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Abstract
This study concerns a posteriori error estimates in a globally convergent
numerical method for a hyperbolic coefficient inverse problem. Using the
Laplace transform the model problem is reduced to a nonlinear elliptic equation
with a gradient dependent nonlinearity. We investigate the behavior of the
nonlinear term in both a priori and a posteriori settings and derive optimal a
posteriori error estimates for a finite-element approximation of this problem.
Numerical experiments justify the efficiency of a posteriori estimates in the
globally convergent approach.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

This paper is a further development of studies in [1–3] and [16] where a new globally convergent
approximation method was proposed and numerically tested. In a recent publication [14] this
method was verified on blind imaging of the experimental data measured in picoseconds’ scale
regime. Application areas of inverse algorithms range from detection of explosives in airport
security to medical optical imaging, etc.

Compared with [1–3, 14, 16] the main new element of this work is that we perform an
adaptive finite-element technique directly inside the globally convergent method. We focus on
the derivation of optimal a posteriori error estimates for a finite-element approximation of a
nonlinear elliptic integro-differential equation, formulate a new globally convergent adaptive
algorithm and apply it in the numerical study for the model problem in two dimensions.

A numerical method is called globally convergent if (i) a rigorous convergence analysis
is available, independent of the quality of an initial guess for the exact solution and (ii) the
convergence properties are justified by numerical simulations. Generally, a locally convergent
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numerical method may yield a global exact solution only if the initial guess lies in a small
neighborhood of the exact solution. A direct numerical approach to solve a coefficient
inverse problem (CIP) is a minimization procedure for the least-squares residual functional.
This, however, suffers from the drawback of the presence of multiple local minima for the
functionals. To circumvent such an obstacle in [12] a new convexification algorithm was
developed for the solution of one-dimensional CIP in the imaging of dielectric permittivity
of media. This algorithm was later extended in [15] to the multidimensional case with
applications to diffusive optical mammography. The convexification algorithm belongs to
the first generation of globally convergent numerical methods. Further developments of
globally convergent algorithms were started in [1–3], where the layer-stripping procedure was
performed with respect to the pseudo-frequency rather than the spatial variable which is the
case in the convexification. Also, the Carleman weight function in [1–3] depends on the
pseudo-frequency rather than on the spatial variable, as in the works [12, 15]. These new
components contribute to a better stability in the globally convergent reconstruction algorithm.

There are also some other numerical methods for multidimensional CIPs, which do not use
a good first guess for the solution. The methods described in [19, 20] and [18] were developed
for CIPs for some elliptic equations with fixed frequency, and their numerical implementations
in 2D can be found respectively in [8] and [17]. The method described in [5] was developed
for CIPs for some hyperbolic equations. Numerical implementation in [5] can be found in
[6]. Unlike the current paper, they work for some CIPs with the data resulting from multiple
measurements, i.e. either with many positions of the point source or many directions of the
initializing plane wave.

An alternative approach to solve CIP is a synthesis of a globally convergent numerical
method and a strongly converging (local) scheme such as the adaptive finite-element procedure.
In [2, 3] it was shown that the globally convergent numerical method provides a good initial
guess for the locally convergent adaptive finite-element method. A first application of these
results for the acoustic wave equation shows a good performance [2, 3]. Compared to
[2, 3], this work concerns a new such combination, where the adaptivity procedure is performed
directly inside the globally convergent algorithm. For this scheme we develop a posteriori
error estimates and prove convergence rates justifying the accuracy of the method.

Compared with [2, 3] a new combination of the adaptivity technique inside the globally
convergent method allows us to reconstruct shape, contrast and location of inclusions more
accurately and faster. In [2, 3] we apply the adaptivity technique after a globally convergent
method. The main idea of [2, 3] is that we used the two-stage numerical procedure to
reconstruct the unknown coefficient: in the first stage we obtain the solution in a globally
convergent method, and in the second stage, this approximation is taken as the starting point
for the adaptivity technique, which provides an enhancement, i.e. a better approximation for
the correct solution. The adaptivity technique is then performed on minimization of the least-
squares objective functional on a sequence of locally adaptively refined meshes in a series of
steps until images are stabilized. Compared with [2, 3] the new method proposed in this paper
has two main advantages: (i) it is faster, since instead of solving time-dependent forward and
adjoint problems in space and time on every mesh in the adaptivity technique of [2, 3], in the
current adaptive version of the globally convergent algorithm we solve the elliptic nonlinear
integro-differential equation only in space; (ii) more efficient, since we perform the adaptivity
technique directly inside the globally convergent method and thus, we develop the adaptive
globally convergent algorithm instead of using the two-stage numerical procedure. We also
note that the proposed method has similar results of reconstruction as the two-stage numerical
procedure of [2, 3], see also the remark in section 8.
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The new element of this paper is that we numerically test the new method on the
reconstruction of the medium with the varying function c(x) compared with the reconstruction
of small inclusions of previous works [2, 3]. Our numerical results show that the adaptive
globally convergent algorithm can image only the maximal contrast of the reconstructed
function compared to the background medium. Nevertheless, this is obvious in the practical
applications, when only maximal values of the media should be known.

An outline of this paper is as follows: in section 2 we formulate both forward and
inverse problems and transfer the inverse problem to a Dirichlet boundary value problem
for a nonlinear integro-differential equation where the unknown coefficient is removed. In
section 3 we formulate the layer-stripping procedure with respect to s > 0, the parameter of the
Laplace transform in the original hyperbolic PDE. Note that we do not use the inverse Laplace
transform, since approximations for the unknown coefficient are obtained in the ‘Laplace
domain’. In section 4 we introduce a finite-element method, derive bounds for coefficients
and formulate a dual problem. Section 5 is devoted to the derivation of bounds for the
nonlinear operator and a priori error estimates. In section 6 we develop reliable and efficient
a posteriori error estimates for the full problem. In section 7 we present a new adaptive
globally convergent algorithm based on the a posteriori error estimate of section 6. Finally, in
section 8 we present the results of reconstruction of the function in two dimensions using the
adaptive globally convergent algorithm.

2. Preliminaries: statements of forward and inverse problems

Consider the Cauchy problem for the hyperbolic equation

c(x)utt = �u in R3 × (0,∞), (2.1)

u(x, 0) = 0, ut (x, 0) = δ(x − x0). (2.2)

Equation (2.1) governs a wide range of application areas. The combination (2.1) and (2.2)
describes, e.g., the propagation of acoustic and electromagnetic waves. See [9] for a derivation
of (2.1) from Maxwell’s equation in the 2D case. We shall assume that c(x) satisfies the
following conditions: given positive constants d1 and d2, d1 < d2:

c(x) ∈ C2(R3), 2d1 � c(x) � 2d2

and c(x) = 2d1 for x ∈ R3��, � ⊂ R3.
(2.3)

A priori knowledge of constants d1, d2 corresponds well with the Tikhonov concept for ill-
posed problems [30]. In applications the assumption c (x) = 2d1 for x ∈ R3 \ � means that
the target coefficient c (x) has a known constant value outside of the medium of interest �.

Another argument here is that one should bound the coefficient c (x) from the below by a
positive number to ensure that the operator in (2.1) is a hyperbolic one on all iterations of our
method. Since we do not impose any ‘smallness’ conditions on numbers d1 and d2, smallness
conditions are also not imposed on the unknown coefficient. Hence, a numerical method
developed in [3] is a globally convergent one.

We determine c (x) for x ∈ � assuming that the boundary data, g (x, t) below, is known
for a point source acting at x0 /∈ �:

u (x, t) = g (x, t) , ∀ (x, t) ∈ ∂� × (0,∞) . (2.4)

The function g (x, t) models time-dependent measurements of the wave field at the boundary
of the domain where the coefficient should be reconstructed. In the case of a finite time
interval, on which measurements are performed, one should assume that this interval is quite
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large and thus, the t-integral of the Laplace transform over this interval is approximately the
same as the one over (0,∞). The uniqueness theorem for this inverse problem is a long
standing and well-known open question. This question is addressed positively via Carleman
estimates only in the case when the δ-function in (2.2) is replaced with a function which is
nonvanishing in the entire domain � [16, 17]. By our opinion we assume that the uniqueness
for our CIP holds because of applications, see also [18].

Now, we use the Laplace transform

w(x, s) =
∫ ∞

0
u(x, t) e−st dt for s > s > 0, (2.5)

where s is a constant called the pseudo-frequency. Recall that it suffices to choose s such
that the integral (2.5) and its first partial derivatives in x and t converge. Then w satisfies the
equation

�w − s2c(x)w = −δ(x − x0)c(x0), ∀ s � s > 0, (2.6)

with the following condition at infinity:

lim
|x|→∞

w(x, s) = 0, ∀ s � s > 0. (2.7)

In [3] it was proven that the limit in (2.7) is positive.

2.1. The nonlinear integro-differential equation with the eliminated unknown coefficient

Since it was established in [3] that w(x, s) > 0, we can consider the function v(x, s) = ln w,
since x0 /∈ �, and then (2.6) and (2.7) yield

�v + |∇v|2 = s2c (x) in �, (2.8)

v (x, s) = ln ϕ (x, s) , ∀ (x, s) ∈ ∂� × [s, s], (2.9)

where ϕ (x, s) is the Laplace transform of the data function g (x, t). We eliminate the
coefficient c (x) by differentiating (2.8) with respect to s. To single out the unknown coefficient
c (x) in (2.8), we introduce a new function

H(x, s) = v

s2
. (2.10)

Further, assuming certain regularity conditions (see, e.g., [1]), it follows from (2.10) that, for
|α| � 2,

Dα
x (H) = O

(
1

s

)
, Dα

x Ds(H) = O

(
1

s2

)
, s → ∞. (2.11)

By (2.8) and (2.10), H satisfies

�H + s2 |∇H |2 = c (x) . (2.12)

Next we let

q (x, s) = ∂sH (x, s) ; (2.13)

then, by (2.11) and (2.13)

H (x, s) = −
∫ ∞

s

q (x, τ ) dτ := −
∫ s

s

q (x, τ ) dτ + V (x, s) , (2.14)

where s > s0 is a large number and

V (x, s) = H (x, s) = ln w (x, s)

s2 . (2.15)

4
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The unknown function V (x, s) is called the tail function. To determine V we need the
parameter s which we choose numerically. Therefore, (2.15) is an approximation rather than
an equality. By (2.11) and (2.15) the tail is small for large values of s. Usually, the tail function
is put to zero. Here we include V either on the right-hand side in iteration steps as a data or
study it as an unknown in a coupled system of equations.

Now differentiating (2.12) with respect to s, from (2.14)–(2.15) we obtain the following
nonlinear integro-differential equation for q = q(x, s):

�q − 2s2∇q ·
∫ s

s

∇q (x, τ ) dτ + 2s

[∫ s

s

∇q (x, τ ) dτ

]2

+ 2s2∇q∇V − 2s∇V ·
∫ s

s

∇q (x, τ ) dτ + 2s (∇V )2 = 0. (2.16)

Further, by (2.9), (2.10) and (2.13) we may impose the following Dirichlet boundary condition:

q (x, s) = ψ (x, s) , ∀(x, s) ∈ ∂� × [s, s], (2.17)

where ψ satisfies

ψ(x, s) = ϕs

ϕs2
− 2 ln ϕ

s3
.

Suppose that q and its partial derivatives of order up to 2 in x: Dα
x q, |α| � 2 are already

approximated. Then, the coefficient c(x) can be, approximately, determined using (2.12):

c(x) = �H + s2(∇H)2, (2.18)

where H is given by (2.14), which requires an initial guess for V as well. In the absence
of integral terms and if the tail function were known, (2.16) would be the classical Dirichlet
boundary value problem for the Laplace equation. However, the presence of the integral
term, because of its nonlinearity, is the main source of complexity. Another difficulty is the
presence of two unknowns, q and V, in equation (2.16). We may overcome this difficulty by
treating q and V differently: while we iteratively find approximations for q ‘restricted’ only to
equation (2.16), we determine updates for V using solutions for (2.1), (2.2) and relation (2.15).

3. A sequence of elliptic Dirichlet boundary value problems

In this section we approximate q(x, s) with a piecewise constant function with respect to the
pseudo-frequency s. Assume that there exists a partition s = sN < sN−1 < · · · < s1 < s0 =
s, sn−1 − sn = k of the interval [s, s] with a sufficiently small and uniform step size k such
that q(x, s) = qn(x) for s ∈ (sn, sn−1). Hence,∫ s

s

∇q(x, τ ) dτ = (sn−1 − s)∇qn(x) + k

n−1∑
j=1

∇qj (x), s ∈ (sn, sn−1). (3.1)

We also approximate the boundary condition (2.17) as a piecewise constant function on s:

qn(x) = qn(x), x ∈ ∂�, j = 1, . . . , n, (3.2)

where

qn(x) = 1

k

∫ sn−1

sn

q(x, s) ds. (3.3)

On each subinterval (sn, sn−1], n � 1, we assume that the functions qj (x), j = 1, . . . , n − 1,

are known. In this way, for each n, n = 1, . . . , N , we obtain an approximate equation for

5
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qn(x). Now we insert (3.1) in (2.16) and multiply the resulting equation by the Carleman
weight function (CWF)

Cn,λ(s) = eλ(s−sn−1), s ∈ (sn, sn−1], λ � 1, (3.4)

and integrate over s ∈ (sn, sn−1]. (To choose λ see theorem 6.1 in [1].) We obtain for
n = 1, . . . , N

L̃n,ε(qn, Vn): = Ln (qn, Vn) − εqn: = �qn − A1,n

(
k

n−1∑
i=1

∇qi

)
∇qn + A1n∇qn∇Vn − εqn

≈ 2
I1,n

I0
(∇qn)

2 − A2,nk
2

(
n−1∑
i=1

∇qi (x)

)2

+ 2A2,n∇Vn

(
k

n−1∑
i=1

∇qi

)
− A2,n (∇Vn)

2 . (3.5)

The term −εqn is added for regularizing purpose. It is straightforward to compute the
coefficients

I0 := I0(λ, k) =
∫ sn−1

sn

Cn,λ(s) ds,

I1,n := I1,n(λ, k) =
∫ sn−1

sn

s(sn−1 − s)[s − (sn−1 − s)]Cn,λ(s) ds,

A1,n := A1,n(λ, k) = 2

I0

∫ sn−1

sn

s[s − 2(sn−1 − s)]Cn,λ(s) ds,

A2,n := A2,n(λ, k) = 2

I0

∫ sn−1

sn

sCn,λ(s) ds.

Then we have obtained the Dirichlet boundary value problem (3.5), with the boundary
condition (3.2), for a nonlinear elliptic PDE with the unknown function qn (x) , n = 1, . . . , N .
In this system the tail function V is also unknown. An important observation is that

|I1,n(λ, k)|
I0(λ, k)

� 4s2

λ
for min(λk, s̄) � 1. (3.6)

Therefore, taking λ � 1 we mitigate the influence of the nonlinear term with (∇qn)
2 in (3.5),

which enables us to solve a linear problem on each iterative step. Further, with λ and s̄ as
in (3.6)

max
1�n�N

{|A1,n| + |A2,n|} � 8s2. (3.7)

3.1. Global convergence

To study equation (3.5) and prove the a posteriori error estimate for the function qn of that
equation we shall need bounds of the coefficients in a modified version of (3.5) and the
corresponding error equation. All bounds in lemma 3.1 follows from definitions of different
constants and proof of theorem 6.1 of [3], see section 6. Now, for convenience of readers, we
briefly recall some definitions given in [3] which are used in lemmas 3.1 and 4.1.

Let c�, q� and V � be the exact solutions corresponding to the approximations cn, qn and Vn,
respectively. We also use the positive constant M∗ = M∗(‖q∗‖C2+α(�)×C1[s,s], s) = M∗(C∗, s),
0 < α < 1, and then

M∗ = 2C∗ max

(
8s2, max

1�n�N

{∣∣A1,n

∣∣ +
∣∣A2,n

∣∣}) = 16C∗s2, C∗ � 1. (3.8)

6
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For any function c(x) ∈ Cα(R3) such that c(x) � d1, c(x) = 2d1 for x ∈ R3 \� consider
the solution wc(x, s) ∈ C3(R3 \ {|x − x0| < r}),∀r > 0 of the problem (2.6), (2.7) and let
Vc(x) = (s)−2 ln wc(x, s) ∈ C2+α(�) be the corresponding tail function. Assume that

max(|V ∗|2+α, |Vc|2+α, |V1,1|2+α) � ξ and ‖ψ̄�
n − ψ̄n‖C2+α(∂�) � C�(k + σ), (3.9)

where ξ ∈ (0, 1) and σ ∈ (0, 1) are sufficiently small numbers. Here, σ characterizes the
level of the error in data ψ(x, s). Let V1,1 (x, s) ∈ C2+α(�) be the initial tail. Further, let
η := 2 (k + σ + ξ + ε) and N � N (where N is the total number of functions qn calculated
by the algorithm) be related to the step size k by N (k) k = β � 1

24KM∗ . Here, ε is the
regularization parameter for equation (3.5) and K > 0 is a constant in the Shauder theorem,
see (6.17) in [3] for details. Finally, we assume that

η � η0 = min
1

8

(
1

2KM�
, 3d1

)
, λ � λ0 = max

(
(C∗)2

4
, 3KM∗,

1

η2

)
, (3.10)

where η0 and λ0 are initial parameter values. Now, with q∗
n denoting a first-order approximation

of q∗ in (sn, sn−1] we can prove the following convergence lemma (follows from theorem 6.1
[3]).

Lemma 3.1. Assume that all conditions of theorem 6.1 [3], conditions (3.9) and (3.10) hold;
then, for each n ∈ [1, N̄ ] the following estimates take place

|qn − q∗
n |2+α � 2KM∗

(
1√
λ

+ 3η

)
, n ∈ [1, N ], (3.11)

|qn|2+α � 2M∗, n ∈ [1, N ], (3.12)

|cn − c∗|α � η

2 · 9n−1
+

23

8
η, n ∈ [2, N ]. (3.13)

Remark 1. In [3] the proof of the globally convergent theorem is based on the Shauder
theorem which uses Hölder norms. Our estimates above are based on the proof of theorem 6.1
of [3] and thus also use Hölder norms. Since practically we are working in finite-dimensional
spaces where all norms are equivalent we can replace Hölder norms to more convenient for
computations L2 norms, what we do in the derivation of a posteriori error estimation below.

4. A finite-element discretization

We approximate the solution for (3.5) by a finite-element method with continuous piecewise
linear basis functions on a partially structured mesh in space and implement the resulting
scheme using a hybrid code similar to the one developed in [4]. More specifically, we
decompose the computational spatial domain G into � ⊂ G (typically, covering only a small
part of G) and �c = G \ �, and discretize � by an unstructured mesh and �c by a quasi-
uniform mesh. To discretize �c we use quadrilateral elements in 2D and hexahedra in the 3D
case. In �, for each n, we use a partition Tn,h = {K} with elements K. We associate with Tn,h

a piecewise continuous mesh function h = h(x) representing the diameter of the element K
containing x. We use the L2-inner product and norm

(u, v) =
∫

�

uv dx, ‖u‖2 = (u, u).

Choosing c (x) = 1 for x ∈ �c, and then given g(x, t) = u|∂�, we can uniquely determine
the function u(x, t) for (x, t) ∈ (�c) × (0, T ) as the solution of the boundary value problem

7
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for equation (2.1) with boundary conditions on both boundaries ∂G and ∂�. Hence, p (x, t)

is uniquely determined by

p(x, t) := ∂u

∂n

∣∣∣∣
∂�

, (4.1)

where n is the outward unit normal to the boundary of � at the point x ∈ ∂�. Next, using the
Laplace transform of u(x, t), (2.10) and (2.13) one can uniquely determine the function q̃(x),

q̃(x) := ∂q

∂n

∣∣∣∣
∂�

. (4.2)

In our computations the functions p (x, t) , q̃(x) and g (x, t) are calculated from the solution
of the forward problem (3.5) with the exact value of the coefficient c(x). We compute data at
the boundary from the numerical solution of the forward problem with the known value of the
function c(x). Thus, doing the Laplace transform from the known computed function u(x, t)
we smooth out the function q. Our numerical examples and experimental verification of the
globally convergent method [18] show that this procedure is stable.

A variational formulation for (3.5) is as follows: for n = 1, . . . , N; find Vn, qn ∈ H 1(�),

such that

F(qn, Vn;ϕ): = (∇qn,∇ϕ) +

(
A1,n

(
k

n−1∑
i=1

∇qi

)
∇qn, ϕ

)
− (A1n∇qn∇Vn, ϕ) + (εqn, ϕ)

+

(
2
I1,n

I0
(∇qn)

2 , ϕ

)
−

⎛⎝A2,nk
2

(
n−1∑
i=1

∇qi (x)

)2

, ϕ

⎞⎠
+

(
2A2,n∇Vn

(
k

n−1∑
i=1

∇qi

)
, ϕ

)
− (A2,n (∇Vn)

2 , ϕ)

≈ (q̃n, ϕ)∂�, ∀ϕ ∈ H 1(�). (4.3)

To formulate a corresponding finite-element method for (3.5), we introduce the trial space
W

q

n,h:

W
q

n,h := {wn ∈ H 1(�) : wn|K ∈ P1(K), ∂nwn|∂� = q̃n,h,∀ K ∈ Tn,h}, n = 1, . . . , N,

where P1(K) denotes the set of linear functions on K and q̃n,h is an approximation for q̃(x).
We also introduce the test function space Wn,h defined as

Wn,h := {wn : wn is continuous on �, and wn|K ∈ P1(K),∀K ∈ Tn,h}.
Note that both Wn,h and W

q

n,h ⊂ H 1(�). The finite-element method for (3.5) is now formulated
as follows: for n = 1, . . . , N , find qn,h and Vn,h ∈ W

q

n,h, approximations of qn and Vn,
respectively, such that

F(qn,h, Vn,h;ϕ) ≈ (q̃n,h, ϕ)∂�, ∀ ϕ ∈ Wn,h. (4.4)

Subtracting (4.4) from (4.3) we get the classical Galerkin orthogonality:

F(qn, Vn;ϕ) − F(qn,h, Vn,h;ϕ) ≈ 0, ∀ ϕ ∈ Wn,h. (4.5)

Now, we introduce the residual, Rn := Rn(qnh, Vn,h), for a discrete solution for (3.5) as
follows: for n = 1, . . . , N ; find qnh, Vn,h ∈ W

q

n,h such that

8
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L̃n,ε

(
qn,h, Vn,h

)
:= −�hqnh + A1,n

(
k

n−1∑
i=1

∇qih

)
∇qnh − A1n∇qnh∇Vnh + εqnh

+ 2
I1,n

I0
(qnh)

2 − A2,nk
2

(
n−1∑
i=1

∇qih (x)

)2

+ 2A2,n∇Vnh

(
k

n−1∑
i=1

∇qih

)
−A2,n(∇Vnh)

2 := Rn, qnh|∂� = q̃, (4.6)

where �hqnh is the discrete Laplacian defined by

(�hqnh, η) = (∇qnh,∇η), ∀η ∈ Wn,h. (4.7)

Further, we let en,h = qn − qn,h, n = 1, . . . , N , and then the abstract Galerkin
orthogonality relation (4.5) can be written as

(∇en,h,∇ϕ) + (εen,h, ϕ) +

(
A1,n

[(
k

n−1∑
i=1

∇qi

)
∇qn −

(
k

n−1∑
i=1

∇qi,h

)
∇qn,h

]
, ϕ

)
− (A1n[∇qn∇Vn − ∇qn,h∇Vn,h], ϕ) +

(
2
I1,n

I0
[(∇qn)

2 − (∇qn,h)
2], ϕ

)
−

(
A2,nk

2

[( n−1∑
i=1

∇qi(x)

)2

−
( n−1∑

i=1

∇qi,h(x)

)2]
, ϕ

)

+

(
2A2,n

[
∇Vn

(
k

n−1∑
i=1

∇qi

)
− ∇Vn,h

(
k

n−1∑
i=1

∇qi,h

)]
, ϕ

)
− (A2,n[(∇Vn)

2 − (∇Vn,h)
2, ϕ)]

: = (∇en,h,∇ϕ) + (εen,h, ϕ) +
6∑

j=1

(Tj , ϕ) ≈ 0, ∀ϕ ∈ Wn,h, (4.8)

with the obvious notations for Tj , j = 1, . . . , 6. Now subtracting (4.6) from (4.8), we get the
error equation

−�hen,h + εen,h +
6∑

j=1

Tj := −Rn. (4.9)

Thus, (4.8) can be written as an equation with the right-hand side −(Rn, ϕ). Below, to keep
a track of contributions from the q and V in (4.9), we rearrange the mixed q- and V-terms: T1,
T2 and T5:

T1 = A1,nk

[( n−1∑
i=1

∇qi

)
∇qn −

( n−1∑
i=1

∇qi,h

)
∇qn,h

]

+ A1,nk

[( n−1∑
i=1

∇qi,h

)
∇qn −

( n−1∑
i=1

∇qi,h

)
∇qn

]

= A1,nk

( n−1∑
i=1

∇qi,h

)
· ∇en,h + A1,nk∇qn

( n−1∑
i=1

∇ei,h

)
. (4.10)

Similarly we rearrange the term T2 on the left-hand side of (4.9) as

−T2 = A1n[∇qn∇Vn − ∇qn,h∇Vn,h] + A1n∇qn∇Vn,h − A1n∇qn∇Vn,h

= A1n∇qn∇�n + A1n∇Vn,h∇en,h, (4.11)

9
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where we have defined �n := Vn − Vn,h. Finally, T5 is written as

T5 = 2kA2,n

[
∇Vn

( n−1∑
i=1

∇qi

)
− ∇Vn,h

( n−1∑
i=1

∇qi,h

)]

+ 2kA2,n

[
∇Vn,h

( n−1∑
i=1

∇qi

)
− ∇Vn,h

( n−1∑
i=1

∇qi

)]

= 2kA2,n

( n−1∑
i=1

∇qi

)
∇�n + 2kA2,n∇Vn,h

( n−1∑
i=1

∇ei,h

)
.

Substituting rearranged terms into (4.9) yields

−�hen,h + I1∇en,h + εen,h + 2
I1,n

I0
[(∇qn)

2 − (∇qn,h)
2]

+ I2 ·
(

k

n−1∑
i=1

∇ei,h

)
+ I3 · ∇�n = −Rn, (4.12)

where

I1 = A1,n

(
k

( n−1∑
i=1

∇qi

)
− ∇Vn,h

)
,

I2 =
(

A1n∇qn − A2,nk

n−1∑
i=1

(∇qi,h + ∇qi) + 2A2,n∇Vn,h

)

I3 =
(

2kA2,n

( n−1∑
i=1

∇qi

)
− A1n∇qn − A2,n(∇Vn,h + ∇Vn)

)
.

(4.13)

Below we give (Lipschitz) bounds for the coefficients I1, I2, I3 (see also [3], section 3.1).

Lemma 4.1. Let 0 < α < 1 be the Lipschitz order. Assume that

max
1�n�N

|q∗
n |1+α � C∗, |Vn,h|1+α � ξ (4.14)

where the constant C∗ = C∗(‖q∗‖C2+α(�)×C1[s,s]) > 1. Then we have the following Lipschitz
bounds:

|I1|α + |I2|α + |I3|α � 3M∗(1 + β + η) (4.15)∣∣∣∣I2 ·
(

k

n−1∑
i=1

∇ei,h

)∣∣∣∣
α

+ |I3 · ∇�n|α � 3M∗η. (4.16)

Proof. From (3.8), the definition of β, (4.14) and the fact that C∗ � 1, it follows that

|I1|α � |A1,n|
∣∣∣∣∣k

(
n−1∑
i=1

∇qi

)
− ∇Vn,h

∣∣∣∣∣
α

� 8s̄2
(
kN |qn|1+α + |Vn,h|1+α

)
� 8s̄2(βC∗ + ξ) � 8s̄2(βC∗ + η/2) � 1

2
M∗(β + η) (4.17)

10
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and

|I2|α �
∣∣∣∣∣A1,n∇qn − A2,nk

n−1∑
i=1

(∇qi,h + ∇qi

)
+ 2A2,n∇Vn,h

∣∣∣∣∣
α

� 8s̄2(C∗ + 2βC∗ + 2ξ) � M∗

2
(1 + 2β + η) = M∗

(
β +

1

2
+

η

2

)
. (4.18)

Now (4.15) is a result of combining (4.17), (4.18) and the following estimate for |I3|α:

|I3|α =
∣∣∣∣∣∣2A2,nk

n−1∑
j=1

∇qi − A1,n∇qn − A2,n

(∇Vn,h + ∇Vn

)∣∣∣∣∣∣
α

� M∗
(

β +
1

2
+

η

2

)
. (4.19)

To prove the second assertion of the lemma we use the shift theorem, an interpolation estimate
and Poincaré inequality to write

|qn,h − qn|1+α � |qn,h − q�
n|1+α + |q�

n − qn|1+α � k|q�
n|2+α + |q�

n − qn|2+α,

and we have by (3.11),

k

n−1∑
i=1

∣∣∇ei,h

∣∣
α

� k2
n−1∑
i=1

∣∣q�
n

∣∣
2+α

+ k

n−1∑
i=1

∣∣qn,i − q∗
n

∣∣
2+α

� 2(k + K)M∗β
(

1√
λ

+ 3η

)
. (4.20)

Hence, using the Hölder inequality

|f1f2|α � |f1|α |f2|α , ∀f1, f2 ∈ C(�̄) (4.21)

and the estimates (4.18) and (4.20) we get∣∣∣∣∣∣I2 · k

n−1∑
j=1

∇ei,h

∣∣∣∣∣∣
α

� |I2|α k

n−1∑
j=1

∣∣∇ei,h

∣∣
α

� (k + K)(M�)2β (1 + 2β + η)

(
1√
λ

+ 3η

)
.

(4.22)

Further by (3.9), (4.19) and the definition of η,

|I3 · ∇�n|α � |I3|α |∇�n|α � M∗
(

β +
1

2
+

η

2

)
η

2
. (4.23)

Thus, using (3.11),∣∣∣∣∣∣I2 · k

n−1∑
j=1

∇ei,h

∣∣∣∣∣∣
α

+ |I3 · ∇�n|α � M∗(1 + 2β + η)

[
η

2
+ (k + K)M�β

(
1√
λ

+ 3η

)]
.

(4.24)

Now since β � 1/(24KM�) and 1√
λ

� η we get[
η

2
+ (k + K)M�β

(
1√
λ

+ 3η

)]
� η

(
1

2
+ 4(k + K)M�β

)
� η

(
1

2
+

1

3

)
= 5

6
η < η.

(4.25)

Recall that η � 1/(16KM�) and by (3.4) and (3.8), C∗ � 1 and s̄ � 1; thus, by (3.8)
M� � 16. Hence,

M�(1 + 2β + η) � M� +
7

48K
� 3M�. (4.26)

11
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Finally

M∗(1 + 2β + η)

[
η + KM�β

(
1√
λ

+ 3η

)]
� 3M�η = 3M�η, (4.27)

which gives the desired result and the proof is complete. �

Our estimates take place in finite-dimensional spaces and therefore they are involved
in L2-based norms which are equivalent with those based on Hölder norms. Since the
coefficients Ii, i = 1, 2, 3, in (4.12) are Lipschitz continuous, we may restate (4.12) with
the continuous Laplacian. We rewrite (4.12) for every pseudo-frequency interval [sn, sn−1)

for all n = 1, . . . , N (we suppress the index n) and consider an error equation

�e := −�e + C1∇e + εe + δ�e = −C2

(
k

n−1∑
i=1

∇ei

)
− R − C3∇� := −R̃ − C3∇�,

e|∂� = 0,

(4.28)

with R being the dominating part of R̃, Cj , j = 1, 2, 3, corresponding to the spatially
continuous versions of Ij:s, δ := I1,n/I0 and � the nonlinear term defined by

�e := |∇q|2 − |∇qh|2. (4.29)

Observe that in (4.28) the sum is over all the previous iteration steps in the pseudo-frequency
interval and the error in V is included in the �-term.

Note that by (4.8) and (4.9) we have that the residual term R satisfies

(R, ϕ) ≈ 0, ∀ϕ ∈ Wn,h; (4.30)

in other words, the residual R(qh) is almost orthogonal (∼⊥) to the finite-element space Wn,h.

5. Bounds for the nonlinear operator Λ and a priori estimates

Below first we shall derive some bounds for the nonlinear operator �. To this end let
f (q) = |∇q|2 and 0 < θ < 1; then, Taylor expanding f (qh) about q we may write

f (qh) = f (q) + (qh − q)Df (θq + (1 − θ)qh), (5.1)

where D is the differential operator and

Df (θq + (1 − θ)qh) = D(|∇(θq + (1 − θ)qh)|2)
= 2(|∇(θq + (1 − θ)qh)|) · (D|∇(θq + (1 − θ)qh)|). (5.2)

Thus, we may write �e in the concise form as

�e = 2e(|θ∇e + ∇qh|) · (D|∇(θq + (1 − θ)qh)|)
= 2e(|θ∇e + ∇qh|) · (D|θ∇e + ∇qh|). (5.3)

When approximating with piecewise linear qh, it is more adequate to use the first equality in
(5.3).

5.1. The dual problem for a linearized approach

In this part we briefly sketch a framework for the dual approach for a linear/linearized version
of (4.28). For a more detailed study (in a one-dimensional case) we refer to [11]. To begin
with, we assume that � is a linear operator and let

��ϕ := −�ϕ − C1∇ϕ + εϕ + δ��ϕ = e, n = 1, . . . , N, ϕ|∂� = 0, (5.4)

12
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with �� and �� being the adjoints of � and �, respectively. By (4.28) we have the error
representation formula

‖e‖2
L2(�) = (e, ��ϕ) = (�e, ϕ) = −(R̃, ϕ). (5.5)

Further, we use identities

−(χ, ϕ − Phϕ) = −(χ − Phχ, ϕ − Phϕ) for

χ = R, χ = C2

n−1∑
i=1

∇ei or χ = C3∇�,
(5.6)

where Ph : L2(�) → Wn,h is the L2(�)-projection, and we have used the orthogonality
R ⊥ Wn,h and (ϕ − Phϕ) ⊥ Wn,h. Finally, combining the interpolation estimate

‖h−2(ϕ − Phϕ)‖L2(�) � Ci‖D2ϕ‖L2(�) (5.7)

and the strong stability estimate for the dual problem (5.4)

‖D2ϕ‖L2(�) � Cs‖e‖L2(�), (5.8)

we get from (5.5) and with the fact that R dominates R̃ that

‖e‖L2(�) � CsCi‖h2(R̃ − PhR̃)‖ � CCsCi‖h2(R − PhR)‖, (5.9)

where Ci and Cs are interpolation and stability constants, respectively. Recalling (5.3) we have

(��ϕ, e) = (ϕ,�e) = 2(ϕ, [|θ∇e + ∇qn|] · [D|∇(θq + (1 − θ)qh)|]e). (5.10)

Assuming the piecewise linear approximation by successive application of the Hölder
inequality we get

|(��ϕ, e)| = |(ϕ,�e)| = 2|(ϕ, [|θ∇e + ∇qh|] · [D|∇(θq + (1 − θ)qh)|]e)|
� 2θ |(ϕ, |∇qh|D(|∇q|)e)| + 2θ2|(ϕ, |∇e|D(|∇q|)e)|
� 2θ‖qh‖W 1∞‖ϕ‖‖e‖‖q‖W 2∞ + 2θ2‖ϕ‖‖e‖‖e‖W 1∞‖q‖W 2∞

� C‖ϕ‖‖e‖‖q‖W 2∞(‖qh‖W 1∞ + ‖e‖W 1∞). (5.11)

Here we used the fact that

D|∇(θq + (1 − θ)qh)| = D(θ |∇q| + (1 − θ)|∇qh|)
= θD(|∇q|) + (1 − θ)D(|∇qh|) = θD(|∇q|). (5.12)

Thus, we get the following estimate for the nonlinear operator �:

‖�‖ � ‖q‖W 2∞

(‖qh‖W 1∞ + ‖e‖W 1∞

)
.

As an alternative method to get the above-derived estimate we can apply a direct approach
using the definition �e = |∇q|2 − |∇qh|2. This definition yields a weak bound for � (or �∗):

|(��ϕ, e)| = |(ϕ,�e)| = |(ϕ, |∇q|2 − |∇qh|2)| = |(ϕ, (|∇q| − |∇qh|)(|∇q| + |∇qh|))|
� |(ϕ, |∇(q − qh)|(|∇q| + |∇qh|))| = |(ϕ, |∇e|(|∇q| + |∇qh|))|
� ‖ϕ‖‖e‖W 1

2
(‖q‖W 1∞ + ‖qh‖W 1∞). (5.13)

Theorem 5.1 (An a priori error bound). Let qn ∈ W 2
2 (�) and qnh be the solutions for

(4.3) and (4.4), respectively. Then for a piecewise linear finite-element approximation error
en = qn − qn,h we have

‖en‖ � Ch‖qn‖W 2
2

= O(h). (5.14)

13
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Proof. We use the Taylor expansion with a second-order rest term (corresponding to θ = 0
in (5.3))

f (q) = f (qh) + (q − qh)f
′(qh) + r, r = O(q − qh)

2, (5.15)

where we have suppressed n. Thus,

|∇q|2 ≈ |∇qh|2 + (q − qh) · 2|∇qh|D(|∇qh|) (5.16)

and

�e = |∇q|2 − |∇qh|2 ≈ 2e · |∇qh|D(|∇qh|). (5.17)

Hence,

(��ϕ, e) = (ϕ,�e) ≈ 2(ϕ, e · |∇qh|D(|∇qh|)) = 2(eϕ|∇qh|,D(|∇qh|)) (5.18)

and

(eϕ|∇qh|,D(|∇qh|)) = −(|∇qh|,D(eϕ|∇qh|)) + (|n · ∇qh|, eϕ|∇qh|)|∂�

= −(|∇qh|, eϕD(|∇qh|)) − (|∇qh|, eD(ϕ)|∇qh|)
− (|∇qh|,D(e)ϕ|∇qh|), (5.19)

where due to the fact that e ≡ 0 at the boundary, the contribution from the boundary term
vanishes. By rearranging the terms we get an approximation (with an error of order r, see
(5.15))

(ϕ,�e) ≈ −(|∇qh| , eD(ϕ) |∇qh|) − (|∇qh| ,D(e)ϕ |∇qh|). (5.20)

Let now q̃ be an interpolant of q. Then, using the split e = q − q̃ + q̃ − qh and the Galerkin
orthogonality (4.8) together with the stability estimate (4.10) we may write

‖e‖2 = (e, e) = (��ϕ, e) = (�ϕ, e) − (C1∇ϕ, e) − (εϕ, e) − (�∗ϕ, e)

= (D2ϕ,∇(q − q̃)) − (C1∇ϕ, q − q̃) − (εϕ, q − q̃) − (�∗ϕ, q − q̃)

� Cih
2
(
Cs‖e‖L2 + C1‖ϕ‖W 1

2
+ (ε + ‖�∗‖)‖ϕ‖)‖q‖W 2

2
. (5.21)

Thus, we have obtained following the a priori error bound

‖e‖ � Ch‖q‖W 2
2

= O(h). (5.22)
�

Remark 2. Since we assumed qh to be a linear approximation, in the Taylor formula
(5.13) the rest term r contains f ′′(qh) = D2( 1

2 |∇qh|2) ≡ 0. Then, in the above proof all
approximation signs ≈ can be replaced by =. With the ≈, the argument holds for the higher
order approximation.

6. A posteriori error estimation

The a posteriori error analysis is based on representing the error in terms of the solution ϕ of
the dual problem related to (3.5). We recall the problem (4.28) and write the dual problem for
all [sn, sn−1):

−�ϕ − C1∇ϕ + εϕ + δ��ϕ + δ |∇ϕh|2 + C̃ϕ,� = ψ, n = 1, . . . , N, ϕ|∂� = 0,

(6.1)

where C̃ϕ,� := C2k
∑n−1

i=1 ∇ϕi + C3∇� is considered to be known from the previous iteration
steps, and � = �n = Vh −Vn,h. We assume that � ∈ H 1

loc and ϕh ∈ W
1,4
loc (this corresponds to

global assumptions: V ∈ H 2(�) and ϕ ∈ W 2
4 (�)). Note, that we have added an extra

14
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term δ |∇ϕh|2 to the dual problem (6.1) because of the presence of the nonlinear term
�e = |∇q|2 − |∇qh|2 to keep the continuity of our problem. Thus, we wish to control
the quantity (e, ψ) with e = q − qh in �, where ψ ∈ [L2(�)]3 is given. For approximations
of spectral order >1 (for linear approximation the J5-term below will vanish), using (5.20) we
may write

(ψ, e) = −(�ϕ, e) − (C1∇ϕ, e) + (εϕ, e) + δ(ϕ,�e) + δ(|∇ϕh|2 , e) + (C̃ϕ,�, e)

≈ −(�ϕ, e) − (C1∇ϕ, e) + (εϕ, e) − δ(|∇qh|2 D(ϕ), e) + δ(D(|∇qh|2 ϕ), e)

+ δ(|∇ϕh|2, e) + (C̃ϕ,�, e) := J1 + J2 + J3 + J4 + J5 + J6 + J7. (6.2)

Due to the limited regularity of the approximate solution qn,h, the scalar products Ij , j =
1, . . . , 7, involving e = qn − qn,h should be performed elementwise: (f, g) := ∑

K(f, g)K .
This will introduce the accumulative sum of the normal derivatives over the element
boundaries. Taking into account these boundary terms and using the Green’s formula, we
recompute each Jj , j = 1, . . . , 7, separately:

J1 = −(�ϕ, e) = (∇ϕ,∇e) −
∑
K

∫
∂K

(∂nϕ)e ds

= −
∑
K

∫
∂K

(∂nϕ)e ds +
∑
K

∫
∂K

(∂ne)ϕ ds − (�he, ϕ), (6.3)

where �h is the discrete Laplacian and ∂nf := n ·∇f denote the normal derivative of f in the
direction of the outward unit normal n to the boundary ∂K of element K. As for J2 integrating
by parts, and using the facts that (i) the minimum regularity requirement for elements in Ṽh is
C1, (ii) the oriented integrals over the element boundaries ∂K such that ∂K ∩ ∂� = ∅ cancels
out, and finally (iii) e ≡ 0 on ∂�, componentwise integration, yields

J2 = −(C1∇ϕ, e) = (C1∇e, ϕ) − C1

∑
K

∫
∂K

ϕe ds = (C1∇e, ϕ). (6.4)

Next, we leave the terms J3, J6 and J7 in their present form, namely

J3 + J6 + J7 = (εe, ϕ) + (e, C̃ϕ,�) + δ(e, |∇ϕh|2). (6.5)

Finally, the remaining contribution from the nonlinear terms J4 and J5 can be rewritten as

J4 + J5 = −δ(|∇qh|2 D(ϕ), e) + δ(D(|∇qh|2 ϕ), e)

= −δ
∑
K

∫
∂K

|∇qh|2 ϕe ds + δ(ϕ,D(|∇qh|2 e))

+ δ
∑
K

∫
∂K

|∇qh|2 ϕe ds − δ(ϕ, |∇qh|2 De)

= δ(ϕ,D(|∇qh|2 e)) − δ(ϕ, |∇qh|2 De). (6.6)

Substituting (6.3)–(6.6) into equation (6.2), using (5.20), and finally recalling (4.28), we get

(ψ, e) = −
∑
K

∫
∂K

(∂nϕ)e ds +
∑
K

∫
∂K

(∂ne)ϕ ds − (ϕ,�he) + (C1∇e, ϕ) + (εe, ϕ)

+ (e, C̃ϕ,�) + δ(e, |∇ϕh|2) + δ(ϕ,D(|∇qh|2 e)) − δ(ϕ, (|∇qh|2 De))

= −(�he − C1∇e − εe − δ�e, ϕ) + (e, C̃ϕ,�) + δ(e, |∇ϕh|2)
−

∑
K

∫
∂K

(∂nϕ)e ds +
∑
K

∫
∂K

(∂ne)ϕ ds

15
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= (−R̃, ϕ) + C3(e,∇�) + δ(e, |∇ϕh|2) −
∑
K

∫
∂K

(∂nϕ)e ds +
∑
K

∫
∂K

(∂ne)ϕ ds.

(6.7)

We estimate the boundary terms in (6.7) as follows: first, the sum over the element
boundaries, where each interior side S ∈ Sh occurs twice. Then denoting by ∂n±ϑ the
derivative of ϑ in the outward normal direction n± to the element K±, and by ∂sϑ the
derivative of a function ϑ in one of the normal directions, n− and n+, of each side S we may
write ∑

K

∫
∂K

(∂nϑ)ϕ ds =
∑

S

∫
S

[∂sϑ]ϕ ds, (6.8)

where
[
∂sϑ

]
denotes the jump across the side S ⊂ ∂K defined by

[∂sϑ] = max
S∈∂K

{∂n+ϑ, ∂n−ϑ}.
A uniform distribution of each jump on to the two faces of a common side S for two adjacent
elements yields∑

S

∫
S

[∂sϑ] ϕ ds =
∑
K

1

2

∫
∂K

[∂sϑ]ϕ ds. (6.9)

Next we, formally, set dx = hKds and replace the integrals over the element boundaries ∂K

by integrals over the elements K to get∣∣∣∣∣∑
K

1

2
h−1

K

∫
∂K

[∂sϑ]ϕhK ds

∣∣∣∣∣ � C

∫
�

max
S⊂∂K

h−1
K |[∂sϑ]|K ||ϕ| dx, (6.10)

where [∂sϑ]|K = maxS⊂∂K [∂sϑ]|S . Now for the error e we recognize that we have

[∂se]|K = [∂s(q − qh)]|K = [∂sqh]|K. (6.11)

Assuming continuously differentiable ϕ, the sum involving the jumps [∂nϕ] vanish
automatically. Hence, using (6.11) the contribution from the boundary term involving ∂ne can
be estimated as∣∣∣∣∣∑

K

1

2
h−1

K

∫
∂K

[∂se]ϕhK ds

∣∣∣∣∣ � C

∫
�

max
S⊂∂K

h−1
K |[∂sqh]||ϕ| dx. (6.12)

Finally, substituting the estimate (6.12) into (6.7), we end up with

|(ψ, e)| � (|R̃|, |ϕ|) + C3(|∇�|, |e|) + δ(|∇ϕh|2, |e|) + C
(

max
S⊂∂K

h−1
K |[∂sqh]|, |ϕ|).

Next, we use the splitting

ϕ − ϕh = (
ϕ − ϕI

h

)
+

(
ϕI

h − ϕh

)
,

where ϕI
h ∈ Uh denotes an interpolant of ϕ, and using the Galerkin orthogonality (4.8) we

have

(|R̃|, |ϕ|) + C
(

max
S⊂∂K

h−1
K |[∂sqh]|, |ϕ|) �

(|R̃|, ∣∣ϕ − ϕI
h

∣∣) + C
(

max
S⊂∂K

h−1
K |[∂se]|, ∣∣ϕ − ϕI

h

∣∣).
(6.13)

Now, we use the following standard, elementwise, interpolation estimate:∥∥ϕ − ϕI
h

∥∥
Lp(K)

� Ch2
K‖D2ϕ‖Lp(K), p = 1, 2,∞. (6.14)
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We may approximate the second spatial derivative as, see [11],

D2ϕ ≈ [∂nϕh]

hK

. (6.15)

Substituting (6.15) in (6.14) yields an interpolation error as∣∣ϕ − ϕI
h

∣∣ � ChK |[∂nϕh]|. (6.16)

Inserting the estimates (6.11) and (6.16) in (6.13) we get

(|R̃|, |ϕ|) + C
(

max
S⊂∂K

h−1
K |[∂sqh]|, |ϕ|) � C(|R̃|, hK |[∂nϕh]|)

+ C
(

max
S⊂∂K

h−1
K |[∂sqh]|, hK |[∂nϕh]|).

In this way we have derived the following error representation inequality.

Lemma 6.1. Let ϕ be the solution of the dual problem (6.1), q the solution of (4.3) and qh

the FEM approximated solution of (4.4). Then the following error representation inequality
holds true:

|(ψ, e)| � (|R̃1|, |σ |) + (|R̃2|, |σ |) + C3(|∇�|, |e|) + δ(|∇ϕh|2, |e|), (6.17)

where the residuals are defined as

R̃1 := R̃(e) = �he − C1∇e − εe − δ�e − C2 k

n−1∑
i=1

∇ei, R̃2 = max
S⊂∂K

h−1
K |[∂sqh]|,

(6.18)

and the interpolation error is

σ = hK [∂nϕh]. (6.19)

Now we use, elementwise, the Hölder inequality and estimates of type (6.16) to obtain

|(ψ, e)| �
(|R|, ∣∣ϕ − ϕI

h

∣∣) + C
(

max
S⊂∂K

h−1
K |[∂se]|, ∣∣ϕ − ϕI

h

∣∣) + C3(|∇�| , |e|) + δ(|∇ϕh|2 , |e|)

�
∑
K

‖hKR‖L2(K)

∥∥h−1
K (ϕ − ϕI

h)
∥∥

L2(K)

+ |C3|
∑
K

‖∇�‖ ‖e‖ + |δ|
∑
K

‖∇ϕh‖2
L4(K) ‖e‖

+ C
(

max
S⊂∂K

h−1
K

)∑
K

‖hK [∂se]‖L2(∂K)

∥∥h−1
K (ϕ − ϕI

h)
∥∥

L2(K)

�
∑
K

‖hKR‖L2(K)

∑
K

‖[∂nϕ]‖L2(∂K) + C|C3|2
∑
K

‖∇�‖2
L2(K)

+
1

4
‖e‖2 + Cδ2

∑
K

‖∇ϕh‖4
L4(K) +

1

4
‖e‖2

+ C
(

max
S⊂∂K

h−1
K

)∑
K

‖hK [∂se]‖L2(∂K)

∑
K

‖[∂nϕ]‖L2(∂K)

� C ‖R‖L2(�)

∑
K

‖hK [∂nϕ]‖L2(∂K) + C|C3|2
∑
K

‖∇�‖2
L2(K) + Cδ2

∑
K

‖∇ϕh‖4
L4(K)

+
1

2
‖e‖2 + C

(
max
S⊂∂K

h−1
K

) ∑
K

‖[∂sqh]‖L2(∂K)

∑
K

‖hK [∂nϕ]‖L2(∂K) .
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Letting ψ = e we have proved the following a posteriori error estimate.

Theorem 6.2. Let ϕ be the solution of the dual problem (6.1), q the solution of (4.3) and
qh the FEM-approximated solution of (4.4). Then there is a constant independent of � and h
such that the following a posteriori error estimate holds:

‖e‖2 � Ch
[(‖R1‖L2(�) + ‖R2‖L2(�)

)‖σ̃‖L2(�) + h−1
(|C3|2‖R3‖2

L2(�) + δ2‖R4‖4
L4(�)

)]
,

(6.20)

where h = maxK(hK), R1 = R̃1(qh) = �hqh +C1∇qh−εqh−δ�qh−C2k
∑n−1

i=1 ∇qh,i ,R2 =
R̃2 is given in (6.18), σ̃ = [∂nϕh] and

R3|K := |∇�||K = ∇|Vn − Vn,h||K ≈ hK |D2Vn||K, R4|K := |∇ϕh||K ≈ hK |D2ϕ||K.

(6.21)

Note that using (3.9) and (4.14), we can estimate R3 in (6.21) as R3 = ∇|Vn − Vn,h| � 2ξ ∼
k ∼ h.

Alternatively, choosing ψ differently, we may formulate a posteriori error estimates as

Theorem 6.3. Let conditions of theorem 6.2 hold and ψ − δ |∇ϕh|2 = e. Then it follows
from this theorem that

‖e‖2 � Ch[(‖R1‖L2(�) + ‖R2‖L2(�))‖σ̃‖L2(�) + h|C3|2], (6.22)

where the residual R3 can be estimated as ‖R3‖2
L2(�) ≈ C�ξ 2 ∼ Ch2, see theorem 6.2.

Whereas choosing ψ := e+δ|∇ϕh|2 +C3|∇�| we get the following a posteriori error estimate

‖e‖2 � Ch(‖R1‖L2(�) + ‖R2‖L2(�))‖σ̃‖L2(�). (6.23)

6.1. Mesh refinement recommendation

Assume that conditions of theorem 6.3 hold. From this theorem it follows that the
computational mesh should be refined in such a subdomain of the computational domain
G where the computed values of the residuals ||R1||L2 + ||R2||L2 are maximal. Since these
values are then used for the computation of the coefficient function c(x), in numerical examples
we take maximal values of the computed coefficient as the criterion for the refinement of the
mesh.

7. The adaptive globally convergent algorithm

In this section we present our adaptive globally convergent algorithm using the mesh refinement
recommendation of section 6. To this approach, on each mesh we should find an approximate
solution qn of equation (3.5). We get qn as qn = limk→∞ qk

n , where k is the number of
iterations with respect to the tail function Vn(x, s̄); then, we use this function to reconstruct
the coefficient c(x) using the globally convergent algorithm, see [1, 2] for full details of this
algorithm.

Now, for each new mesh we first linearly interpolate the function ψ̄n on it, as is given
in (3.3), for every pseudo-frequency interval [sn, sn−1). This would enable us to solve the
equation for the function qn on a new, refined mesh. Next, on every mesh we compute
approximations cn of the function c(x) using the variational formulation of equation (2.6).
More specifically, equation (2.6) in the domain of interest G \ � can be written as

�wn = (sn)
2cn (x) wn, ∀sn � s > 0. (7.1)
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Finally, we use the finite-element discretization of this equation in order to get the function
cn, noting that the function wn is explicitly determined by wn = eVn , where Vn is computed
by knowing the function qn from (2.9) and (2.12). Thus, by backward computations we can
explicitly compute the coefficient function cn on every frequency interval (sn, sn−1) through
the finite-element formulation for (7.1). Note that to compute cn we use the assumption that
c(x) = 1 at the boundary of G \ �.

As outlined in [2, 3], in the globally convergent algorithm we iterate with respect to the
nonlinear term and tails. Let us denote approximations of functions cn obtained in the globally
convergent algorithm by ck

n, where n denotes the number of the pseudo-frequency interval and
k is the number of the iterations with respect to the tails. In this work we use the stopping
criterion for computations for ck

n as that of [14]. More precisely, we observe that the lower
boundary � of the square � is the most sensitive boundary to the presence of inclusions. We
derive this conclusion from numerical observations. Using figure 2 from the forward problem
solution we observe that the low boundary of the computational domain has more reflections
and thus more sensitive than other boundaries of the computational domain. This is because
our maximal contrast of the function was located closer to the low boundary than to other
boundaries of the computational domain.

So, if �h̃ = {
(x1, x2) ∈ � : x2 = −3 + h̃

}
, where h̃ is the mesh size in G \ �, then

calculating iterations with respect to the nonlinear term (see section 2 in [2]), we consider
norms Fk

n, namely

Fk
n = ||qk

n |�h̃
− ψn||L2(−3,3).

We stop the iterations with respect to the nonlinear term when

either Fk
n � Fk−1

n or Fk
n � η, (7.2)

where η = 0.001 is a chosen tolerance. In other words, we stop iterations, when either norms
Fk

n start to grow or are too small. Next, we iterate with respect to tails and use yet another
stopping criterion for computations of functions ck

n, and once again as in the procedure in [14],
we stop computing functions ck

n when

either Nn � Nn−1 or Nn � η, (7.3)

where

Nn = ||ck
n − ck−1

n ||L2(�)

||ck−1
n ||L2(�)

. (7.4)

We shall denote the stopping number k (on which these iterations are stopped) by mn.

7.1. A globally convergent algorithm

Below we briefly describe a globally convergent algorithm of [1–3] which we frequently use
in our computations below and in the adaptive globally convergent algorithm.

Step 0. n1, n � 1. First, iterate with respect to the nonlinear term. Suppose that the functions
q1, . . . , qn−1, q

0
n,1(:= qn−1) ∈ C2+α(�) and the tail function Vn,0(x, s) ∈ C2+α(�) are already

constructed. Then, we solve iteratively the following Dirichlet boundary value problems for
k = 1, 2, . . .:
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�qk
n,1 − A1n

⎛⎝h

n−1∑
j=1

∇qj

⎞⎠ · ∇qk
n,1 − εqk

n,1 + A1n∇qk
n,1 · ∇Vn,0

= 2
I1n

I0

(∇qk−1
n,1

)2 − A2nh
2

⎛⎝n−1∑
j=1

∇qj (x)

⎞⎠2

+ 2A2n∇Vn,0 ·
⎛⎝h

n−1∑
j=1

∇qj (x)

⎞⎠ − A2n

(∇Vn,0
)2

,

qk
n,1 = ψn (x) , x ∈ ∂�.

As a result, we obtain the function qn,1 := limk→∞ qk
n,1 in the C2+α(�).

Step 1. Compute cn,1 via backward calculations using the finite-element formulation of
equation (7.2).

Step 2. Solve the hyperbolic forward problem with cn(x) := cn,1 (x) ; calculate the Laplace
transform and the function wn,1 (x, s).

Step 3. Find a new approximation for the tail function

Vn,1 (x) = ln wn,1 (x, s)

s2 . (7.5)

Step 4. ni, i � 2, n � 1. We now iterate with respect to the tails (7.5). Suppose that functions
qn,i−1, Vn,i−1 (x, s)∈ C2+α

(
�

)
are already constructed.

Step 5. Solve the boundary value problem

�qn,i − A1n

⎛⎝h

n−1∑
j=1

∇qj

⎞⎠ · ∇qn,i − κqn,i + A1n∇qn,i · ∇Vn,i−1

= 2
I1n

I0

(∇qn,i−1
)2 − A2nh

2

⎛⎝n−1∑
j=1

∇qj (x)

⎞⎠2

+ 2A2n∇Vn,i−1 ·
⎛⎝h

n−1∑
j=1

∇qj (x)

⎞⎠ − A2n

(∇Vn,i−1
)2

,

qn,i(x) = ψn(x), x ∈ ∂�.

Step 6. Compute cn,i by backward calculations using the finite-element formulation of
equation (7.2).

Step 7. Solve the hyperbolic forward problem (2.1)–(2.2) with cn (x) := cn,i , compute the
Laplace transform and obtain the function wn,1 (x, s) .

Step 8. Find a new approximation for the tail function

Vn,i(x) = ln wn,i(x, s)

s2 .

Step 9. Iterate with respect to i until a convergence criterion as (7.4) is satisfied at i := mn.
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Table 1. Computational results for the globally convergent algorithm.

Iter., n cn,mn
Nn

1 1.26 0.032 4175
2 1.33 0.033 511
3 1.4 0.036 0971
4 1.48 0.050 9878
5 1.7 0.118 18
6 1.9 0.179 527
7 3.2 0.14
8 3.8 0.16
9 3.9 0.16

Step 10. Set

qn := qn,mn
, cn(x) := cn,mn

(x), Vn+1,0 (x) := ln wn,mn
(x, s)

s2 .

Step 11. Proceed with qn+1 until a stopping rule (7.3) is reached.

7.2. Adaptive globally convergent algorithm

We use the following adaptive globally convergent algorithm in our computations.

Step 0. Choose an initial mesh Kh in � and an initial time partition J0 of the time interval (0, T ) .

Compute an initial approximation c0
n,mn

using the globally convergent algorithm described

above on the initial mesh, see [1, 2] for details. Compute the sequence of c
j
n,mm

, where j > 0
is the number of mesh refinements, on adaptively refined meshes via the following steps.

Step 1. Compute the initial approximation for the tail function Vn(x, s̄) on a new mesh Kh in
the homogeneous medium or take initial tail as zero.

Step 2. Compute the finite-element solution q
j
n (x, s) of equation (3.5) on the refined mesh Kh

on the pseudo-frequency interval (sn, sn−1). Note that on this step we iterate with respect to
the nonlinear term and with respect to the tails as in the globally convergent algorithm on the
initial mesh above. Stopping rules for iterations with respect to the nonlinear term and tails
are given in (7.2) and (7.3).

Step 3. Update the coefficient c
j
n on Kh using the finite-element formulation for (7.2).

Step 4. Stop computing c
j
n and obtain the function c

j
n,mn

, using the criterion (7.4).

Step 5. Refine the mesh at all the points where

Ch (x) � β1 max
�

cj
n,mn

. (7.6)

Here, the tolerance number β1 ∈ (0, 1) is chosen by the user, see section 8.

Step 6. Construct a new, refined mesh Kh in � and a new time partition Jτ of the time interval
(0, T ) for computations of the forward problem. On Jτ the new time step τ should be chosen
in such a way that the CFL condition is satisfied. Next, return to step 1 and perform all of the
above steps on the new mesh.

Step 7. Stop mesh refinements if norms defined in step 4 either increase or stabilize, compared
with the previous mesh, see table 1 in section 8 for the details.
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Figure 1. The hybrid mesh (b) is a combinations of a structured mesh (a), where FDM is applied,
and a mesh (c), where we use FEM, with a thin overlapping of structured elements. The solution
of the inverse problem is computed in the square � and c(x) = 1 for x ∈ G��. (a) GFDM,
(b) G = GFEM ∪ GFDM, (c) GFEM = �.

8. Numerical studies

8.1. Computations of the forward problem

We are working with the computationally simulated data generated by computing the forward
problem with the given c(x). To solve the forward problem, we use the hybrid FEM/FDM
method described in [4]. The computational domain for the forward problem in our test is the
domain G = [−4.0, 4.0] × [−5.0, 5.0]. This domain is split into a finite-element subdomain
GFEM := � = [−3.0, 3.0] × [−3.0, 3.0] and a surrounding region GFDM with a structured
mesh, G = GFEM ∪ GFDM, see figure 1. We motivate our choice of using the hybrid method
by the following two reasons: (i) since we know that

c(x) = 1, in G��, (8.1)

therefore there is no need to have a locally refined mesh in G��, and (ii) since the
inhomogeneities are located inside �, it is natural to use a locally fine mesh in �, provided by
finite elements. The spatial mesh in � consists of triangles and in GFDM of squares with the,
compatible, mesh size h̃ = 0.125 in the overlapping regions. The boundary of the domain G
is ∂G = ∂G1 ∪ ∂G2 ∪ ∂G3. Here, ∂G1 and ∂G2 are respectively the top and the bottom sides
of the largest domain in figure 1 and ∂G3 is the union of left and right sides of this domain.
At ∂G1 and ∂G2 we use first-order absorbing boundary conditions, namely [10]. The trace of
the solution of the forward problem is recorded at the boundary ∂�. Next, the coefficient c(x)

is ‘forgotten’, and our goal is to reconstruct this coefficient for x ∈ � from the data g(x, t),

see (2.4).
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Thus, the forward problem in our test is

c(x)utt − �u = 0, in G × (0, T ),

u(x, 0) = 0, in G,

ut(x, 0) = 0, in G,

u(x, t) = f (t), on ∂G1 × (0, t1],
∂nu(x, t) = −∂tu(x, t), on ∂G1 × (t1, T ),

∂nu(x, t) = −∂tu(x, t), on ∂G2 × (0, T ),

∂nu(x, t) = 0, on ∂G3 × (0, T ),

(8.2)

where f (t) is the plane wave defined as

f (t) = (sin (st−π/2) + 1)

10
, 0 � t � t1 := 2π

s
, T = 17.8 t1.

Thus, the plane wave is initialized at the top boundary ∂G1 and propagates into G for
t ∈ (0, t1]. First-order absorbing boundary conditions [10] are used on top ∂G1 × (t1, T ]
and bottom ∂G2 × (0, T ] boundaries, and the Neumann or mirror boundary condition is used
on ∂G3 × (0, T ]. Figure 2 shows how the plane wave propagates for the structure given in
figure 4(a).

We compare our computational solution of the forward problem (8.2) obtained by using
finite element, finite difference and hybrid methods, with the analytical solution. We use
different meshes in order to select an optimal mesh size h in the computations. We define the
plane wave in (8.2) as

f (t) =

⎧⎪⎨⎪⎩sin (ωt) , if t ∈
(

0,
2π

ω

)
,

0, if t > 2π
ω

.

(8.3)

The analytical solution of the problem (8.2) with c = 1 is given by the following formula, see
[7]:

u (y, t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if t ∈ (0, a − y)

sin ω(t − a + y), if t ∈
(

a − y, a − y +
2π

ω

)
,

0, if t > a − y + 2π
ω

,

(8.4)

where y is the vertical coordinate and we consider equation (8.2) in the domain Ra =
{y < a}, a = const. � 0. In order to perform computations of the forward problem in
an optimal way, we need to choose optimal, computational parameters such as the mesh size
h and the time step τ . We compute the forward problem at every iteration in the globally
convergent algorithm (we shall need it for computing of the tail function V (x, s̄), see algorithms
in section 7). Thus, we want to reduce the computational time when computing the solution for
the problem (8.2) without losing the important information from this solution when solving the
inverse problem. Figure 3 presents comparison between the exact solution given by (8.4) and
the computed solutions for the problem (8.2), at different points of the computational domain
G when computing with different mesh sizes. We observe that exact and computed solutions
have main difference at the bottom of the computational domain G. The computed solution on
the mesh with the mesh size h = 0.05 approximates the exact solution more accurately, and
the computed solution with the mesh size h = 0.1 has twice smaller amplitude after the time
iteration. We tested the solution of our inverse problem on different meshes and it turns out
that the mesh size h = 0.05 gives a similar solution for the inverse problem as computations
on the meshes with mesh sizes h = 0.1 and h = 0.125. On the other hand, compared with
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(a) t = 7.5 t = 8.5

t = 9.6 t = 11.2

(b)

(c) (d)

Figure 2. Isosurfaces of the simulated exact solution to the forward problem (8.2) at different
times with a plane wave initialized at the top boundary.

the computations on the mesh with h = 0.125, computations on the mesh size h = 0.05 are
very much time consuming. Therefore, in computations below we use computations of the
forward problem on the mesh size h = 0.125.

8.2. Reconstruction by the globally convergent algorithm

In this numerical experiment we reconstruct the medium, where c (x) is defined as follows:

c(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 + 0.5

(
sin

(π

3
x
))2

· (sin(π/3)y)2, −3 � x < 0 and −3 � y < 3;

1 + 0.5
(

sin
(π

3
x
))2

· (sin(π/3)y)2, 0 � x � 3 and 0 � y � 3;

1 + 3.0
(

sin
(π

3
x
))2

· (sin(π/3)y)2, 0 � x � 3 and −3 � y � 0;

(8.5)
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(a)
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Figure 3. Exact and computed solutions of the equation using different methods: (a) comparison
of exact solution and computed solutions at the point (0.5, 3.7), which is located at the top of the
computational domain G; (b) comparison of the exact solution and computed solutions at the point
(3.0,−3.7), which is located at the bottom of the computational domain G.

see figure 4(a). Note that we have not assumed a priori knowledge of neither the structure of
this medium nor of the background constant c (x) = 1 outside of the medium �, but we have
assumed the knowledge of the lower bound c (x) � 1 and also that outside of the domain of
interest � our function c (x) = 1. This explains why our starting value for the tail function is
V1,1 (x) = s−2 ln w̃ (x, s) , where w̃ (x, s) is the function w (x, s) at s = s for the case c ≡ 1.

It was shown (see [1, 2]) that the interval
[
s, s

] = [6.7, 7.45] is the optimal one for the
domains G and �. We choose the step size with respect to the pseudo-frequency ρ = 0.05.
In our example we let N = 15 and choose regularization parameters λ := 20 in the Carleman
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s̄ = 7.4

s̄ = 5.4 s̄ = 4.9

(a) (b)

(c) (d)

Figure 4. Exact (on (a)) and computed (on (b), (c), (d)) coefficients c(x) using the exact computed
values of the tail function V (x, s̄).

weight function (3.4) and ε = 0.0 in (3.5) for n = 1, . . . , N . Once the function qn,k is
calculated, we update the function c := cn,k by backward calculations (see the algorithm in
section 7.1). The resulting computed function is cn,mn

:= cN(x). In our numerical test we
have considered the noisy boundary data gσ introduced by

gσ

(
xi, tj

) = g
(
xi, tj

) [
1 +

ςj (gmax − gmin)σ

100

]
.

Here, g
(
xi, tj

) = u
(
xi, tj

)
, where xi ∈ ∂� is a mesh point at the boundary ∂�, tj ∈ (0, T )

is a mesh point in time, ςj is a random number in the interval [−1; 1], gmax and gmin are
respectively maximal and minimal values of the computed boundary data g in (2.5) and
σ = 5% is the noise level.

Since we have (8.1), we set 2d1 = 1. Instead of using the extension procedure described
in the beginning of section 5 of [3], we simply set cn,k (x) := 1 in G \�. In addition, since by
(2.3) we need the a priori lower bound c(x) � d1, we enforce that the coefficient c(x) belongs
to the set of admissible coefficients Cadm = {c(x) � 0.5} as follows. If cn,k(x0) < 0.5 for
a certain point x0 ∈ � and a certain pair (n, k), then we set cn,k(x0) := 1. The only reason
why we use the value 1 in this setting is that we are supposed to know that condition (8.1) is
satisfied. Therefore, this setting as well as the fact that we allow the function c(x) to attain
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c5,3 c6,3

c7,1 c8,1

(a) (b)

(d)(c)

Figure 5. Results of the performance of the globally convergent algorithm of section 7.1. Spatial
distributions of some functions cn,k. The function c8,1 is taken as the final result. The maximal
value of c8,1 (x) = 3.8 within the maximal value of function (8.5). Also, c8,1 (x) = 1 outside of
this maximal value. Hence, the 3.8:1 inclusion/background contrast is imaged well (the correct
maximal value of function (8.5) is 4:1). However, the form of the imaged function is desirable to
be improved. This is why we apply the adaptive globally convergent algorithm, which takes the
function c8,1 for the refinement criterion (7.6).

values between 0.5 and 1 does not mean that we assume the knowledge of the background
value of the function c(x). In principle, this constraint cannot guarantee either the continuity
of the resulting function cn,k (x) or that cn,k (x) � 1. Nevertheless, we have observed in our
numerical tests of this publication and in [3, 4, 5] that all resulting functions cn,k are continuous
and cn,k (x) � 1 for all x, i.e. ‘allowed’ values between 0.5 and 1 are not actually attained in
iterations.

Figure 5 displays results of the performance of the globally convergent algorithm. One
can see that the location of the maximal value of the function (8.5) is imaged very well. It
follows from figure 5(d) that the imaged contrast in this function is 3.8:1 = max c8,1:1, where
n: = N = 8 is our final iteration number (see below for the choice of N ). However, the
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Table 2. Set of admissible parameters in different tests.

Test 1 c ∈ P = {c ∈ C(�)|1 � c(x) � 8}
Test 2 c ∈ P = {c ∈ C(�)|1 � c(x) � 5}
Test 3 c ∈ P = {c ∈ C(�)|1 � c(x) � 16}

values of 1 + 0.5(sin( π
3 x))2 · (sin(π/3)y)2 in (8.5) are not reconstructed but are smoothed

out. Thus, we are able to reconstruct only maximal values of the function (8.5). Comparison
with figure 4(a) reveals that it is desirable to improve the shape of the function. This explains
why we decided for the subsequent application of the adaptivity technique inside the globally
convergent algorithm.

Using table 1, we analyze results of our reconstruction. We observe that the norms Nn in
criterion (7.4) increase until computing the function q6. Next, these norms slightly decrease
and stabilize for n = 8, 9. For n = 10, . . . , 15 the norms grow steeply; these cases are not
presented in the table. Thus, we conclude that we should stop our iterations at N = 8. So,
we take the function c8,1 := cglob as our final reconstruction result on the globally convergent
stage.

8.3. Reconstruction by the adaptive globally convergent algorithm

In this subsection, we demonstrate the performance of the adaptive globally convergent
algorithm given in section 7.2. The question we discuss now is how to choose the tolerance
number β1 in (7.6). If we choose β1 ≈ 0, then we will refine the mesh in almost the entire
domain �, since the function cn,mn

> 0. We note that our goal is to construct a new locally
refined mesh with as few nodes as possible. The parameter β1 cannot be taken too close to 1
either, since then the automatic adaptive algorithm would come up with a too narrow region,
where the mesh should be refined. Thus, the choice of β1 depends on concrete values of
the function Ch(x) and should be chosen in numerical experiments. So, we take β1 = 0.6
on the initial coarse mesh and for all follow-up refinements of the initial mesh, and refine
the mesh at the all points located in the circle with the center at max� c0

n,mn
and with radius

r = β1 max� c0
n,mn

.
In the adaptive algorithm we can use box constraints for the reconstructed coefficient.

We obtain these constraints using the solution computed in the globally convergent method.
Since the function cglob = c0

n,mn
obtained in the globally convergent algorithm is a good

approximation for the correct solution, and cglob (x) ∈ [1, 3.8], we can enforce the coefficient
c(x) to belong to the following set of admissible parameters c ∈ P = {c ∈ C(�)|1 � c(x) �
5}. We use this set in test 2; see table 2 for other two set of admissible parameters. To check
the accuracy of the adaptive globally convergent method, we decided to check three different
sets of tests.

In all three tests, we start with the function cglob(x) on the initial coarse mesh shown in
figure 5(d), use it in criterion (7.6) and refine the coarse mesh. Then we perform all steps of
the adaptive globally convergent algorithm to obtain the function c1

n,mn
. We analyze the results

of this reconstruction by using table 3.

8.3.1. Test 1. We observe that after one refinement of the mesh the norms Nn in criterion
(7.4) are first stabilized until computing the function q4, see table 3. Next, these norms slightly
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Table 3. Computational results for the adaptive globally convergent algorithm.

Test 1 Test 2 Test 3

Iter., n c1
n,mn

Nn Iter., n c1
n,mn

Nn Iter., n c1
n,mn

Nn

1 1.6 0.05 1 1.87 0.038 1 1.6 0.38
2 1.5 0.04 2 1.43 0.09 2 1.5 0.09
3 1.6 0.05 3 1.48 0.13 3 1.6 0.13
4 1.6 0.05 4 1.53 0.16 4 1.6 0.16
5 1.7 0.16 5 1.59 0.2 5 1.7 0.2
6 1.6 0.16 6 1.6 0.2

Iter., n c2
n,mn

Nn Iter., n c2
n,mn

Nn Iter., n c2
n,mn

Nn

1 1.9 0.08 1 2.45 0.04 1 1.9 0.04
2 3.99 0.34 2 4.0 0.25 2 3.99 0.5
3 3.99 0.33 3 4.0 0.25 3 3.99 0.5
4 3.99 0.33 4 4.0 0.25 4 3.99 0.44

5 3.99 0.38

Iter., n c3
n,mn

Nn

1 2.25 0.04
2 3.8 0.16
3 3.9 0.16
4 4.0 0.16

increase and again stabilize on n = 5, 6. For n = 7, . . . , 10, these norms grow steeply (which
are not presented in the table). Thus, we conclude, that we should stop the iterations at N = 1.
So, we take the function c1

1,4 as our final reconstruction result on the first iteration of the
adaptive refinement procedure. Comparing figures 5(d) and 6(b) shows that the image has not
improved significantly, compared to the one obtained on the globally convergent stage.

Next, we refine the mesh locally, again using the criterion (7.6) and the same function
cglob(x) as shown in figure 5(d), and perform the algorithm of section 7.2. One can see in
figure 6(f) that we are able to accurately reconstruct location, shape and contrast of the maximal
values of the function (8.5). The value of the coefficient c(x) = 1 outside of the support of
the function (8.5) is also imaged very well. Using table 2, we analyze again results of our
reconstruction on a twice refined mesh. We observe that the norms Nn in the criterion (7.4)
increase very fast until computing the function q2. Then, these norms are stabilized on steps
n = 2, 3, 4. For the steps n = 5, . . . , 7, the norms grow steeply; we do not present these
norms in the table. Hence, we conclude that one should stop the iterations at N = 2. So, we
take the function c2

2,1 as our final reconstruction result on twice adaptively refined mesh.

8.3.2. Test 2. In test 2 we take the maximal value in the set of admissible parameters for c
to be c = 5, see table 2, which is close to the globally convergent solution obtained on the
coarse mesh. We observe that after one refinement of the mesh the norms Nn in the criterion
(7.4) reaches a maximal value at q1, and then they grow until computing the function q5, see
table 3. This time, for n = 6, . . . , 10, the norms grow rapidly, which and are not presented
in the table. Thus, we conclude that we should stop our iterations at N = 1. So, we take the
function c1

1,1 as the final reconstruction result on the first adaptively refined mesh. This time
the images are not improved and we have not presented them in here.
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stnemele0574 c1,4

stnemele2105 c2,1(c) (d)

(b)(a)

Figure 6. Test 1: adaptively refined meshes (a), (c) and corresponding images (b)–(d) using the
adaptive globally convergent algorithm of section 7.2. In this test we choose the set of admissible
parameters for the coefficient c ∈ P = {c ∈ C(�)|1 � c(x) � 8}. Locations of maximum
value of the function (7.6) as well as shape and 4:1 contrasts in them are imaged accurately, see
the details in the text and compare with figure 6(d).

Next, we refine the mesh locally again, as in test 1, we observe in figure 7(b) that we are
able to very accurately reconstruct location, shape and contrast of the maximal values of the
function (8.5). We observe that the norms Nn in the criterion (7.4) increase very fast until
computing the function q2. These norms are stabilized on n = 2, 3, 4. For n = 5, . . . , 7, the
norms grow rapidly and are not presented in the table. Thus, we stop the iterations at N = 2,
and hence, we take the function c2

2,1 as our final reconstruction result on the twice adaptively
refined mesh. This result is similar to the results of test 1; the contrast here is better and very
much closer to the exact one.
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stnemele8105
c2,1

c3,2 c4,2

(a)
(b)

(c) (d)

Figure 7. Test 2: adaptively refined mesh (a) and corresponding images (b)–(d), using the adaptive
globally convergent algorithm of section 7.2. In this test we choose set of admissible parameters
for coefficient c ∈ P = {c ∈ C(�)|1 � c(x) � 5}. Locations of maximum value of the function
(7.6) as well as shape and 4:1 contrasts in them are imaged accurately, see details in the text and
compare with figure 6(d).

8.3.3. Test 3. In this last test we take the maximal value in the set of admissible parameters
for c to be c = 16, see table 2, that is very far from the exact one. Our goal now is to check
whether we get reconstruction results similar to previous ones. We observe that, after first
refinement of the mesh, we get similar results as the previous tests and the images are not
improved.

Next, we make a twice refinement of the mesh using the criterion (7.6). One can see in
figure 8(b) that we are still able to reconstruct location, shape and contrast of the maximal
values of the function (8.5), but not as accurately as in the previous tests. The value of the
coefficient c(x) = 1 outside of the support of the function (8.5) is also imaged well. Using
table 3, we analyze again results of our reconstruction on the two times refined mesh. We
observe that the norms Nn in the criterion (7.4) increases very fast until computing the function
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stnemele8105 c2,1

c3,1 c5,1

(a) (b)

(d)(c)

Figure 8. Test 3: adaptively refined mesh on (a) and corresponding images on (b)–(d), using the
adaptive globally convergent algorithm of section 7.2. In this test we choose a set of admissible
parameters for the coefficient c ∈ P = {c ∈ C(�)|1 � c(x) � 16}. Locations of maximum
value of the function (7.6) as well as shape and main contrast 4:1 in them are imaged accurately,
see the details in the text and compare with figure 5(d).

q2 and then they have a similar behavior as in previous tests. So, we take the function c2
2,1 as

our final reconstruction result on the two times adaptively refined mesh.

8.4. Conclusion of numerical experiments

Summing up, we can conclude that the location, shape and maximal contrast of the
reconstructed function compared to the background medium can be reconstructed accurately
using the new adaptive globally convergent algorithm. Our numerical experiments show that
the contrast of the reconstructed function and that of the exact one would be the same if we
take the maximal value in the set of admissible parameters close to the exact one, and almost
the same as in the exact function if we take maximal value in the set of admissible parameters
far from the exact one. This shows the flexibility of our adaptive algorithm and can be used,
for example, in the globally convergent algorithm using convexification algorithms, when
locations of inclusions are well reconstructed, but contrast needs to be improved [16].
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We also note that we tested a two-stage numerical procedure developed in [2, 3] on
reconstruction of the function (8.5) and we get similar results of reconstruction as thus obtained
in section 8.3, see figures 6–8. Thus, we have a very good agreement between the exact data
and the numerical experiments. Our future work will be concentrated on the application of the
adaptive globally convergent numerical method for the accurate reconstruction of the shape
and the contrast of the inclusions.
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