ)|E=E0 = ∂
∂µf(·, E)|µ=0 = 0.

(2.8)

Remark 1. Here δ̃(E−E0) is a smooth approximation for the δ(E−E0) function.
In what follows, due to the nature of Dirac δ function we will be forced to such
replacements, otherwise the energy estimates (in L2-type norms) will deteriorate.

The differential equation in (2.8) is a degenerate type, convection dominated,
convection-diffusion equation. Existence, uniqueness and regularity properties for
this equation are as for general form of degenerate type equation given in [7].

3. Discrete problems.

3.1. The semi-discrete problem. We introduce a finite dimensional function
space Vh ⊂ H̃1(I⊥) with h being the maximal diameter in triangulation of I⊥ and

H̃1(I⊥) =
{

f ∈ H1(I⊥) : f satisfies the boundary conditions in (2.8)
}

, (3.1)

such that, ∀f ∈ H̃1(I⊥) ∩Hr(I⊥),

inf
χ∈Vh

‖f − χ‖j ≤ Chα−j‖f‖α, j = 0, 1 and 1 ≤ α ≤ r, (3.2)

where for positive integer s, Hs and ‖·‖s denote the L2-based Sobolev space and
norm, see [1]. An example of such Vh is the set of sufficiently smooth piecewise
polynomials P (x⊥) of degree ≤ r, satisfying the boundary conditions in (2.8).

To proceed we introduce a bilinear form, A : H̃1(I⊥)× H̃1(I⊥), defined by

A(f, χ)⊥ := (σa(E) f, χ)⊥ + (µfx, χ)⊥ − (fE , χ)⊥, ∀f, χ ∈ H̃1(I⊥). (3.3)
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Then the continuous variational problem is: find a solution f to (2.8) such that
{

A(f, χ)⊥ + ((1− µ2)fµ, χµ)⊥ + (εfE , χE)⊥ = 0, ∀χ ∈ H̃1(I⊥),
f(0, x⊥) = g̃(x⊥) := δ̃(x⊥),

(3.4)

where g̃(x⊥) := δ̃(x⊥) ≈ δ(1 − µ)δ(E − E0) is a smooth approximation for the
product of the above two Dirac δ functions. Let now f̃ ∈ Vh be an auxiliary
interpolant of the solution f for (2.8) defined by

A(f − f̃ , χ) = 0, ∀χ ∈ Vh. (3.5)

Our objective is to solve the discrete variational problem: find fh ∈ Vh, such that
{

A(fh, χ)⊥ + ((1− µ2)fh,µ, χµ)⊥ + (εfh,E , χE)⊥ = 0, ∀χ ∈ Vh,

fh(0, x⊥) = δ̃h(x⊥),
(3.6)

where δ̃h is assumed to be a finite element approximation of δ̃ which coincides
with the interpolant f̃(0, x⊥) of f(0, x⊥). Here, (f, g)⊥ =

∫
I⊥

f(x⊥)g(x⊥) dx⊥ and

‖f‖L2(I⊥) = (f, f)1/2
⊥ . To distinguish, we use the inner product notations: (·, ·)⊥

and (·, ·)Ω, where Ω = [0, L]× I⊥ := Ix × I⊥, for integrations over I⊥ and Ix × I⊥,
respectively. Finally, we assume that the mesh size h is related to the scaling
parameter ε by h2 ≤ ε ≤ h, where in this section we shall use ε ∼ h.

3.2. Stability. In this part we prove a stability lemma that guarantees the control
of both continuous and discrete solutions by the data in the following triple norm

|||w|||2
β̃

=
1
2

∫

Γ+
β̃

w2(n · β̃) dΓ + ‖w‖2L2(Ω, σa(E)) + ‖wµ‖2L2(Ω, 1−µ2) + ‖wE‖2L2(Ω, ε),

where β̃ = (µ, β), Γ+

β̃
:= Γ \ Γ−

β̃
= [0, L]× Γ+

β ∪ {{L} × I⊥} and

‖ · ‖L2(D, ω) := ‖√ω · ‖L2(D) =
( ∫

D
ω| · |2

)1/2

, is ω-weighted L2-norm over D.

Lemma 3.1. For f satisfying (2.8) we have that,

sup
x∈Ix

‖√µf(x, ·)‖2L2(I⊥) ≤
∫

Γ−β

f2 |n · β| dΓ, (3.7)

|||f |||2
β̃

=
1
2

∫

Γ−
β̃

f2
∣∣∣n · β̃

∣∣∣ dΓ. (3.8)

Proof. Let χ = f in (3.4). Then, by (3.3) and partial integration, in fE term,
∥∥∥
√

σa(E)f
∥∥∥

2

L2(I⊥)
+

1
2

d

dx
‖√µf‖2L2(I⊥) −

1
2

∫ 1

0

f2(x, µ,E0) dµ

+
1
2

∫ 1

0

f2(x, µ, 0) dµ +
∥∥∥
√

1− µ2fµ

∥∥∥
2

L2(I⊥)
+

∥∥∥ε1/2fE

∥∥∥
2

L2(I⊥)
= 0.

(3.9)

Integrating over x ∈ (0, x̄), x̄ ≤ L yields

‖f‖2L2(Ω̄,σa(E)) +
1
2

∫

I⊥
µf2(x̄, µ, E) dx⊥ − 1

2

∫

I⊥
µf2(0, µ, E) dx⊥

− 1
2

∫ x̄

0

∫ 1

0

f2(x, µ, E0) dµ dx +
1
2

∫ x̄

0

∫ 1

0

f2(x, µ, 0) dµ dx

+ ‖fµ‖2L2(Ω̄,1−µ2) + ‖fE‖2L2(Ω̄,ε) = 0,

(3.10)
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where Ω̄ := (0, x̄)× I⊥. Consequently ∀x̄ ≤ L, we have that
∫

I⊥
µf2(x̄, µ, E) dx⊥ ≤

∫

I⊥
µf2(0, µ, E) dx⊥ +

∫ x̄

0

∫ 1

0

f2(x, µ, E0) dµ dx,

which gives the first assertion of the lemma. Note that the two integrals with
positive sign in (3.10) add up to 1

2

∫
Γ+

β̃

f2(n · β̃) dΓ, whereas those with negative

sign add up to − 1
2

∫
Γ−

β̃

f2|n · β̃| dΓ. Transferring the negative integrals to the right

hand side we obtain the second assertion of the lemma and the proof is complete.

From the above proof we can deduce a control of a quantity involving the norm

‖[w]‖2L2(Ω̄) := ‖f‖2L2(Ω̄,σa(E))+‖fµ‖2L2(Ω̄,1−µ2)+‖fE‖2L2(Ω̄,ε)+ sup
x∈Ix

‖√µf(x, ·)‖2L2(I⊥).

Corollary 1. There is a constant C such that

‖[w]‖2L2(Ω̄) +
∫

I⊥
µf2(x̄, µ, E) dx⊥ ≤ C

∫

Γ−β

f2 |n · β| dΓ. (3.11)

Roughly speaking, (3.11) yields control of a quantity corresponding to the con-
tribution of the ||| · |||-norm at each x̄ ∈ (0, L). Lemma 3.1 is stated and proved for
the continuous problem. Using the same argument we can obtain the semidiscrete
version of the stability estimate for standard Galerkin (SG) problem:

Corollary 2. The solution fh of problem (3.6) satisfies the stability relations,

sup
x∈Ix

‖√µfh(x, ·)‖2L2(I⊥) ≤
∫

Γ−β

f2
h |n · β| dΓ, (3.12)

|||fh|||2β̃ =
1
2

∫

Γ−
β̃

f2
h

∣∣∣n · β̃
∣∣∣ dΓ. (3.13)

For convenience, in the sequel we shall use the following boundary integral notation:

(p, q)α+(−) =
∫

Γ
+(−)
α

pq(n · α)dΓ, |p|2α+(−) =
∫

Γ
+(−)
α

p2|n · α|dΓ, (3.14)

where α = β or α = β̃ (then n := ñ), will be obvious from the content.

3.3. Convergence. In this part we state and prove convergence rates, both in the
L2-norm and in the triple norm, for the SG-method for the semidiscrete problem
with weakly imposed boundary conditions. For the hyperbolic problems with an
absorption term of O(1), and f ∈ Hr(Ω), the optimal convergence rate for the
SG method in the L2 norm is O(hr−1). Our equation, although degenerate, is not
purely hyperbolic: the second derivatives with respect to µ and E on the right hand
side make the equation, convection dominated (for the forward directed beams both
1− µ2 and ε are small), convection-diffusion problem. In the next section we have
used a variety of streamline-diffusion approximations and derived sharp convergence
rates of O(hr−1/2), improving the results of the SG by O(

√
h).

Lemma 3.2 (error estimate in triple norm). Assume that f and fh satisfy (3.4)
and (3.6), respectively. Let f ∈ Hr(Ω), r ≥ 2, then there is a constant C such that,

|||fh − f |||β̃ ≤ Chr−1 ‖f‖r . (3.15)
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Proof. Subtracting first equations in (3.4) and (3.6) we get, using (3.3),

G(f, χ)⊥ := ((1− µ2)fµ, χµ)⊥ + (εfE , χE)⊥,

and recalling that f̃ is an interpolant of f ,

A(fh − f̃ , χ)⊥ + G(fh − f̃ , χ)⊥ = A(f − f̃ , χ)⊥ + G(f − f̃ , χ)⊥ = G(f − f̃ , χ)⊥,

where in the last step we used (3.5). This can be written in an equivalent form:

(σa(E)(fh − f̃), χ)⊥ + (µ(fh − f̃)x, χ)⊥ − ((fh − f̃)E , χ)⊥

((1− µ2)(fh − f̃)µ, χµ)⊥ + (ε(fh − f̃)E , χE)⊥
=(σa(E)(f, χ))⊥ + (µfx, χ)⊥ − (fE , χ)⊥

+ ((1− µ2)(fµ, χµ)⊥ + (εfE , χE)⊥

+ ((1− µ2)(f − f̃)µ, χµ)⊥ + (ε(f − f̃)E , χE)⊥

=0 + ((1− µ2)(f − f̃)µ, χµ)⊥ + (ε(f − f̃)E , χE)⊥.

Let χ = fh − f̃ , then by the same argument as in the stability estimate we have,
∥∥∥fh − f̃

∥∥∥
2

L2(I⊥,σa(E))
+

1
2

d

dx

∥∥∥fh − f̃
∥∥∥

2

L2(I⊥,µ)

− 1
2

∫

Γ−β

|n · β|(fh − f̃)2(x, µ, E0) dΓ +
1
2

∫

Γ+
β

(n · β)(fh − f̃)2(x, µ, 0) dΓ

+
∥∥∥(fh − f̃)µ

∥∥∥
2

L2(I⊥,1−µ2)
+

∥∥∥(fh − f̃)E

∥∥∥
2

L2(I⊥,ε)

≤ 1
2

∥∥∥(fh − f̃)µ

∥∥∥
2

L2(I⊥,1−µ2)
+

1
2

∥∥∥(f − f̃)µ

∥∥∥
2

L2(I⊥,1−µ2)

+
1
2

∥∥∥(fh − f̃)E

∥∥∥
2

L2(I⊥,ε)
+

1
2

∥∥∥(f − f̃)E

∥∥∥
2

L2(I⊥,ε)
,

or equivalently,

2
∥∥∥fh − f̃

∥∥∥
2

L2(I⊥,σa(E))
+

d

dx

∥∥∥fh − f̃
∥∥∥

2

L2(I⊥,µ)
−

∣∣∣fh − f̃
∣∣∣
2

Γ−β
+

∣∣∣fh − f̃
∣∣∣
2

Γ+
β

+ 2
∥∥∥(fh − f̃)µ

∥∥∥
2

L2(I⊥,1−µ2)
+ 2

∥∥∥(fh − f̃)E

∥∥∥
2

L2(I⊥,ε)

≤
∥∥∥(f − f̃)µ

∥∥∥
2

L2(I⊥,1−µ2)
+

∥∥∥(f − f̃)E

∥∥∥
2

L2(I⊥,ε)
.

Now integrating over x ∈ [0, L] implies that
∥∥∥fh − f̃

∥∥∥
2

L2(Ω,σa(E))
+

∥∥∥(fh − f̃)(L, ·)
∥∥∥

2

L2(I⊥,µ)
−

∥∥∥(fh − f̃)(0, ·)
∥∥∥

2

L2(I⊥,µ)

−
∣∣∣fh − f̃

∣∣∣
2

Γ−
β̃
\Γ0

+
∣∣∣fh − f̃

∣∣∣
2

Γ+
β̃
\ΓL

+
∥∥∥(fh − f̃)µ

∥∥∥
2

L2(Ω,1−µ2)
+

∥∥∥(fh − f̃)E

∥∥∥
2

L2(Ω,ε)

≤
∥∥∥(f − f̃)µ

∥∥∥
2

L2(Ω,1−µ2)
+

∥∥∥(f − f̃)E

∥∥∥
2

L2(Ω,ε)
,

where Γp = {{p} × I⊥}, p = 0 or p = L. Thus recalling fh(0, ·) = f̃(0, ·) = gh(·),
and the definition of the ||| · |||β̃ norm we have

|||fh − f̃ |||2
β̃
≤

∥∥∥
√

1− µ2(f − f̃)µ

∥∥∥
2

L2(Ω)
+

∥∥∥ε1/2(f − f̃)E

∥∥∥
2

L2(Ω)
. (3.16)
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Now the desired result follows from the following interpolation estimate:

Proposition 1. Let h2 ≤ ε ≤ h, then there is a constant C̃ such that,

|||f − f̃ |||β̃ ≤ C̃hr−1 ‖f‖r . (3.17)

Proof. Let f ∈ Hr(Ω), then by interpolation estimates, see [8], there exists an
interpolant f̃ ∈ Vh, of f and interpolation constants C1 and C2 such that

‖f − f̃‖s ≤ C1h
r−s‖f‖r, s = 0, 1 (3.18)

|f − f̃ |β̃ ≤ C2h
r−1/2‖f‖r, (3.19)

where

|w|β̃ =

(∫

Γ+
β̃

w2(ñ · β̃) dΓ

)1/2

. (3.20)

Now recalling the definition of ||| · |||β̃ we have, with ‖·‖ := ‖·‖L2(Ω), that

|||f − f̃ |||2
β̃

=
1
2
|f − f̃ |2 +

∥∥∥
√

σa(E)(f − f̃)
∥∥∥

2

+
∥∥∥
√

1− µ2(f − f̃)µ

∥∥∥
2

+
∥∥∥√ε(f − f̃)E

∥∥∥
2

≤ 1
2
|f − f̃ |2

β̃
+ ‖σa(E)1/2‖2L∞(Ω)

∥∥∥f − f̃
∥∥∥

2

+ ‖(1− µ2)1/2‖2L∞(Ω)

∥∥∥(f − f̃)µ

∥∥∥
2

+ ‖ε1/2‖2L∞(Ω)

∥∥∥(f − f̃)E

∥∥∥
2

≤ 1
2
|f − f̃ |2

β̃
+ C3

∥∥∥(f − f̃)µ

∥∥∥
2

+ C4

∥∥∥f − f̃
∥∥∥

2

+ sup
Ix×Iµ

ε‖(f − f̃)E‖2

≤ 1
2
C2

2h2r−1‖f‖2r + C3C
2
1h2r−2‖f‖2r + C4C

2
1h2r‖f‖2r + C2

1εh2r−2‖f‖2r
≤ Ch2r−2‖f‖2r,

where C3 = ‖(1 − µ2)1/2‖2L∞(Ω), C4 = ‖σa(E)1/2‖2L∞(Ω), and the proof is
complete.

Note that the C3-term is the worst one. Otherwise we could get a convergence
of order O(hr−1/2). This result contains a σa(E)-weighted L2 norm estimate as:

Theorem 3.3. For f ∈ Hr(Ω), satisfying (3.4) and with fh being the solution of
(3.6), there is a constant C = C(Ω, g) such that

‖f − fh‖L2(Ω,σa(E)) ≤ Chr−1‖f‖r. (3.21)

Proof. Recalling the definition of the triple norm we have that
∥∥∥
√

σa(E)(f − fh)
∥∥∥

L2(Ω)
≤ |||f − f̃ |||β̃ ≤ Chr−1‖f‖r. (3.22)

Thus, we obtain immediately (3.21).

Observe that in C = C(Ω, g), the Ω dependence is because of the E depending
σa(E), σa may depend on x as well (then the proofs require minor modifications),
while the g dependence comes from the assumed identity uh(0) := ũ(0) = g.
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3.4. The fully discrete problem. To extend the semidiscrete algorithm for I⊥
to I⊥ × Ix and include also discretizations in x, we consider the time discretization
schemes as DG, BE and CN, for Ix. To this end, we introduce the bilinear forms:

a(f, χ) := (σa(E)f, χ)⊥+((1−µ2)fµ, χµ)⊥+(εfE , χE)⊥+
∫

IE

fµχ|µ=0 dΓ, (3.23)

and

b(f, χ) := (µfx, χ)⊥ +
∫

Iµ

εfEχ|E=0 dΓ, (3.24)

where, for f and χ satisfying the boundary conditions of (2.8), both integral terms
in (3.23) and (3.24) will vanish. Thus we may rewrite the problem (3.4) as finding
a solution f ∈ H̃1(I⊥) such that,

b(f, χ) + a(f, χ) = 0, ∀χ ∈ H̃1(I⊥). (3.25)

We subsequently use the finite dimensional subspace Vh ⊂ H̃1(I⊥) and insert for
the discrete solution fh a representation by separation of variables viz:

fh(x, µ,E) =
M∑

j=1

ζj(x)φj(µ, E), where M ∼ 1/h. (3.26)

4. Streamline diffusion method. Since for a forward directed beam min(1 −
µ2, ε)/ << 1, both the broad beam and Fokker-Planck models are, convection-
dominated, convection diffusion equations. To obtain approximate solutions for
these types of equations, we may use a certain type of Galerkin method called the
Streamline diffusion (Sd) method described below. Because of a lack (weakness) of
stability, the SG approximation contains oscillations not present in the exact solu-
tion of convection dominated problems. Whence, we need to improve the stability
properties of the SG method, without sacrificing accuracy. We consider two ways
of enhancing the stability of SG. (a) introducing a weighted least square term; (b)
introducing an artificial viscosity. We refer to the Galerkin method with these mod-
ifications as the streamline diffusion method. Both modifications enhance stability
without a strong effect on the accuracy. We begin by describing the Sd-method for
an abstract linear problem

Lf = g, (4.1)

for which SG method reads: find F ∈ Vh such that

(LF,ϕ) = (g, ϕ), ∀ϕ ∈ Vh, (4.2)

where L is a linear operator on a vector space V and Vh is a finite dimensional
subspace of V . In our problem, L is the convection-absorption operator:

L• := (σa + µ∂x + β · ∇⊥) • . (4.3)

The least squares method for (4.1) is to find F ∈ Vh that minimizes the residual
over Vh in an appropriate norm, e.g. the usual L2 norm,

‖LF − g‖2 = minϕ∈Vh
‖Lϕ− g‖2. (4.4)

This is a convex minimization problem and the solution F is characterized by

(LF,Lϕ) = (g,Lϕ), ∀ϕ ∈ Vh. (4.5)
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We now formulate a Galerkin least squares finite element method for (4.2) by
taking a weighted combination of (4.2) and (4.5): compute F ∈ Vh such that

(LF,ϕ + δLϕ) = (g, ϕ + δLϕ), ∀ϕ ∈ Vh, (4.6)

where δ is a parameter to be chosen. Adding an artificial viscosity modification
yields the Sd-method in abstract form: find F ∈ Vh such that

(LF, ϕ + δLϕ) + (ε̂∇F,∇ϕ) = (g, ϕ + δLϕ), ∀ϕ ∈ Vh, (4.7)

where ε̂-term is an artificial viscosity defined in terms of the residual R(F ) = LF−g.
We return to equation (2.8) and perform the differentiation with respect to µ,

σa(E)f + µfx + 2µfµ − fE = (1− µ2)fµµ + εfEE + Q, (x, µ,E) ∈ Ix × I⊥, (4.8)

we get a degenerate equation, with convection in the direction of βc := (µ, 2µ,−1)
and diffusion in x⊥. Unlike (4.3)-(4.6), now we have already a diffusion present in
the equation (4.8). We shall consider a less viscous, but symmetric (with the same
order of diffusion coefficients in µ and E) problem,

µfx + σf + β̃ · ∇⊥f − ε̃∆⊥f = Q, (4.9)

where now β̃ := (2µ,−1) and we have assumed ε̃ = min(1 − µ2, ε). Note that ε̃

does not add any artificial viscosity to (4.8). Note also that β̃ is different from the
one in Section 3. Here, it is the δ-term in the streamline diffusion modification
that will automatically add an extra amount of diffusion. Interpreting x > 0 as a
time variable both convection and diffusion are in x⊥ = (µ,E) and hence we have
a, non-degenerate, “time dependent”, convection-diffusion equation. Problem (4.9)
can be stated in unbounded domain with a compact support for f :





µfx + σf + β̃ · ∇⊥f − ε̃∆⊥f = Q, in R2 × (0,∞),
f(x, x⊥) → 0, for x > 0 as |x⊥| → ∞,
f(0, ·) = f0, in R2.

(4.10)

This is most natural initial-boundary value problem for a forward directed charged
particle beam, simply because there are no particles with infinite energy. In the
radio therapy applications, obviously the energy range is finite and we need to state
the problem in a bounded domain, where the second derivative with respect to µ
in (4.9) requires imposing an additional boundary condition at µ = 1,





µfx + σf + β̃ · ∇⊥f − ε̃∆⊥f = Q, in I × I⊥,
f |E=0 = ∂

∂E f |E=E0 = ∂
∂µf |µ=0 = ∂

∂µf |µ=1 = 0, or,
f(x, x⊥) = g±, or ε̃∂nf = g±, on (I × ∂I⊥)±,
f(0, ·) = f0, in I × I⊥,

(4.11)

where we recall that I × I⊥ := (0, L)× (0, 1)× (0, E0) and

(I × ∂I⊥)−(+) := {(x, x⊥) ∈ I × ∂I⊥ : β̃(x, x⊥) · n(x⊥) < 0(≥ 0)}. (4.12)

We assume xi ∈ Ix, i = 0, 1, . . . , N , to be distinct nodes partitioning Ix into
subintervals In = (xn−1, xn), n = 1, 2, . . . , N . We divide each space “time” slabs
Sn = In × I⊥ into prisms In × τ , where τ is an element in a triangulation of I⊥.
Our study concerns a Sd method based on using approximations consisting of con-
tinuous piecewise linear functions in x⊥ and discontinuous piecewise constants in
x, denoted by cG(1)dG(0). We define the trial space Wk, with k being a common
mesh parameter, to be the set of functions w(x, x⊥) defined on Ix×I⊥ such that the
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restriction w|Sn
is continuous and piecewise linear in x⊥ and constant in x. Thus,

on each slab Sn, we seek approximate solution w for (4.11), such that w|Sn ∈ Wn
k ,

Wn
k := {w : w(x, x⊥) =

M∑

j=1

ζj,nwj(x⊥), wj ∈ Vn, (x, x⊥) ∈ Sn}. (4.13)

Wn
k is the streamline diffusion space and Vn is the space of continuous piecewise

linear functions vanishing on ∂I⊥. We denote by ~ and h the mesh parameters in
Ix and I⊥, respectively, we choose k = max(~, h/

∣∣∣β̃
∣∣∣) and use the usual notation

[wn] = w+
n − w−n , w+(−)

n = lim
s→0+(−)

w(xn + s). (4.14)

In this setting, the method reads as: compute F ∈ Wk such that for n = 1, . . . , N ,
∫

In

(
B(F ), w + δB(w)

)
dx +

∫

In

(ε̃∇⊥F,∇⊥w) dx +
(
[Fn−1], w+

n−1

)

=
∫

In

(
Q,w + δB(w)

)
dx, ∀w ∈ Wn

k ,

(4.15)

B(g) = σg + µgx + β̃ · ∇⊥g. (4.16)

For compatibility reasons, e.g. δ ∼ 1
2 (~−2 + (h/

∣∣∣β̃
∣∣∣)−2)−1/2 (otherwise δ ∼ h/

∣∣∣β̃
∣∣∣),

The error estimate procedure and the numerical scheme are simplified using the
transformation between Euler and Lagrange coordinates: (x, x⊥) = (x̄, x̄⊥ + x̄β̃).
Then for f̄(x̄, x̄⊥) = f(x, x⊥), by the chain rule and assuming µ 6= 0, we get

∂f̄

∂x̄
=

∂

∂x̄
f(x̄, x̄⊥ + x̄β̄) =

∂f

∂x
+ β̄ · ∇⊥f, β̄ := β̃/µ. (4.17)

Below we summarize a priori and a posteriori error estimates for the cG(1)dG(0)
scheme derived for the local Lagrangian coordinates (x̄, x̄⊥), in the presence of an
artificial viscosity produced by replacing ε̃, in (4.9)-(4.11), by ε̄ = max(1− µ2, ε).

Theorem 4.1. If ε̃ in (4.9)-(4.11) is replaced by ε̄ = max(1− µ2, ε), then for each
M, 1 ≤ M ≤ N , we have that

∥∥f̄(xM , ·)− F̄M

∥∥ ≤ LM max
1≤n≤M

(
~

∥∥∥∥
∂f̄

∂x̄

∥∥∥∥
In

+
∥∥h2

nD2ū
∥∥

In

)
,

and
∥∥f̄(xM , ·)− F̄M

∥∥ ≤ LM max
1≤n≤M

( ∥∥~R0~(F̄ )
∥∥

In
+

∥∥∥∥
h2

n

ε̄~n
[F̄n−1]

∥∥∥∥
?

+
∥∥h2

nR(F̄ )
∥∥

In

)
,

with

LM = Ci

[
max

1≤n≤M
max

(
((log(xn/~n))1/2, log(xn/~n)

)
+ 2

]
, (4.18)

R0~(F̄ ) = |Q|+ ∣∣[F̄ ]
∣∣ /~, (4.19)

R(F̄ ) =
1
ε̄
|Q|+ ε̄

2
max
S⊂∂τ

h−1
τ |[∂SF ]| , on τ ∈ T n

h , (4.20)

where [∂Sw] denotes the jump across the side S ⊂ ∂τ in the normal derivative of
the function w ∈ Vh and Ci is an interpolation constant. Finally, the star indicates
that the corresponding term is present only if Vn−1 is not a subset of Vn.



384 MOHAMMAD ASADZADEH, ANDERS BRAHME AND JIPING XIN

The convergence rates in this theorem hold in the Euler coordinates (x, x⊥),
provided that there exists an affine bijection Gn : Sn → Sn defined by

(x, x⊥) = Gn(x̄, x̄⊥) = (x⊥,n(x̄, x̄⊥), x̄), for (x̄, x̄⊥) ∈ Sn, (4.21)

i.e., Gn takes a non-oriented grid in (x̄, x̄⊥) to an oriented one in (x, x⊥).
Let now β̄h

n ∈ Vn denote the nodal interpolant of β̄n = β̄(xn−1, ·) and set

(x⊥,n(x̄, x̄⊥), x̄) = x̄⊥ + (x̄− xn−1)β̄h
n(x⊥), x̄ ∈ In. (4.22)

By the inverse mapping theorem, Gn : Sn → Sn is invertible if there is a sufficiently
small constant c0 such that

max
I⊥

(
~n

∣∣∇̄β̄h
n

∣∣
)
≤ c0, (4.23)

where ∇̄ denotes the Jacobian with respect to x̄⊥:

∇̄x⊥,n(x̄, x̄⊥) = I + (x̄− xn−1)∇̄β̄h
n(x̄⊥), (4.24)

where I is the identity operator.
The proof of the above theorem is a lengthy modification of the a priori and a pos-

teriori error estimates for heat equation based on a dual problem approach derived
in [10]. The error estimates in Euler coordinates are more involved. Nevertheless,
for (4.11) with diffusion coefficient ε̃, a proof based on the Lagrange coordinate
framework as outlined through (4.17)-(4.24) is rather technical and seemingly cum-
bersome. Below we shall focus on an approach considering, more closely, the study
of a bilinear form of type (4.15).

Remark 2. Here, we tackle the problem with its own small amount of diffusion
(even less ε̃ = min(1 − µ2, ε), but symmetric in µ and E), and without add of
artificial diffusion ε̂-term in (4.7), or as of ε̄-term in the case of Theorem 4.1.

The procedure (4.17)-(4.24) could be more simple if instead of β̄ = β̃/µ in (4.17),
we could divide the equation (4.9) by a µ. This, however, is inadequate in the
presence of the diffusive term (1 − µ2)fµµ in (4.8) and the subsequent equations.
We could circumvent this obstacle by using a weak form of (2.8). Such details are
not in the scope of this study and therefore we skip them.

4.1. Streamline diffusion with discontinuity in x. To study the distribution
of the particle beams in a certain depth, e.g., xd, a reasonable initial guess would
be obtained using the information in some previous distinct depths x = xi, i =
1, ..., n, xi < xi+1. This corresponds considering discontinuities in x-direction.
Now, for each n, we let Wn

h to be a finite element subspace of H1(Sn) based on the
triangulation Ch of the strip Sn with the elements of size h > ε. (Because of the
relation between the parameters h and n, in this section, we may only include the
index h in the discrete function spaces and hence in our discrete functions). Let
now Th be a triangulation of I⊥, with elements τ ∈ Th, and, for each n, define

Wn
h = {u ∈ H1

n : u|K ∈ Pk(τ)×Pk(Ix
n);∀K = τ × Ix

n ∈ Ch}, H1 =
N∏

n=1

H1
n(Sn),

Here H1
n are H1(Sn) functions satisfying the same boundary conditions as in (4.11),

restricted to Sn. If we now apply the streamline diffusion method successively
on each strip Sn for the broad beam problem (4.11) and impose the boundary
conditions at the points x = xn−1 weakly, we obtain the following method:



GALERKIN METHODS FOR PRIMARY ION TRANSPORT 385

Find fh ∈ Wn
h such that for n = 1, 2, ..., N ,

(σfh+B̃(fh), g + δB̃(g))n + (ε̃∇⊥fh,∇⊥g)n − (ε̃∆⊥fh, δB̃(g))n

− 〈ε̃∂nf, g〉∂I⊥×In + 〈[fh
n−1], g

+
n−1〉n = (Q, g + δB̃(g))n, ∀g ∈ Wn

h ,

where we have used the notation:

B̃(w) = µwx + β̃ · ∇⊥w, fh,−
0 = δ(1− µ)δ̃(E − E0),

(f, w)n =
∫

Sn

fw, 〈f, w〉n =
∫

I⊥
f(xn, x⊥)w(xn, x⊥).

Then, the continuous bilinear form for this method reads as

B(f , g) =
N∑

n=1

[
(σf + B̃(f), g + δB̃(g))n + (ε̃∇⊥f,∇⊥g)n − (ε̃∆⊥fh, δB̃(g))n

]

−
N∑

n=1

[〈ε̃∂nf, g〉∂I⊥×In〈[fn−1], g+
n−1〉n

]
+ 〈f+, g+〉0 + 〈f−, g−〉N ,

and in the discrete counterpart f is replaced by fh. The continuous linear form is

L(g) = 〈f0, g
+〉0 + (Q, g + δB̃(g)).

Thus, we have
B(f, g) = L(g), ∀g ∈ H1(Ix × I⊥). (4.25)

We shall use a stability estimate for this Sd method in a norm ||| · ||| defined by

|||w|||2 =
1
2

[
µ
(
|w|2N + |w|20 +

N−1∑
n=1

|[w]|2n
)

+
∥∥∥σ1/2w

∥∥∥
2

+
∥∥∥δ1/2(β̃ · ∇⊥w)

∥∥∥
2

+
∥∥∥ε̃1/2∇⊥w

∥∥∥
2

+ |w|2Γ⊥
]
,

where

[w]n = w(xn+)− w(xn−), and |w|Γ⊥ :=

(∫ L

0

∫

∂I⊥
|w|2

)1/2

,

Lemma 4.2. Let g+ = 0 in (4.11) and assume that σ > (1 − δ(2 + α)) for some
α > 0, then

B(w, w) ≥ |||w|||2, ∀w ∈ H1.

Proof. We use the above definition for B and write

B(w,w) =
∥∥∥σ1/2w

∥∥∥
2

+
∥∥∥δ1/2B̃(w)

∥∥∥
2

+
∥∥∥ε̃1/2∇⊥w

∥∥∥
2

−
N∑

n=1

(
ε̃∆⊥w, δB̃(w)

)
n

+
N∑

n=1

[(
(1 + σδ)w, B̃(w)

)
n
− 〈ε̃∂nw, w〉∂I⊥×In + 〈[wn−1], w+

n−1〉n
]

+ 〈w+, w+〉0 + 〈w−, w−〉N .

Recalling the definition of B̃(w) we have that
(
(1 + σδ)w, B̃(w)

)
n

=
(
(1 + σδ)w, µwx

)
n

+
(
(1 + σδ)w, β̃ · ∇⊥w

)
n
, (4.26)
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where, since σ and δ are chosen to be independent of x, we have that
(
(1 + σδ)w, µwx

)
n

=
1
2
〈(1 + σδ)w, µw〉n

∣∣∣
x−n

x+
n−1

=
1
2

∫

I⊥
µ(1 + σδ)

[
w2(x−n )− w2(x+

n−1)
] ≥

∫

I⊥

µ

2
[
w2(x−n )− w2(x+

n−1)
]
.

(4.27)

Thus, rearranging the terms we may write
N∑

n=1

(
(1 + σδ)w, B̃(w)

)
n

+
N∑

n=1

〈[wn−1], w+
n−1〉n + 〈w+, w+〉0 + 〈w−, w−〉N

≥
N∑

n=1

(
(1 + σδ)w, β̃ · ∇⊥w

)
n

+
µ

2

(
N−1∑
n=1

|[w]|2n + |w|2N + |w|20
)

.

(4.28)

Further, using the equality:
(
w, β1 · ∇⊥w

)
n

= −1
2

(
∇⊥ · β1w, w

)
n

+
1
2

∫

Γn

w2β1 · nds, (4.29)

with β1 := (1+σδ)β̃ = (1+δσ(E))(2µ,−1), we get ∇⊥ ·β1 = 2(1+δσ(E))−δσ′(E).
Hence, combining with the coefficients in the first term in B(w, w) above, we get

σ(E)− 1
2
∇⊥ · β1 ≥ 1

2
σ(E) ⇐⇒ (

1
2
− δ)σ(E) +

1
2
δσ′(E) > 1. (4.30)

Due to the exponential decay of the cross-section σ, assuming σ′(E) = −ασ(E),
α > 0, we have evidently σ(E) = e−αE and (4.30) is valid for

σ >
2

1− δ(2 + α)
. (4.31)

Assuming (4.31), which is the same as in the assertion of lemma, we have that

∥∥∥σ1/2w
∥∥∥

2

+
N∑

n=1

(
(1 + σδ)w, β̃ · ∇⊥w

)
n
≥ 1

2

∥∥∥σ1/2w
∥∥∥

2

. (4.32)

Further to estimate the term involving ∆⊥w we use the inverse estimate to obtain
N∑

n=1

(
ε̃1/2∆⊥w, δB̃(w)

)
n
≤ 1

2
‖ε̃∇⊥w‖2 +

1
2

max(ε̃δ)C2h−2
∥∥∥δ1/2B̃(w)

∥∥∥
2

. (4.33)

Now choosing ε̃ ∼ h3/2 ( ε̃ ∼ h for convex Ω) and δ ∼ h, for sufficiently small h,

max(ε̃δ)C2h−2 ≤ C2h1/2 < 1. (4.34)

Finally, the ∂n-term corresponds to an outflow at µ = 1 which vanishes by assump-
tion that g+ ≡ 0 in (4.11), and −〈w+, w+〉Γ−n ≥ 0. Summing up the estimates
(4.26)-(4.34) and summing over n yield the desired result.

Theorem 4.3. There is a constant C = C(Ω) independent of the mesh size h
and the parameters σ, ε̃ and δ such that for σ, ε̃ and δ satisfying the conditions
(4.31) and (4.34), we have for the solution f of the broad beam equation (4.11),
approximated by the Sd method by fh, the following error estimate

|||f − fh||| ≤ Chr+1/2 ‖f‖r+1 . (4.35)
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Proof. The main point in the proof is to control contributions from the jump and
boundary terms. Let f̃h ∈ Wh (global space) be an interpolant of the exact solution
f and let η = f − f̃h and ξ = f̃h − fh. Then, the error term can be written as

e := f − fh = (f − f̃h)− (fh − f̃h) ≡ η − ξ.

Now since ξ ∈ Wh, by the Galerkin orthogonality B(e, ξ) = 0 and we can write

|||ξ|||2 ≤ B(ξ, ξ) = B(η − e, ξ) = B(η, ξ)

=
N∑

n=1

[
(ση + B̃(η), ξ + δB̃(ξ))n + (ε̃∇⊥η,∇⊥ξ)n − (ε̃∆⊥η, δB̃(ξ))n

]

−
N∑

n=1

[〈ε̃∂nη, ξ〉∂I⊥×In
+ 〈[ηn−1], ξ+

n−1〉n
]
+ 〈η+, ξ+〉0 + 〈η−, ξ−〉N ,

where we used the above lemma. Using Green’s formula yields

(B̃(η), ξ)n =(µηx + β̃ · ∇⊥η, ξ)n

=− (η, µξx)n + µ〈η−, ξ−〉n − µ〈η+, ξ+〉n−1

− (η, β̃ · ∇⊥ξ)n − (η, (∇⊥ · β̃)ξ)n +
∫

Γn

ηξ(β̃ · n) ds.

(4.36)

Inserting (4.36) in B(η, ξ) we get

B(η, ξ) =
N∑

n=1

[
(ση , ξ)n + ((σδ − 1)η, B̃(ξ))n + (B̃(η), δB̃(ξ))n + (ε̃∇⊥η,∇⊥ξ)n

−(ε̃∆⊥η,δB̃(ξ))n + µ〈η−, ξ−〉n − µ〈η+, ξ+〉n +
∫

Γn

ηξβ̃ · nds− 〈ε̃∂nη, ξ〉∂I⊥×In

+ 〈η+, ξ+〉Γ−n + 〈[ηn−1], ξ+
n−1〉n

]
+ 〈η+, ξ+〉0 + 〈η−, ξ−〉N + 〈η, ξ〉Γ+

Lc
,

where Γ+
Lc = Γ+ \ {(x, µ, E) ∈ Γ : x = L} is the outflow boundary except the top

surface for x = L. Thus using the same technique as in the proof of the above
lemma, we may write an estimate of the form

|B(η, ξ)|

≤1
4
|||ξ|||2 +

[ ∥∥∥σ1/2η
∥∥∥

2

+
∥∥∥|σδ − 1|1/2

η
∥∥∥

2

+
∥∥∥δ1/2(β̃ · ∇⊥η)

∥∥∥
2

+
∥∥∥ε̃1/2∇⊥η

∥∥∥
2

+ max(ε̃2δ) ‖∆⊥η‖2 + µ

N−1∑
n=1

[η]2n + |η|2Γ+
Lc

+ µ
∣∣η+

∣∣2
0

+ µ
∣∣η−∣∣2

N
+

∫

Γn

η2
∣∣∣β̃ · n

∣∣∣ ds
]
,

By a standard inverse estimate and recalling that δ ∼ h and ε̃ ∼ h3/2 we have

max(ε̃2δ) ‖∆⊥η‖2 ≤ Ch4(h−1 ‖∇⊥η‖)2 = Ch2 ‖∇⊥η‖2 ≤ C ‖η‖2 .

Similarly the following estimates hold true
∥∥∥ε̃1/2∇⊥η

∥∥∥
2

≤ Ch3/2 ‖∇⊥η‖2 , and
∥∥∥δ1/2(β̃ · ∇⊥η)

∥∥∥
2

≤ Ch ‖∇⊥η‖2 .

Combining with the interpolation estimate, see Ciarlet [9],
[
h |η|2Γ+

Lc
+ ‖η‖2 + h2 ‖ηβ‖2 + h2 ‖ηx‖2 + h

N−1∑
n=1

[η]2n +
∣∣η−

∣∣2
N

]1/2

≤ Chk+1 ‖f‖k+1 ,
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we have

|||ξ|||2 ≤ Ch2k+1,

and since |||η|||, the interpolation error, is of the same order as |||ξ|||, we get the
desired result.

Remark 3. The main advantage of the Sd method is that: we have improved
stability; and the rate of convergence for the SG method, in Section 3, both in the
||| · ||| and the L2-norm, by a factor of O(

√
h), see the estimates (3.15), (3.21) and

(3.22) which all are of order O(hr−1). Note that here k corresponds to r − 1 of
Section 3. Moreover, using the Sd method we have been able to control the jump
discontinuities in x. In the presence of such discontinuities, the proofs in Section 3
(Lemma 3.4, Proposition 3.5 and Theorem 3.6) are not extendable to Ix × I⊥.

Below we focus on some numerical results comparing the Sd, bipartition and
Monte-Carlo (MC) methods. To keep the computational costs in a realistic level,
our simulations concern the energy ranges ≤ 30MeV , adequate for light ions and
high-energy electron particles (for high energy ranges of ≈ 200MeV see [2]). For
clinical applications, the accuracy of the simulations in a moderate energy range of,
say, ∼ 50−100MeV are more desirable than the simulations for very high energies.

5. Numerical simulations. Given g := g(µ,E), we define the boundary condi-
tions for broad beam model as:





f(0, µ, E) = g, (µ,E) ∈ [0, 1]× [0, E0] (BC1)
∂

∂µf(x, 1, E) = 0, (x,E) ∈ (0, x0)× (0, E0] (BC2)
f(x, 0, E) = 0, (x,E) ∈ (0, x0)× (0, E0] (BC3)

∂
∂E f(x, µ, E0) = 0, (x, µ) ∈ (0, x0)× (0, 1] (BC4)

f(x, µ, 0) = 0, (x, µ) ∈ (0, x0)× [0, 1] (BC5).

(5.1)

Here g is a smooth approximation of the source term Q = 1
2π δ(x)δ(1−µ)δ(E0−E).

We have considered the broad beam problem (4.8) associated with the boundary
condition (5.1) and derived numerical algorithms for SG and Sd finite element meth-
ods, where the Sd method coincides with a characteristic Galerkin (CG)-method.
We shall present only the results of the Sd part. For the sake of completeness,
we briefly comment the results of our observations testing other methods than the
Sd. We have carried out implementations to illustrate the applicability of the al-
gorithms using different types of initial data approximating the Dirac δ function
(and consequently the source Q). To begin with, semi-streamline diffusion (SSD)
and characteristic streamline diffusion (CSD) methods are more stable and accu-
rate than the SG and CG methods for all the canonical forms of the initial data
(approximating a Dirac δ function beam source by a Maxwellian, cone, cylinder and
a hyperbolic beam). As for the convergence: solutions with modified Dirac initial
data are suited in CS and SSD. Maxwellian initial conditions produce accurate re-
sults in the CSD scheme, whereas the hyperbolic initial conditions produce more
accurate results in the SSD scheme. The oscillatory behavior, appeared considering
non smooth data, can be eliminated by modifying the L2-projection. The formation
of layers can be avoided taking small steps in the penetration variable. However, a
better approach to deal with this phenomenon is through adaptive refinements.
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5.1. Results. We use the Sd-method to solve (4.8) with the boundary condition
(5.1) and integrate f(x, µ, E) over µ and E to get the energy and angular distribu-
tions for different depths. We compare the results of dose delivery of intensity 10,
20, 30 MeV electron in water, with those of the bipartition model in [15] and [19],
and MC method in [12] and [19]. Here, we have neglected the contributions from
the secondary particles. In Fig. 2, 5 and 8 we can see that our results are very close
to MC, only the positions of the maximum values are different. The reason is that
the stopping power that we have used in our Sd model is somewhat different from
that of MC code SHIELD-HIT+, see [12] for details. We use the same stopping
power with the bipartition model, and find out that the positions of the maximum
values are very close as seen in Fig. 1, 4 and 7. Bipartition model employs CSDA
and singles out particles with larger angle and energy variations. Then, the energy
distributions are very narrow and the maximal drops exponentially fast. Similar
phenomena appears for the angular distributions in Fig. 3 and 6.

5.2. Conclusion. We consider a broad beam model derived from the Fokker-
Planck equation obtained, from the linear transport equation, by asymptotic ex-
pansion. We approximate the broad beam equation by a variety of finite element
methods, where we (i) derive stability and convergence estimates for a semi-discrete
standard Galerkin method, (ii) formulate a fully discrete scheme, (iii) study the
streamline diffusion method and give sharp error bounds in local Lagrangian coor-
dinates. Under certain assumption on the characteristics and by the inverse map-
ping theorem, these bounds are valid in Euler coordinates as well. (iv) We perform
differentiation in µ and derive a non-degenerate, convection-dominated equation,
introduce a diffusion correction (drop) within the ε̃ ≈ min(1− µ2, ε)-term, and de-
rive, without adding artificial viscosity, optimal convergence rate of O(hk+1/2) for
the exact solution f ∈ Hk+1(Ω). (v) In implementations, we use the streamline
diffusion method to calculate the energy and angular distributions for the electrons
and light ions and compare the results with those obtained by bipartition and Monte
Carlo simulations. In our knowledge this approach is not considered elsewhere.

We plan to study radiation beams with inhomogeneous data in anisotropic media.
In a forthcoming work we shall study high energy ions, including secondary particles
and perform implementations based on clinical data.
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