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L, AND EIGENVALUE ERROR ESTIMATES FOR THE DISCRETE
ORDINATES METHOD FOR TWO-DIMENSIONAL

NEUTRON TRANSPORT*

MOHAMMAD ASADZADEH?

Abstract. The convergence of the discrete ordinates method is studied for angular discretization of the
neutron transport equation for a two-dimensional model problem with the constant total cross section and
isotropic scattering. Considering a symmetric set of quadrature points on the unit circle, error estimates are

derived for the scalar flux in L, norms for <=p <_-oe. A postprocessing procedure giving improved L
estimates is also analyzed. Finally error estimates are given for simple isolated eigenvalues of the solution
operator.
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Introduction. In this paper we study the convergence of the Nystr6m discrete
ordinates method for angular discretization of the neutron transport equation for a
two-dimensional model problem. We extend the L2 error analysis of [9] to L, norms,
1-< p . We also analyze a postprocessing procedure and obtain improved rates of
convergence in L for the postprocessed solution. Further we derive error estimates
for isolated eigenvalues with algebraic multiplicity one.

These studies contain the following important aspects.
(1) Studying L estimates is of practical interest because the eigenvalue estimates

are based on L results. To derive L estimates [he function spaces involved are
interpolation spaces but not Sobolev spaces. Working with the interpolation spaces
on the topic of the neutron transport equation is new.

(2) L, being the strongest norm, is the one we are most motivated to consider;
however, we should expect lower rates of convergence than in the L case. Previous

L results have been without rates of convergence. In this paper we derive L rates
of convergence and employ a postprocessing procedure to improve these rates and
obtain L error estimates with the same rates as in L1.

(3) The classical techniques in [6] and [17] are not useful in deriving eigenvalue
error estimates for this problem. This depends on the behavior of the operators involved
in the problem. A new functional analysis approach has been made to show the equality
of the dimensions of some eigenspaces.

The steady state one-velocity process of transport of neutrons in a substance
surrounded by vacuum can be formulated as follows. Given the source f and the
coefficients ce and or, find the angular flux u satisfying

tx. Vu(x, tx)+ ce(x)u(x, /x)= fs or(x, tx, rl)u(x, rl) drl+f(x, tx),

(0.1) (x,/x)fS2,

u(x,/z) 0 for x F {x F:/x. n(x) < 0},

where is a domain in R3, F =0f, S2 is the unit sphere in R3, n(x) is the outward
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unit normal to F at x F, and

i= OXi

In the discrete ordinates method the integral in (0.1) is replaced, using a quadrature
approximation, by a discrete sum involving a finite set of directions. L convergence
of the discrete ordinates method for a two-dimensional problem is studied, e.g., in
11 ], and for a three-dimensional problem in 19] with no convergence rates. Combined

spatial and angular discretizations in the slab case are studied in [14], where error
estimates are derived for both the scalar flux in Lp norms, _-< p-<_ oe, and for critical
eigenvalues. In [9] an L analysis of a fully discrete scheme for a two-dimensional
model problem is carried out, where the discrete ordinates method for the angular
variable is combined with the discontinuous Galerkin finite element method for the
spatial variable. In [2] the results of [9] are extended to a case where the angular
variable varies on the unit disc in R2 while the spatial variable remains two-dimensional
as in [9]. This corresponds to the three-dimensional problem (0.1) with being an
infinite cylindrical domain where all functions involved are assumed to be constant
along the axis of the cylinder.

An outline of this paper is as follows. In we present a two-dimensional model
problem obtained by taking, in (0.1), xfc R2, S={/ R2: I/xl 1}, c-= 1, and
or--- A, and we reformulate this problem as a Fredholm integral equation of the second
kind with a compact integral operator T. In 2 we formulate a semidiscrete analogue
of the model problem by applying a quadrature rule and we note that the semidiscrete
analogue can also be formulated as an integral equation involving a certain operator
TN, where N indicates the number of quadrature points. We prove that our integral
operator T is self-adjoint in L2() and assuming a symmetric distribution of the
quadrature points this is also true for the approximate operator TN. In 3 we derive

L, error estimates, 1-<p <oe, for the semidiscrete problem. We also prove that if
A-1 o-(T) and N is sufficiently large then -1 o-(T), where r(T) denotes the
spectrum of T. Section 4 is devoted to a postprocessing procedure giving improved
rates of convergence in L for the scalar flux. In 5 we prove error estimates for the
corresponding approximation of simple isolated eigenvalues of our integral operator
T. In the concluding 6, we give some numerical results testing the analysis of 3
and 4.

1. A model problem. We will consider the following two-dimensional model prob-
lem. Given a function f and a parameter A, find u(x, i) such that

t..Vu(x,t.z)+u(x, tx)=A [-_u(x, ) d,7+f(x), for (x,/x)axS,
(1.1)

u(x, x) 0 on I’ {x I’: x. n(x) < 0},
where f is a bounded convex polygonal domain in R with boundary F, S is the unit
circle and n(x) is the outward unit normal to F at x F.

When we introduce the scalar flux

(1.2) U(x) fs u(x, ’7) drl,

(1.1) takes the following form:

(1.3)
tx" Vu(x, tx)+ u(x, ) (h U +f)(x),

u(x, tx)=O on F.
(x,,)xS,
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Introducing the solution operator T, for the equation Ix. V u + u g, in ft, u 0 on

F,, given by

(1.4)
d(x,.)

T,g(x) e-g(x six) ds,
.io

(1.7)

where

(1.8) T fs T dix.

When we use (1.4), it is easy to see that

(1.9) Tg(x) f e-iX-yl

Ix-yl
g(y) dy.

Thus, T is an integral operator with weakly singular kernel, and hence, T is a compact
operator on Lp(f), 1 <__p<=oo. Consequently, (1.7) is a Fredholm integral equation of
the second kind (see, e.g., [18]).

Let us introduce some notation to be used below. For 1-<p_-<oo, we denote by
%(K) the spectrum of an operator K:Lp()Lp(), defined by o-p(K)=
{z’(K-zI) is not invertible as an operator on .(a}. I1"11 and II’llw;’, m a

positive integer, denote the usual Lp norms and the Sobolev norms of order m,
respectively. I1" lip will also denote the operator norm I1(,,, on g(a). C will denote
positive constants, not necessarily the same at each occurrence, independent of the
parameters N and e. Note that since o-p(T) is independent of p, below we will use the
notation or(T) instead of %(T).

We will assume that the parameter ,-1 does not belong to o-(T). Then for 1 _-< p _-< oc,
(I-,T):Ln()- L,(D.) is invertible, Range (/-aT)= L(a), and there is a constant
C such that II(I-AT)-’II. < C, l_-<p_-<oo. In particular

Hence the integral equation (1.7) has a unique solution U (I- A T)-Tf
2. The quadrature rule. Let Q QN {IX1, ", IXN} be a set of points on the unit

circle S with the property that if IX Q then -ix Q. Consider the quadrature rule

(2.1)

where co, 2r/N. Other standard quadrature rules for the neutron transport equation
are discussed by Lewis and Miller in [10]. For the semidiscrete approximation of the
scalar flux, we set

(2.2) UN(X) uN(x, Ix)to,,

with

(1.5) d(x, Ix) =inf{s > 0:

we can write (1.3) as

(1.6) u(x, IX) T,(AU+f)(x),
Integrating (1.6) over S, we get the following equation for the scalar flux U:

(I-T)U= Tf,
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with UN (X, IX) satisfying

(2.3) uN(x, IX)= T,(hUN+f)(x), xa, IXQ.

Multiplying (2.3) by w, and summing over Q we obtain the integral equation

I A Tu Uu Tuf(2.4)

where

(2.5)

For the error in the quadrature (2.1) we have the following estimate (see, e.g.,
[7]). For k 1, 2, there exists a constant C such that

(2.6a) u(x, Ix) dIx E u(x, Ix )w, < (x, da,
Q Ok

where (cos a, sin a). Also

.m.O asmax ,e 0,

where for e > 0 the sum (.,o is split as follows:

(,u)e O (,u) I’

with

i, {(, u) Q2: min (sin y(p, u), sin y(p, d,), sin y(u, d,))e,n= 1,2,..., Po}

and

Q’,
where Y(, u) is the smallest angle between and u, d, n 1, , Po, are the directions
of the sides of , and Po is the number of sides of .

Next we recall a result of Anselone 1]. We then show that the continuous integral
operator T is self-adjoint in L2() and that T is self-adjoint in L2(), since -p Q
ifQ.

PROPOSITION 2.1. Let lp and let T:L()L() be a bounded linear
operator such that for some positive constant C, (1.10) is valid, i.e.,

and let {TN}= be a unifarmly bounded sequence of linear operators on Lp() such
that for some positive integer m,

(2.7) II(r- r)rll0 as N.

en there is a positive constant C such that for N large enough

In the sequel T* denotes the adjoint operator of T: L() Lp().
LEMMA 2.1. e integral operators T and TN are self-adjoint on L2().
Proof Recalling the representation (1.9) of T,

Tg(x) f -Ix-y[
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we have for f, g L2()),

)Tf g)= Tf(x)]g(x) dx i-x_ y f(y) dy g(x) dx

and

(f Tg)= f f(x)[Tg(x)] dx= f (I e-’X-Y’ )Ix_y g(y)dy f(x)dx,

which proves that T T*. When we use (2.5), the adjoint of TN is

v* y *T. oo..
eQ

Moreover,

e-L"f(x-sl) ds)g(x) dx.

Making the substitution y x s/x, we note that as s varies, y varies on the line segment
[g, x], g=x-d(x, lx)lx. Thus for a giveny we have s=lx-y] with xeff’lL.(y),
where L.(y) is the half-line parallel to /x starting at y. Hence by the definition (1.5)
of d, and since 0 _-< s _-< d (y, -/x),

f f(T.f g)= e-f(y)g(y- s(-tx)) ds dy (f T_.g),
dO

so that

(2.9) T* T_..
Multiplying by w. and summing over/x Q, we obtain T* TN, since x Q implies
-Q.

Note that by (1.4) we have the following stability estimate for the solution operator

<el gll, l<p<.

3. L error estimates. In this section we extend the L2 error estimates for the
discrete ordinates method of [9] to Lp norms, 1 p < . Our main result is Theorem
3.1. We also prove, using Proposition 2.1, that if - (T) then for p the
operator (I-Tu)’L()LR() is invertible if N is large enough and thus (2.4)
has a unique solution Uu Lp().

Observe that the maximum regularity of the scalar flux U, what we can expect in
general, is U Wp() for p < and U 6 W-() for 6 > 0 (see [13]). Theorem
3.1 is stated accordingly. Here W-() is defined by the K method of interpolation
(see Bergh and L6fstr6m [5]).

THEOREM 3.1. Suppose that - (T) and let 1 p < . Let U be the solution of
(1.7). en there exists an integer N such that (2.4) has a unique solution Uu L()

()for N N. Further, there is a constant C such that for N N andf
(3.1) U- u I,
ere exists a constant C and for all 0 > O, there exists > 0 such that for N Na and
f w-(),

The proof of Theorem 3.1 is based on the following two results.
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LEMMA 3.1. For 1 <= p < oo there is a constant C C(p) such that for g W(fl),

(3.3)

Further there is a constant C such that for g W(O),

(3.4) I1( T- TN

LEMMA 3.2. IrA -1 tr(T), then for 1 <-_ p <= oo there is an integer N and a constant
C such that for S >= N, I(I AT) ’ll 

Let us postpone the proofs of these results and first show that Theorem 3.1 follows
from them.

Proof of Theorem 3.1. We have, using (1.7) and (2.4),

U U ATU+ Tf- ATU Tf

A(T- T)U+AT(U- U)+(T- T)f,

and thus

(I-ATu)(U- UN) (T TN)(AU+f).

Hence using Lemma 3.2 and (3.3), with g= AU+f, we can verify (3.1). Interpolating
between (3.3) and (3.4), we obtain (3.2).

Below q,.--qg(a) will denote the angle between the direction of the jth side of
and /.t (cos a, sin a). In the proof of Lemma 3.1, we will use the following lemma.

LEMMA 3.3. For 1 <= p < oo there exists a constant C such that if u(x, tz) Tug(x),
then for g

(3.5) (.,a)

Further there is a constant C such that for g W(f),

(3.6) -< C(min Isin 49(a)1)-’ Igll ,.).

Proof By the same argument as in the proof of Lemma 4.4 in [9], we have

u(x, a e-g(x stx) ds,

where d (x, c) d (x,/x), so that

(x’t*) 00 .(x,.) O___d(x,a) + e-,s__(3.7)
Oa

u(x, a)= e- g()")
Oa Otx

g(x-slx) ds.

Here x-d(x, a)/, e F and/x’= (sin a,-cos a) is orthogonal to/.t. Further,

(3.8) d(x, a)=
aj(x)

s,n qg(c)
for x e f,., {x e : )Z, e &},

where the Sj is a side of f, g0(a) the angle between S./and/x, and ai(x) is the distance
from x to the straight line given by Si. Hence raising the absolute values of both sides
of (3.7) to the power p, integrating over ,,., using an orthogonal coordinate system
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(1, :2) with the :1 axis along S, and the fact that the boundedness of implies
a(x)<=C[sin 4’[ and thus [(O/Ooe)d(x, a)l-<_ Clsin q,[-1 for x .,, we get

--u(x,a) dxC g()sin-dd+ ]Vg(x)ldx
,

Recalling the trace estimate

we have summing over j,

(3.9)
p

Finally we complete the proof of (3.5) by integrating with respect to . To prove (3.6)
we differentiate (3.7) and (3.8) to get

(0 )2 02dOu
(x,(3.0)

e_,. Od ’) 02
+ 2

Oa
g(")

Oa
(x, a)+ L

e
O

g(x-s) ds

and

02
(3.11)

Oa 2 d(x, a) aa(x)(1 +cos +)
sin qa

so that by the same argument as in the proof of (3.5),

I 02 IIS I0’sin ’’ [-2u(x,a) dx<=C (Igl+Vgl) d, Isinj d2+lgwm}
,, 02

Using the trace estimate once more and summing over j, we get

2
(3.12) u(. ) C(minsin2

L(*)

and the proof is complete.
Proof of Lemma 3.1. Writing u(x, ) Tg(x) with (cos , sin ) and using

(2.6a) with k 1, we have
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and (3.3) then follows from (3.5). To prove (3.4) we define for k 1,..., N,

Ik= N

and let Aj be the union of the Ik containing the direction of S. and the adjacent
closest to the direction of Sj. Let

Po
So=U Aj,

j=l

and

Oo 0 71 So.
We have, using (2.6a), (3.6), and (3.9),

II(T-- TN)glJL,(a)<=lly
s

T,g(.) dtx- . T,g(.
kSo OkOo L()

Oo LI

=N 5 d+ d

=NZ (minsin 0()[)-1 d IIg V()+ISol
So

<C C
N2 (log N)[IX[ w(a+ [Sol [Igl[

where ISol is the length of So. Since ISol 1/N we obtain the desired result.
Let us now turn to the proof of Lemma 3.2. We want to prove for 1 N p N that

if h- (T) and N is sufficiently large depending on h and p, then (I-ATu) is
invertible as an operator on Lv(). Lemma 3.4 below together with Proposition 2.1
implies that (I h Tu) is one to one. To show that it is also onto we will use Proposition
3.1 below (see Rudin [16, Thm. 4.15, p. 97]). Note that TN :Lv(a) Lp(a) is not
compact.
LA .4. II(T- T)r%ll0, as N, 1NpN.
PRoposiwo 3.1. Suppose X and Y are Banach spaces and F is a bounded linear

operator from X into Y; then

(a) Range (F)= Y

if and only if there exists a constant C such that

(b) Ilg*y*ll Clly*l] for y* g*.

Proof of Lemma 3.2. It remains to prove that Range (I-ATe)= Lv(a). Hence it
suffices to prove (b) in Proposition 3.1 with F replaced by (I- h T). Now Proposition
2.1 applied to T*, where

and the same argument as in the proof of Lemma 3.4 below yield
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Thus the conclusion of Proposition 2.1 holds for the adjoint operator T*, i.e., there
exists a constant C such that (b) in Proposition 3.1 is valid with F* and y* replaced
by (I-,TN)* and v*, respectively. Observe that since Loo is not a reflexive Banach
space, the conclusion II(I-ATN)-IlIpC is only valid for l=<p<oo. However, the
constants involved in Proposition 2.1 as well as in this proof are independent .of p.
Thus letting p- o we also obtain the result for p 00.

The proof of Lemma 3.4 is based on (3.3) and the following lemma.
LEMMA 3.5. There is a constant C such that if (it, ,) I’ and g

then

Remark 3.1. Note that the operator Tu regularizes in the direction It and thus
for two nonparallel directions It and v, we have that TuTv regularizes in all directions
(with a constant depending on the smallest angle between It and z,). In the proof of
Lemma 3.4, we will use this regularizing property of Tu to show that T can be split
as

T2 AN + BN,

with AN Lp() Wp’()’, i.e., AN is compact, and {IBNII-O, as N-c.
Proof of Lemma 3.4. For 1-<p< oo we have, using (3.3), Lemma 3.5 and (2.10),

(U, Lp(-
C2’wwN- LTg[[ wl, +CE]]g]] ,,
C(y-e-2+/P+)[[g]],,.

Now taking e N- with 6 <p(p- 1) -1 and using (2.6b), we obtain the desired result.
For p , instead of (3.3), we use Lemma 4.1 below and the proof is complete.

In the proof of Lemma 3.5 we will refer to the following result.
LEMMA 3.6. ere is a constant C such that

Proof It suffices to give the proof with F replaced by F’= {x F" n(x).it # 0}.
Let p= 1. For xF’, we have d(x, it)O, and if O<-_s<=d(x, it) then x-sit
[x,x-d(x, it)it]. Thus using (1.4) and Fubini’s theorem, we find that

]Tug(x)] In" It[ dcr e-g(x sit) ds In.

<= e Ig(x sit )] [n. It] do" ds

For p oo we have

supl Tg(x)l In"/1- sup
xU’ xl"

e-g(x-sit) ds
o

sup Ig(x)l.

Interpolating between p 1 and p c we obtain the desired result.
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ProofofLemma 3.5. By an orthogonal coordinate transformation we may assume
that Ix (1, 0). Since (ix, v) I’ we have by (2.10),

(3.13)
0

Replacing g in (1.4) by Tg gives

(3.14)
0

0-- T"Tg(x)) e-a(’")Tg() O__Ov d(x,
where =x-d(x,ix)ix. It is easy to verify that

Od n.v
v.V,d(x, Ix)-(3.15)

Ov n. ix

where n (nl, n2) is the outward unit normal to F at . Raising the absolute values of
both sides of (3.14) to the power of p and using the facts that dx2 Ix. n d on F and

1. n e we find that

0
(LTg) NCe -’+lIp ITglPln’ld

Lp

where we have also used (2.10). Thus by Lemma 3.6 and (3.13)

Further by (2.10), IILrgll,,.,) CIIg[l,,.,)and the proof is complete.

4. Iterative improvement. In the previous section we have proved, with maximally
() for 1 <available regularity of the scalar flux U, i.e., U We =p <

W-() with B > O, that

(4.1) U- UUIIL,,m)<= CN-’,
and

(4.2) u UN L,() CN-+,
where C depends on 0 and p. Further for 0 > 0, we have from (4.1) (see also Lemma
4.1 below) that

(4.3) U- g )CN-I+.

In this section we will prove that it is possible by a simple postprocessing to
produce an improved solution U*N for which

(4.4) u- u Lo() CN-e+,
that is, for which the rate of convergence of U*N in L is the same as the rate in L
for the original solution UN.

The postprocessed solution U*N is defined as follows"

(4.5)

where

(4.6)

U* TM ,tU +f),

U+’) TM(AU)+f), k=0,1,2,. .,

x’ 0
IX + e- T.g(x six )) ds,

Ov
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and M- N2. Thus we compute U* =- U by applying the operator TM three times
with M --/N/z, starting from the original solution UN. The postprocessed solution
should be compared with the solution UM of the coupled problem

(4.7) U4 TM h U4 +f
By (4.3) and (4.4) we have for both U*N and U the same rate of convergence (M-+)
in Lc,(f), since M =/N/2. To find U4 requires the solution of a large coupled problem
(4.7), while to compute U*N we only have to solve the smaller coupled problem (2.4)
and then in (4.6) apply the operator T a few times. Hence we expect to be able to
compute U* with less work than UM. Note that U* may be viewed as an approximate
solution of (4.7) obtained after three fixed-point iterations starting with UN.

Postprocessing procedures ofthe form (4.5)-(4.6) have been considered in practical
computations and an example is discussed in [11, VI]. In particular the hope is to
decrease in this way the so-called ray effects for media in which absorption dominates
scattering.

To estimate U-U*NIIoo we use (2.4) and (4.6)to obtain

and

U= ,TU+ Tf , T ATU + Tf + Tf,

U A TtU + T4f ATe4 (hTtc 4 + Tuf + Tuf
We now split U-U U-U as follows:

U- U=(T- Tu)f+ AT(T- Tu)f+ A(T- Tu)Tuf+ AT(T TM)TMf

+ A( T- Tu Tf+ 3T( T- T TuTNf+ 3( T- Tu T TNf
(4.8)

+ A4T(T TM)TMTNUN + A4(T T4)T TNUN + A2T2( U- Ut))

:= E !if+ R, TuTNUN + R2 TuTNUN + ATZ( U- U)),

with the obvious meanings of , j= 1,2,...,7 and R, i= 1,2. Now taking the
L()-norm of both sides of (4.8), we have

(4.9) u-
j= i=1

Here the quantities [lf Ira(n), j 1, , ?, will be estimated using Lemma 4.1 below.
For [IR,TMTNUNIIL<>, i= 1,2, we will use Lemma 4.2. The last quantity, [IT(U-
U))]]r(a) will be handled using the fact that T is regularizing in the sense that for
> 0, T" L+() L(). In the proof of Lemma 4.2 we will use the following

splitting with e 1/M"

where

L {(p., v) 0 x ON" min (sin y(/x, v), sin y(/x, dn)) --> e, n 1,. ., Po},

J’ QM x

27r 2r
cO.-M and co- N
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We recall that, as in the previous splitting, y(/x, ,) is the smallest angle between
and ,, Po is the number of sides of ), and dn are the directions of the sides of

Now we are prepared to state the main result of this section.
THEOREM 4.1. Suppose that A--I o’( T) and let O> O. Then there exist constants

8 > O, " > O, CA and NA such that for N >= NA and M N2,

[IU- U*N][/( -< CA N2_0+-(log N)

where g U +f.
The proof of Theorem 4.1 is based on the following three results.
LEMMA 4.1. There is a constant C > 0 such that

C
II(T- T )f (log M)IIf

LEMMA 4.2. If h-l_ tr( T), then there is a constant CA and an integer Nh such that
for N Nh and M N,

I1( T- ru) TuTNUN C +(log N) fll.

LEMMA 4.3. For > 0 there exists a constant C such that Te L+() L(O), i.e.,

We postpone the proofs of these results and first show that Theorem 4.1 follows
from them.

Proof of eorem 4.1. We have, using (1.7) and (4.6),

(4.11) U- U= ATe( U- U)+(T- T)(1U+f).

Using interpolation and the same technique as in the proof of Theorem 3.1, we can
show that for 0 > 0 and suciently large N there exist constants 6 > 0, > 0, and C
such that

(4.12) U- Us II,,+> CN-2+I]gIIw.
Now by Lemma 4.3, (3.3), (4.11), and (4.12),

(4.13) IITz(U- U)I[L(N C( I )
and thus the desired result follows from (4.9), Lemma 4.1, Lemma 4.2, and (4.13).

Proof of Lemma 4.1. Let S be the jth side of and 0(a) be the angle between

S and (cos a, sin a). Defining for k= 1,..., M,

J= M

and A as the union of the J containing the direction of S and the adjacent J closest
to the direction of S, and letting

Po
So= U A and Qo=QSo,
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we have

IV(x) TMf(x)]

(4.14) _-<

x) dtz Y

Is T.f(x) dtx- 2 Tf(x)o%
So QM Oo

+ Is r,f(x) dtx Y r,f(x)w,
Qo

with the obvious notation. Now applying (2.6a) to S\So, we have

Is Tf(x) dtx- Y Tf(x)w,
So QM Oo

Ao+ Bo,

and as in the proof of Lemma 3.3

Thus,

(4.15)

<_- C(min[sin

C
M

(log M)[

d

On the other hand, using (2.10),

IIBoll.- sup Lf(x) d Z
x 3So Qo

(4.16) C Po+lSo suplT.f(x)

1

where ]So[ 1/M is the length of So. Now (4.14)-(4.16) complete the proof.
ProofofLemma 4.2. The splitting (4.10) and repeated application of (2.10) together

with Lemma 4.1 yield

(,v)&

C

(4.17)

C
=M(lgM) 2

(,u)&
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Observe that since (/z, u)J, we have sin y(/z, u)_->e and for n=1,2,..., Po,
sin y(/z, d,)-> e. Now assuming/z (1, 0) and using (2.10), we find that

]IV(T,TUN)llo<-- Clsin 3’(Ix, ’)1-’ IIUll/ - (TTUN),

Further recalling (3.15) and using the same argument as in the proof of Lemma 3.5,
we have

-< C(minlsin y(x, dn)])-]] UNlit,

so that

IIV(LTU IIo<= C(min sin y(/x, )l Isin T(x, dn)l)-’ll s I1.

Summing now first over v and then over/z, we obtain

2 %oIlVx(T.T.UN)I <= C E min
(...)j. (...)j: sin (, u)sin (, d.)II UNII

f’daf’d(4.18) C

CIlog 1211 UNlit.
Moreover, since A- (T), Lemma 3.2 implies that there exists an integer N such
that for N Na, (I-ATN)- exists and is a uniformly bounded operator on L(),
1Np N. Thus by (2.4) and (2.10) for N N

(4. 9) u I T )-’ll TNf C [f

Taking finally e 1IN and combining (4.17)-(4.19) the desired result follows.

Proof of Lemma 4.3. Recall that if h is zero in the complement of , then

]x-y] h(y) dy k(x-y)h(y) dy (k* h)(x), h(x) =0, x.

Thus by Young’s inequality

T2h ll <= k , k, h ll < k k , h q, --I- --1, rh x O,
P q

and

1 1 1
k h Ilq -< k Ilr h II.,, +- +-.

q r s

In the above inequalities, k is our kernel function. We set r =p to obtain 2/p + 1/s 2
and, with s= 1 +z, we have p= 1 + 1/(1 +2r) (1,2). With this p, k Lp(f) and the
proof is complete. V1

5. Eigenvalue estimates. In this section we prove error estimates for the approxima-
tion of simple isolated eigenvalues of our integral operator T. Eigenvalues of T are
of physical interest and in particular the smallest positive eigenvalue is related to

criticality.



80 M. ASADZADEH

Since Tn does not converge in the operator norm to T, we cannot directly apply
the known standard arguments as in [4] and [6] to derive the desired eigenvalue
estimates. What is lacking is a proof of an equality of the dimensions of certain
eigenspaces of Tn and T. However, by Lemma 5.1, T converges in the operator norm
to T and using this result we are able to verify the crucial condition concerning the
dimensions of eigenspaces of Tn and T.

Because of the limited regularity of the scalar flux U, by Theorem 3.1 the sharpest
estimate for the convergence of eigenvalues is obtained for p 1.

THEOREM 5.1. Let A be an isolated eigenvalue of T with algebraic multiplicity 1 and
let F p(T) be a circle centered at A. Then there exists an integer NA such that for
N >- N, Tn has exactly one eigenvalue An Int B(A, F) with algebraic multiplicity 1.
Further assume corresponding eigenfunction g W2-6() for some 8 > O. Then for 0 > 0
there exists a constant C,o such that

(5.1) IA --ANI_<- C,oN-, N>-_ N.
Here p( T) is the resolvent set of T and B(A, F) is the disc centered at A with OB F.

We first review, for the sake of completeness, a rather standard and known
argument giving a general form of Theorem 5.1 for linear operators on Banach spaces
(Theorem 5.2).

Let X be a complex Banach space with norm [[. [I; F: X-* X a bounded linear
operator and {Fn}%= a family of bounded linear operators on X such that for g X,

(5.2)

We assume that A is an isolated eigenvalue of F with index v and finite algebraic
multiplicity m => v. Then there exists a circle F in the complex plane centered at A,
which separates A from r(F)\{A}. We denote by P(A,F) the spectral projection
(1/2ri) jr(z-F)- dz associated with the eigenspace

X(a, F) null (A F)

and let E(A, F)= Range (P(A, F)) be the corresponding generalized eigenspace. It is
easy to verify that

E=-E(A,F)=X(A,F),

dim E(A, F)= m,

( F)"P(A, F) 0 and ( F) -P(A, F) # 0

(see, e.g., [6, Chap. 5] and [8, p. 573]). Now let us assume that there exists a constant
C and an integer No such that for N >-No
(5.3)

Here I1" is the operator norm defined by

IlAll sup { IIAgll }g
g x, g 0

Considering (5.3) we may define the projection operator

1 f(z_Fn)_dz,P a, FN 2r---
associated with the eigenspace
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where rN cr(FN) B(A, F), B(A, F) is the disc centered at with OB F and &j crN
are eigenvalues of FN with algebraic multiplicities mj and indices uj. Finally we assume
that for sufficiently large N,

(5.4) m =dim E(I, F)=dim E(crN, FN) 2 mJ.
j=l

We are now ready to formulate the following general result.
THEOREM 5.2. Let A be an isolated eigenvalue of F X- X with finite algebraic

multiplicity m and assume that (5.2)-(5.4) hold. Then there exist exactly m eigenvalues,
counted with their multiplicities, AN rN of FN and a constant C such that

(5.5) max ]h hN] <= CIIF- FN [1,
ANO"

where [1.11E denotes the operator norm restricted to E.
The proof of Theorem 5.2 is based on Propositions 5.1-5.3 below. See also, e.g.,

[4], [6], and [12].
PROPOSITION 5.1. If (5.2) and (5.3) hold then

II(PN P P - 0 as N - o,
where P P(I, F) and PN P(I, FN).

Proof. Since (z-F)- and P commute we have for u X

(P--PN)PU= f2r--- -[(z F) -1 (z FN)-I]Pu dz

-2ri .(Z- FN)-I(F- FN)P(z- F)-’u dz’

and

II(P- P)Pull <= c sup II(z-F)-lll II(F- F)PII sup
zI" zeF

When we use (5.3) there exists a constant C such that for sufficiently large N

II(P- PN )Pull--< C II(F- FN)Pll Ilu II.
Since the dimension of the range of P is finite, P is compact. Thus by (5.2) we have

II(F-F )PII- O as

and the proof is complete.
We define the operator BN" E - EN as the restriction of PN to E, BNu PNu, for

uE.
PROPOSITION 5.2. !f (5.2)-(5.4) hold, then there exist an integer No and a constant

C such that for N - N0
(a) BN is an isomorphism from E onto EN,
(b) IIB)’]] <_- C.
Proof Let q,. ., qm be a basis of the space E. Since P is a projection onto E

Set

(4i,N BNCPi PNqi, 1," m.

We have, using Proposition 5.1, that for 1i m,

(4i (i,N P PN qi P PN Pq, I-0 as N.
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Since {qi}im= is a basis of E, this proves that for sufficiently large N, (i,N, 1," ", m,
are linearly independent and using (5.4) we conclude that {q,N}’- is a basis of EN.
Hence (a) is proved. The proof of (b) follows easily from the fact that E and EN are
finite-dimensional.

Now we consider the operators A and AN:E --> E defined by

and

Au Fu forueE,

ANU B-NFNBNu for u e E.

The operators A and AN are well defined because E and EN are invariant under F
and FN, respectively. Here A is the only eigenvalue of A and the eigenvalues of AN
are those of FN in B(A, F).

PROPOSITION 5.3. Assume that (5.2)-(5.4) are valid. Then for sufficiently large N
we have

A AN --< v F, .
Proof Since PN and FN commute we have for u e E,

(a- AN )u Fu B-N FNPNu Fu B-N PNFNu.
Observe that there is no guarantee that FNu E and consequently BvPN cannot be
replaced by the identity operator in this last relation. However, we have

(a- aN )u Fu B)PNFNu B#(BNFu PNFNu) B#PN(F- FN )u.

Now using Proposition 5.2(b) together with the fact that PN is uniformly bounded
(because of (5.2)) we obtain for u e E and for sufficiently large N,

II(a-au)u[[ <- CII(F- FN)ull,
and this gives the desired result. El

Proof of Theorem 5.2. We have by Proposition 5.3

]la-a]l_-< C sup{ll(F-F)ull, Ilull- 1}.

Since E is finite-dimensional, A and AN as operators on E can be represented by
matrices with A and AN as eigenvalues. Hence by an error estimate for eigenvalues of
matrices given in, e.g., Wilkinson [20],

max la-al-IIn-All<-_cll(F-F)ull, uE and Ilull-1,

and the proof is complete. El
Let us return to our special case with the operators F and FN replaced by T and

TN, respectively, and m 1. As stated in the beginning of this section, to derive the
sharpest estimate for the convergence of eigenvalues we now take X L(). For our
problem, condition (5.2) follows from the fact that TN converges pointwise to T and
(5.3) is a result of Lemma 3.2. Below we prove Theorem 5.1 by verifying (5.4) for our
operators T and TN with m 1. Condition (5.4) may be proved directly if ]IF- FN -> 0,
as N-+ oo, but this is not necessarily true in our case. However, we will prove that
IIr r%ll- 0, as oo. Using this we prove (5.4) with m first for T and
and then for T and TN.

LEMMA 5.1. We have

IIT3-T3II-+0 as N---> o, 1-<p<oo.
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Proof We have

T3- T3N IF lIT:( T- TN)+ T(T- TN)TN +(T- T,)T%I ,.
Since T and T* are compact we see that

T2(T- Tl,,)lp I(T* T’N) T*2ll,- 0 as N-> oo

and

lIT(T- T)TNIIp--IIT*(T*- T*N)T* F,-->O as Noo.

Thus Lemma 3.4 gives the desired result.
Below, for 0 A o-(T), we let " denote a circle in the complex plane centered

at A 3, separating /3 from o’(T3)\{A 3} and set u r(r%)CI Int B(A3, ’).
LEMMA 5.2. For sufficiently large N

dim E(A 3, T3) =dim E(u, T).

Proof Let K T3, Ku T% and for 0 < < define

Ku., (1 t)K + tKu
note that Ku,o K, Ku, Ku, and ]]Ku,, 1<_-C. We denote by ru., the part of the
spectrum of Ku,,, r(Ku,,), contained in the interior of B(A 3, ’). The projection operator

1 fr.(z- K,,)-P(rN,,, KN,,
2 r---- dz

is well defined and using Lemma 5.1 we can show that it is a continuous function of
(see [3, Thm. 3a]). Further by a result of Riesz and Nagy [15, p. 268] we have the

following" If the difference of two projections is of norm less than 1, then their ranges
are of equal dimensions. (In the estimate of the norm of the difference of P(O’N,,,
and P(oN,,, KN,L), Is-tl and the length of " are involved in the constant on the
right-hand side. This constant, because of the length of F, can be made less than one.)
Hence for sufficiently large N,

dim E( 3, T3) dim KX dim KN,oX dim KN,X dim KNX
dim E(N, T3N).

Now we are prepared to complete the proof of our eigenvalue estimate.

Proof of Theorem 5.1. By the spectral mapping theorem A or(T) if and only if
A or(T3). Now we use the equality

T A T- A)( T- a e(2/3)i)( T- A e(47r/3)i),
to obtain the decomposition

(5.6) E(A 3, T3) E(A, T)@ E(A e(27r/3)i, T)@ E(A e(47r/3)i, T)

(see, e.g., [17, Thm. 5.9-D]). In our case T as an operator on L(O) has only real
eigenvalues. To see this, let v L(f) be an eigenfunction of T corresponding to the
eigenvalue A, so that

(5.7) Tv= av.
Now arguing as in the proof of Lemma 4.3, T2" L())- L2(f), and by (5.7), Tv zv;
thus v L(f), and hence (5.7) implies that v is also an eigenfunction of T as an
operator on Lz(f) with the same eigenvalue I and since T is self-adjoint on Lz()),
we have , R. Thus the two last eigenspaces in (5.6) are empty and

(5.8) dim E(,, T) dim E(, 3, T3).
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Since dim E(A, T)= 1, Lemma 5.2 together with (5.8) imply that fin is a real number.
This follows since because of the structure of TN (real positive weights), if ff r(T)
then fin cr(T), so that if fin # fiN, dim E(ffu, T)_>-2, which contradicts Lemma
5.2 and (5.8). The analogue of (5.6) for fin and T% is

(5.9) E(, T)= E(.-, T)E(- e2/3), T)E(- e(4/3)i, Tu).

Now if one of the last two eigenspaces in the right-hand side of (5.9) is nonempty,
say E(--e4/3), T)#QS, then ;---e4/3)o(TN) and again because of the
structure of T, e4/) o-(T); hence E(- e:/), T) . Consequently
dim E(, T)-> 2, and this is again a contradiction. We conclude that

dim E(--, T)=dim E(N, T%).
This completes the proof of (5.4) for our case m 1. Now Theorem 3.1 gives the
desired result since for the normalized eigenfunction g W2-(f) corresponding to
the eigenvalue A, (3.2) implies that

]A ANI =< [1( T- TN)gllr,a)<= CN-+. []

6. NumerieM results. In order to determine the rate of convergence for the discrete
ordinates method in some concrete cases and also test the efficiency of the postprocess-
ing procedure, we have performed some numerical computations on the following
two-dimensional neutron transport equation"

’Vu(x,)+u(x,t)=AU(x)+f(x), x6fl:=I2,
(6.1)

u(x, O, x F. {x F o: . n(x) < 0},

where 12=[0, 1] x [0, 1],/ S={ R2:I/.,1 1}, and n(x) is the outward unit normal
to F at xF.

This problem is equivalent to the following integral equation for the scalar flux
U (see (1.7))"

(6.2) (I A T) U Tf
The discrete ordinates method gives the following semidiscrete analogue of (6.2)

(see (2.4))"

(6.3) (I h TN UN TNf,,

where N is the number of discrete directions on S.
We compute UN using the iteration below:

U%m+’)= Tu(AU%m) +f), m- O, 1, 2,...,
(6.4)

U) 0.

The iterations are continued until rn + 1 L, where

(6.5) u()- u(L-’)IILz(’]) <- 10-6,
and U is defined to be U).

A postprocessed solution U* is also computed (see (4.5)-(4.6)), i.e.,

U*N TM A U 2m +f
(6.6)

U+)= TM(AU)+f), k=0, 1,

where U Uu is computed as in (6.4)-(6.5) and M N2.
Remark 6.1. In the computations we also discretize in the space variable using

the discontinuous Galerkin finite element method with mesh parameter h 1/20, 1/50
and uniform triangulations of I2 (see [2]).
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6.1. Data. We perform the iteration (6.4)-(6.5) with N 6, 9, 12, 18, 36 and the
postprocessing procedure (6.6) with N =6 and M 36 for the following data. Let
f:=fD be the characteristic function of the domain D 12. We consider the following
cases:

(D1) , =0.2 and D={(Xl,X2): (xl-3/4)2+(x2-3/4)2<-(0.2)2},
(D2) , 0.2 and D {(x,, x2): (xl- 1/2)2+ (x2- 1/2)2--< (0.2)2},
(D3) ,=0.3 and D={(xl,x):(x,-1/Z)+(x2-1/2)2<-(0.3)}.
Each of the cases (D1)-(D3) is solved twice, once with h 1/20 and the second time
with h 1/50.

6.2. Results. In Tables 1-6 we compare U := U36 with UN and U6* where N 6,
9, 12, 18. Below eN := U-Urn, e* := U-U6* and L denotes the number of iterations
in (6.4) for N= 36.

TABLE
Case D1, with h=1/20" L=16.

Norm
Error L L L

U 0.494163 0.611624 1.665514
e 0.066632 0.079378 0.245124
e 0.028889 0.035967 0.101383

el2 0.014218 0.017859 0.064952

els 0.006515 0.008202 0.025387
e* 0.009415 0.011435 0.027280

TABLE 2
Case D2, with h 1/20; L 17.

Norm

Error L L L

U 0.601861 0.694524 1.736332
e 0.065268 0.079722 0.306480

e9 0.026942 0.034496 0.114590

el2 0.019370 0.025200 0.084097

es 0.007661 0.009823 0.035274
e* 0.009452 0.011680 0.030788

TABLE 3
Case D3, with h=1/20; L=35.

Norm

Error
L L L

U 2.454003 2.613289 4.522570
e 0.095097 0.115746 0.428698

e9 0.049798 0.062952 0.217018

el2 0.038930 0.050942 0.190969

ela 0.015510 0.019816 0.063142
e* 0.054172 0.066849 0.153723
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TABLE 4
Case D1, with h 1/50; L 16.

Norm
Error Lt L L

U 0.534893 0.658920 1.726658
e 0.073383 0.086619 0.271352
e 0.032836 0.040532 0.111557
e2 0.017447 0.022298 0.095111

e8 0.009490 0.011772 0.039077
e* 0.010576 0.012690 0.029262

TABLE 5
Case D2, with h / 50; L=17.

Norm
Error L L L

U 0.636361 0.735342 1.791415
e 0.073927 0.090938 0.329555
e 0.032881 0.041574 0.129138

e2 0.025804 0.033993 0.110757

ea 0.010783 0.013486 0.046468
e* 0.010629 0.013895 0.038291

TABLE 6
Case D3, with h 1/50; L=35.

Norm

Error L L L

U 2.462085 2.625772 4.526402
e 0.109765 0.134892 0.496076
e 0.062966 0.079828 0.250217

e2 0.047498 0.061768 0.207581

el 0.020606 0.025912 0.076828
e* 0.054509 0.071086 0.167479

6.3. Conclusion. By Theorem 3.1, for the discrete ordinates method, we expect
the convergence rates 1/Nc, where c 2 for the L1 estimate and c in the L case.
Tables 1-6 show the convergence rates l!Nc with c 1.6-2.2 and c 1.3-1.8 for L1
and Lo, respectively. The difference between the theory and computations may depend
on the choice of U36, which is also discretized in space, as the "exact" scalar flux U.
Observe that in (D1)-(D3), fe H1/2(f). Hence by (6.2) the exact scalar flux U has
the required regularity in Theorem 3.1 U W2-(I]), > 0 or U WI(I)), _-< p < o0).

As for the postprocessing procedure we see that the Loo errors for e* are consider-
ably less than those for e6, in particular if f has small support. Further we have

Ile*lloo’ Ileoll, (cf. Theorem 4.1).
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