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L, AND EIGENVALUE ERROR ESTIMATES FOR THE DISCRETE
ORDINATES METHOD FOR TWO-DIMENSIONAL
NEUTRON TRANSPORT*
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Abstract. The convergence of the discrete ordinates method is studied for angular discretization of the
neutron transport equation for a two-dimensional model problem with the constant total cross section and
isotropic scattering. Considering a symmetric set of quadrature points on the unit circle, error estimates are
derived for the scalar flux in L, norms for 1=p=c0. A postprocessing procedure giving improved L
estimates is also analyzed. Finally error estimates are given for simple isolated eigenvalues of the solution
operator.
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Introduction. In this paper we study the convergence of the Nystrom discrete
ordinates method for angular discretization of the neutron transport equation for a
two-dimensional model problem. We extend the L, error analysis of [9] to L, norms,
1=p=o00. We also analyze a postprocessing procedure and obtain improved rates of
convergence in L, for the postprocessed solution. Further we derive error estimates
for isolated eigenvalues with algebraic multiplicity one.

These studies contain the following important aspects.

(1) Studying L, estimates is of practical interest because the eigenvalue estimates
are based on L, results. To derive L, estimates the function spaces involved are
interpolation spaces but not Sobolev spaces. Working with the interpolation spaces
on the topic of the neutron transport equation is new.

(2) L., being the strongest norm, is the one we are most motivated to consider;
however, we should expect lower rates of convergence than in the L, case. Previous
L results have been without rates of convergence. In this paper we derive L, rates
of convergence and employ a postprocessing procedure to improve these rates and
obtain L., error estimates with the same rates as in L,.

(3) The classical techniques in [6] and [17] are not useful in deriving eigenvalue
error estimates for this problem. This depends on the behavior of the operators involved
in the problem. A new functional analysis approach has been made to show the equality
of the dimensions of some eigenspaces.

The steady state one-velocity process of transport of neutrons in a substance
surrounded by vacuum can be formulated as follows. Given the source f and the
coefficients @ and o, find the angular flux u satisfying

M'Vu(x,u)+a(X)u(x,u)=JZU(X, ws mu(x, n) dn+f(x, n),

S

(0.1) (x, u)e QxS
u(x,u)=0 forxel,={xel" u-n(x)<0},

where Q is a domain in R®, I'=9Q, S? is the unit sphere in R’, n(x) is the outward
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unit normal to I at xI’, and

3 d
weV=3% pi—.
=1 0X;

In the discrete ordinates method the integral in (0.1) is replaced, using a quadrature
approximation, by a discrete sum involving a finite set of directions. L., convergence
of the discrete ordinates method for a two-dimensional problem is studied, e.g., in
[11], and for a three-dimensional problem in [19] with no convergence rates. Combined
spatial and angular discretizations in the slab case are studied in [14], where error
estimates are derived for both the scalar flux in L, norms, 1= p =00, and for critical
eigenvalues. In [9] an L, analysis of a fully discrete scheme for a two-dimensional
model problem is carried out, where the discrete ordinates method for the angular
variable is combined with the discontinuous Galerkin finite element method for the
spatial variable. In [2] the results of [9] are extended to a case where the angular
variable varies on the unit disc in R® while the spatial variable remains two-dimensional
as in [9]. This corresponds to the three-dimensional problem (0.1) with Q being an
infinite cylindrical domain where all functions involved are assumed to be constant
along the axis of the cylinder.

An outline of this paper is as follows. In § 1 we present a two-dimensional model
problem obtained by taking, in (0.1), xe Q< R>, ue S={ue R* |u|=1}, a=1, and
o=\, and we reformulate this problem as a Fredholm integral equation of the second
kind with a compact integral operator T. In § 2 we formulate a semidiscrete analogue
of the model problem by applying a quadrature rule and we note that the semidiscrete
analogue can also be formulated as an integral equation involving a certain operator
Ty, where N indicates the number of quadrature points. We prove that our integral
operator T is self-adjoint in L,()) and assuming a symmetric distribution of the
quadrature points this is also true for the approximate operator Ty. In § 3 we derive
L, error estimates, 1=p <o, for the semidiscrete problem. We also prove that if
A '20(T) and N is sufficiently large then A~'¢ o(Ty), where o(T) denotes the
spectrum of T. Section 4 is devoted to a postprocessing procedure giving improved
rates of convergence in L, for the scalar flux. In § 5 we prove error estimates for the
corresponding approximation of simple isolated eigenvalues of our integral operator
T. In the concluding § 6, we give some numerical results testing the analysis of §§ 3
and 4.

1. A model problem. We will consider the following two-dimensional model prob-
lem. Given a function f and a parameter A, find u(x, w) such that

i=

M‘Vu(x,u)+u(x,u)=)\J u(x,n) dn+f(x), for(x,u)eQxs,

(1.1)
u(x,u)=0 onl',={xel:u n(x)<0},

where Q is a bounded convex polygonal domain in R” with boundary I, S is the unit
circle and n(x) is the outward unit normal to I" at xeI'.
When we introduce the scalar flux

(1.2) U(x)=L u(x, n) dn,

(1.1) takes the following form:
peVu(x, w)+ulx, w)=QAU+f)(x), (xp)eQxs,
u(x,u)=0 onl,.

(1.3)
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Introducing the solution operator T, for the equation w-Vu+u=g, in , u=0 on
I',, given by

d(x,p)
(1.4) T,g(x) =j e g(x—sp) ds,
0
with
(1.5) d(x, uw)=inf{s>0: (x —su)2 Q},
we can write (1.3) as
(1.6) u(x, ) =T,AU+f)(x), (x,u)eQxS.
Integrating (1.6) over S, we get the following equation for the scalar flux U:
(1.7) (I-AT)U =T,
where
(1.8) T=J T, dp.
S
When we use (1.4), it is easy to see that
e XVl
(1.9) Tg(X)=J ——8(y) dy.
Q lx"yl Y

Thus, T is an integral operator with weakly singular kernel, and hence, T is a compact
operator on L,(€)), 1 =p=c0. Consequently, (1.7) is a Fredholm integral equation of
the second kind (see, e.g., [18]).

Let us introduce some notation to be used below. For 1=p =00, we denote by
0,(K) the spectrum of an operator K:L,(Q)->L,(Q), defined by o0,(K)=
{ze £: (K —zI) is not invertible as an operator on L,(Q)}. |||, and ||-|lw», m a
positive integer, denote the usual L, norms and the Sobolev norms of order m,
respectively. | - ||, will also denote the operator norm |- ||1,.1,, on L,(Q). C will denote
positive constants, not necessarily the same at each occurrence, independent of the
parameters N and e. Note that since o,(T) is independent of p, below we will use the
notation o (T) instead of o,(T).

We will assume that the parameter A ' does not belong to o(T). Then for 1 = p =0,
(I-=AT):L,(Q)~ L,(Q) is invertible, Range (I —AT) = L,(Q), and there is a constant
C such that |[(I-AT)™'||,= C, 1=p=co. In particular

(1.10) [(I=AT)v||,=zC|v||, YveL,(Q).
Hence the integral equation (1.7) has a unique solution U = (I —AT) 'Tf.

2. The quadrature rule. Let Q= Qn={u,, - -, un} be a set of points on the unit
circle S with the property that if u € Q then —u € Q. Consider the quadrature rule

(2.1) J u(x, w) du~ Y u(x, p)o,,

S neQ
where w,, =27/ N. Other standard quadrature rules for the neutron transport equation
are discussed by Lewis and Miller in [10]. For the semidiscrete approximation of the
scalar flux, we set

(22) Un)= § un(x m)o,,
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with un(x, u) satisfying

(2.3) un(x, w)=T,(AUN+f)(x), xeQ, wpeQ.
Multiplying (2.3) by w, and summing over Q we obtain the integral equation
(2.4) (I=ATN)Un = T,
where
(2.5) In= 3 T,o,.

neQ

For the error in the quadrature (2.1) we have the following estimate (see, e.g.,
[7]). For k=1, 2, there exists a constant C such that

(2.62) ju(x Ydu— 3 ulx,p) <Cr”"’k“< )| d
.6a - u(x = —(x
s N o ry > M wu Nk o aak > & a,
where w = (cos a, sin a). Also
1
(2.6b) 2lw,w,~>0 as max (—ﬁ R s) -0,

where for £ >0 the sum ), ,)co? is split as follows:
Y =S4+3= Y + %
(n,)eQ? (el  (wwell
with
I, ={(u, v) € Q* min (sin y(u, v),sin y(u, d,),sin y(v,d,)) Ze,n=1,2,- -, P}
and
Il=Q\IL,
where y(u, v) is the smallest angle between w and v, d,,n=1, - - -, p,, are the directions
of the sides of ), and P, is the number of sides of .

Next we recall a result of Anselone [1]. We then show that the continuous integral
operator T is self-adjoint in L,(Q) and that Ty is self-adjoint in L,(Q), since —p € Q
if ueQ.

PROPOSITION 2.1. Let 1=p=c0 and let T:L,(Q)-> L,(Q) be a bounded linear
operator such that for some positive constant C, (1.10) is valid, i.e.,

I(T=AT)v|,=C|vll, VveL,(Q),

and let {Ty}N-1 be a uniformly bounded sequence of linear operators on L,(Q) such
that for some positive integer m,

2.7) en=I(T=TN)TX|,»0 as N-co.
Then there is a positive constant C, such that for N large enough
(2.8) I(I=ATw)oll, = Cillol, VYoveL,().

In the sequel T* denotes the adjoint operator of T: L,(Q2)—> L,(Q).
LEMMA 2.1. The integral operators T and Ty are self-adjoint on L,(Q)).
Proof. Recalling the representation (1.9) of T,

~|x=y]

Tg(x) = L ‘e;_—ﬂ g(y) dy,
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we have for f, ge L,(Q)),

—lx=yl|
(T, )= f [T(x)]g(x) dx = j (J ) dy)g(x) dx
Q a\Ja Ix J’I
and
—lx=yl
(f, Tg) = J F(0)[ Tg(x)] dx= f (J gy dy)f(x) dx,
Q al\Ja lx )’|
which proves that T= T*. When we use (2.5), the adjoint of Ty is
=Y Tiw,.
neQ
Moreover,

d(x,un)
(J e 'f(x—su) ds)g(x) dx.

0

(T.f. 8)= J

Q
Making the substitution y = x — su, we note that as s varies, y varies on the line segment
[%, x], £=x—d(x, u)u. Thus for a given y € Q we have s =|x —y| with xe QN L, (y),
where L,(y) is the half-line parallel to u starting at y. Hence by the definition (1.5)
of d, and since 0=s=d(y, —u),

d(y,—u)
(T.f 8)= J J e f(y)g(y—s(—u)) dsdy=(f, T_.g),

so that
(2.9) Tﬁ =T_,.

Multiplying by w, and summing over u € Q, we obtain T = Ty, since u € Q implies
—ueQ. 0

Note that by (1.4) we have the following stability estimate for the solution operator
T,:

(2.10) lw-VT.el, +1T.el,=Clegl,,  1=p=co

3. L, error estimates. In this section we extend the L, error estimates for the
discrete ordinates method of [9] to L, norms, 1= p <oc0. Our main result is Theorem
3.1. We also prove, using Proposition 2.1, that if A ' o(T) then for 1=p=c0 the
operator (I —ATy):L,(Q)~ L,(Q) is invertible if N is large enough and thus (2.4)
has a unique solution Uy € L,(Q).

Observe that the maximum regularity of the scalar flux U, what we can expect in
general, is Ue W,(Q) for 1=p<co and Ue W} *(Q) for §>0 (see [13]). Theorem
3.1 is stated accordingly. Here W3 °(Q) is defined by the K method of interpolation
(see Bergh and Lofstrom [5]).

THEOREM 3.1. Suppose that A" ¢ o(T) and let 1 =p <oco. Let U be the solution of
(1.7). Then there exists an integer N, such that (2.4) has a unique solution Uy € L,(Q))
for N= N,. Further, there is a constant C such that for N = N, and fe W,(Q),

(3.1) [U=Unll=CN AU+ fllwio)-

There exists a constant C and for all 0 >0, there exists 6 >0 such that for N = N, and
fe wi(Q),

(3.2) U= Unlle@=CN>°|AU+flwr 2.

The proof of Theorem 3.1 is based on the following two results.
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LEMMA 3.1. For 1=p < there is a constant C = C(p) such that for ge W,(Q),
(3.3) (T~ Ty)gllL,@=CN"lgllwa-
Further there is a constant C such that for ge W3i(Q),
(3.4) (T~ Tx)gll )= CN *(log N)|lgllwia)-

LeMMA 3.2. IfA '€ a(T), then for 1 = p =0 there is an integer N, and a constant
C such that for N= N,, |[(I-ATx)"'|,=C

Let us postpone the proofs of these results and first show that Theorem 3.1 follows
from them.

Proof of Theorem 3.1. We have, using (1.7) and (2.4),

U—-Uyn=ATU+Tf = ATyUx — Tnf
=MT—Ty)U+ATN(U = Up)+(T—Ta)S,
and thus
(I=AT)(U—-UN)=(T-TN)(AU +f).

Hence using Lemma 3.2 and (3.3), with g =AU + f, we can verify (3.1). Interpolating
between (3.3) and (3.4), we obtain (3.2). 0
Below ;= ;(a) will denote the angle between the direction of the jth side of )
and w = (cos a, sin ). In the proof of Lemma 3.1, we will use the following lemma.
LEMMA 3.3. For 1=p < there exists a constant C such that if u(x, u)= T,g(x),
then for ge W,(Q),

” [

Further there is a constant C such that for g€ Wi(Q),

—(,a)

da=C Q).
Ja a ||3||w,,<n>

L, ()

(3.6)

ou o _
W(‘,a) gC(mim Isin ¢;())) "'l gl w2y

Ly(©)
Proof. By the same argument as in the proof of Lemma 4.4 in [9], we have
d(x,a)
u(x,a)=J e "g(x—su) ds,
0
where d(x, a)=d(x, w), so that
d(x,un)

0 J 0
(3.7) — u(x, a)=e_d("’“)g(ia)—d(x,a)+J e 's— g(x—su) ds.
Ja Ja 0 o

Here X, =x—d(x, a)u €l and u'= (sin a, —cos «) is orthogonal to u. Further,

a;(x)
3.8 d(x, @) =—L"—
(38) (v =S
where the S; is a side of ), ¢;(«) the angle between S; and u, and a;(x) is the distance
from x to the straight line given by S;. Hence raising the absolute values of both sides
of (3.7) to the power p, integrating over (), ;, using an orthogonal coordinate system

forxeQ, ;={xe: x, €5},
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(&, &) with the &, axis along S, and the fact that the boundedness of Q implies
a;(x) = Clsin ;| and thus |(3/9a) d(x, a)|= Clsin ¢;|™" for x€Q, ;, we get

L.

a=c|[ lepisinul i e | waeor ]
Q Q

a,j a, j

e)
—u(x, a
Py (x, @)

o J

C|sinu,l/j|
= C[L gl dé, J [sin ;|7 dé&,+ llVgll’;]

0
= Clllgll, mlsin ¢ "+ || Vgl 7].
Recalling the trace estimate
el a=Cllglwiw, 1=p=o,
we have summing over j,

9w a)

(3.9) Py

= C(mjinlsin Y ()) gl wiiay-
p
Finally we complete the proof of (3.5) by integrating with respect to a. To prove (3.6)
we differentiate (3.7) and (3.8) to get

d’u divay o f D 2 e o ¥d
(3.10) a—ag(X,a)=—e e )g(xa)(a—ad(X,a)> +e 1 )g(xa)a—;(x,a)
E) ad 40ep) 9
+ze"'<x’“’——g<xa)—<x,a>+J ¢ har 8T
Ja Ja 0 Ja
and
ES a;(x)(1+cos* ;)
3.11 —d =L L
( ) aaz (X,le) Sin3(//j

so that by the same argument as in the proof of (3.5),
2

j E)
a,,l0a

— u(x, @)

Clsinn//j|
acs [ [ daleivahae [ lim ol e el uio |

0
Using the trace estimate once more and summing over j, we get

2

—u(, a)

(3.12) P

= C(mjin|sin P ()7 gllwaas

Ly()
and the proof is complete. 0

Proof of Lemma 3.1. Writing u(x, a) = T,g(x) with u = (cos a, sin «) and using
(2.6a) with k=1, we have

”(T_ TN)g"L,,(Q):”JS T#g(') du — ZQ TP«g(.)w#

L(Q)

L u(C-,w)du— % u(,po,

neQ L(0)
2
u
=CN™! I — (-, a) da
o O L(€)
2
ou
éCN‘lj — (-, a) do,
o lloa Ly()
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and (3.3) then follows from (3.5). To prove (3.4) we define for k=1, -, N,
[2(k - 2k77:|
Ik = b )
N N

and let A; be the union of the I, containing the direction of S; and the adjacent I,
closest to the direction of S;. Let

PO
j=1
and
Q=0NS,.

We have, using (2.6a), (3.6), and (3.9),

J T.8()du— Y T.g()w,
S\S,

(T— TN)g”Ll(Q)é‘
1eQ\Qo

L(Q)

+ J T.8(:)du— Y T.g()w,
So neQo L(Q)
C 8 ‘, C ou(-,
é_zj L(z"‘x“) da +—J qu(, @) da
N Js\s, Il da™ i o) Nls Il da L@

A

¢ L _ C
ﬁ [J‘S\so(m.im|sm djj(a)l) I da]||g|| W%“U"‘N |So| ”gH wi(Q)

C C
éﬁ (log N) | gl W?(n)*‘ﬁ |SO| lglwi,

where |Sy| is the length of S,. Since |So|~1/N we obtain the desired result. 0O

Let us now turn to the proof of Lemma 3.2. We want to prove for 1= p = o0 that
if A"'20(T) and N is sufficiently large depending on A and p, then (I —ATy) is
invertible as an operator on L,(2). Lemma 3.4 below together with Proposition 2.1
implies that (I —ATy) is one to one. To show that it is also onto we will use Proposition
3.1 below (see Rudin [16, Thm. 4.15, p. 97]). Note that Tn:L,(Q)- L,(Q) is not
compact.

LEMMA 34. [(T—Tx)Tx|, >0, as N>oo, 1=p=co.

ProOPOSITION 3.1. Suppose X and Y are Banach spaces and F is a bounded linear
operator from X into Y, then

(a) Range (F)=Y
if and only if there exists a constant C such that
(b) [F*y*||= C[ly*| for y*e Y*.

Proof of Lemma 3.2. It remains to prove that Range (I —ATx) = L,(Q). Hence it
suffices to prove (b) in Proposition 3.1 with F replaced by (I —ATy). Now Proposition
2.1 applied to T*, where

I =AT*)v*|[, = Cllo¥||, Vv*e L, (),
and the same argument as in the proof of Lemma 3.4 below yield

el =(T*-T{)TE|,>0 as N-oo.
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Thus the conclusion of Proposition 2.1 holds for the adjoint operator T%, i.e., there
exists a constant C such that (b) in Proposition 3.1 is valid with F* and y* replaced
by (I —ATy)* and v*, respectively. Observe that since L. is not a reflexive Banach
space, the conclusion [|[(I—ATy) |, = C is only valid for 1=p<co. However, the
constants involved in Proposition 2.1 as well as in this proof are independent of p.
Thus letting p - o0 we also obtain the result for p = co. 0

The proof of Lemma 3.4 is based on (3.3) and the following lemma.

LeEmMA 3.5. There is a constant C such that if (u, v)e I, and ge L,(Q), 1=p =00,
then

[T.T.gllwio= Ce "7 g|| Ly()-

Remark 3.1. Note that the operator T, regularizes in the direction u and thus
for two nonparallel directions w and », we have that T, T, regularizes in all directions
(with a constant depending on the smallest angle between w and v). In the proof of
Lemma 3.4, we will use this regularizing property of T, to show that T3 can be split
as

TX =An+ By,

with Ay : L, (Q)-> W,(Q); i.e., Ay is compact, and || By||>0, as N - 0.
Proof of Lemma 3.4. For 1=p <o we have, using (3.3), Lemma 3.5 and (2.10),

(T - TN)TiIg”L,,(Q) = "(T_ Tv) ( ; o w,0,T,Tg
m,v)E

Ly(0)
= ”( T - TN)(EIP +2,s/)wy.wVTuTvg” L,,(ﬂ)
=CXlw,0,N T, Tg| wha) T CZZwaquHLp(m
= C(NHE*ZH/"+2gwuw,,)||g|| L,(Q)+
Now taking e = N~ with 8 <p(p—1)"" and using (2.6b), we obtain the desired result.
For p =00, instead of (3.3), we use Lemma 4.1 below and the proof is complete. O
In the proof of Lemma 3.5 we will refer to the following result.
LEMMA 3.6. There is a constant C such that

1/p
(J Tallwulds)  =Clgliw,  1=p=m
)

Proof. Tt suffices to give the proof with I' replaced by I"={xel": n(x)-u #0}.
Let p=1. For xel’, we have d(x,u)#0, and if 0=s=d(x,un) then x—sue
[x, x—d(x, u)u]< Q. Thus using (1.4) and Fubini’s theorem, we find that

[ 1Ta00lln ) do= |

In- | do

d(x,u)
J e ‘g(x—su)ds

o

d(x,;)
éj e [ late—sollne sl doas

0

=Clglww-

For p =00 we have

d(x, 1)
J e "g(x—su)ds

SUPITug(X)H"'M] =sup
xel™ xel” 0

Mwﬂécﬁgkuﬁ

Interpolating between p =1 and p =00 we obtain the desired result. 0
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Proof of Lemma 3.5. By an orthogonal coordinate transformation we may assume
that u =(1,0). Since (u, ») € I, we have by (2.10),
L,,(Q):|'

e L (Tyg(x—sp)) ds,
ov

(& 9
(3.13) ||V(T#Tug)”1.,,<m§_ ||g”L,,(Q)+ _(T/J,Tug)
€ v

Replacing g in (1.4) by T,g gives

d(x,um)

(3.14) 2 (T, T.g(x))=e “™Tg(x) 2 d(x, p) +J
ov ov

0

where X =x—d(x,u)u. It is easy to verify that

b

ad :
(3.15) & eV d(x, ) =—r
ov n-u

where n = (n,, n,) is the outward unit normal to I' at X. Raising the absolute values of
both sides of (3.14) to the power of p and using the facts that dx,=u-ndo on I' and
|u-n|= e we find that

‘ L,(£)

where we have also used (2.10). Thus by Lemma 3.6 and (3.13)

IV(T.T.8)|l L, =Ce >""|ig|l1,c)-
Further by (2.10), | T, T.gll.,«0)= Cl gl 1, ) and the proof is complete. O

F)
a—V(TMTug)

1/p
=ce ([ ngrinesl o)+ Cliglh o
)

4. Iterative improvement. In the previous section we have proved, with maximally
available regularity of the scalar flux U, i.e.,, Ue W (Q), for 1=p<co, and Ue
Wi °(Q) with 6 >0, that

(4.1) ”U_.UN”L,;(Q)é CN‘I,
and
(4.2) “ U - UN ”LI(Q) é CN‘2+0,

where C depends on 6 and p. Further for 6 >0, we have from (4.1) (see also Lemma
4.1 below) that

(43) “U_ UN”Lm(Q)é CN—1+6.

In this section we will prove that it is possible by a simple postprocessing to
produce an improved solution U% for which

(4.4) " U - U#[i/ ” Loo(ﬂ) é CN“ZJre,

that is, for which the rate of convergence of U% in L, is the same as the rate in L,
for the original solution Uy.
The postprocessed solution U% is defined as follows:

(4.5) Uk =Tu(AUZ+1),
where
U(I\I/(I+1)=TM(AU(I\I/<I)+f)3 k=0’ laza...a

(4.6) U - U,



76 M. ASADZADEH

and M = N°. Thus we compute U% = U} by applying the operator T, three times
with M = N7, starting from the original solution Uy. The postprocessed solution U%
should be compared with the solution Uy, of the coupled problem

(4.7) Uy = Ty (AU +S).

By (4.3) and (4.4) we have for both U% and U,, the same rate of convergence O(M ~'**)
in L(Q), since M = N°. To find U,, requires the solution of a large coupled problem
(4.7), while to compute U% we only have to solve the smaller coupled problem (2.4)
and then in (4.6) apply the operator T,, a few times. Hence we expect to be able to
compute U% with less work than U,,. Note that U% may be viewed as an approximate
solution of (4.7) obtained after three fixed-point iterations starting with Uy.

Postprocessing procedures of the form (4.5)-(4.6) have been considered in practical
computations and an example is discussed in [11, § VI]. In particular the hope is to
decrease in this way the so-called ray effects for media in which absorption dominates
scattering.

To estimate ||U — U% | we use (2.4) and (4.6) to obtain

U=ATU+Tf=AT(ATU+ Tf)+ Tf,
and
US) = ATy UZ + Tof = ATy (AT, U + Toaif) + Touf.
We now split U — U%,= U - U$), as follows:
U-U¥=(T—Ty)f+AT(T =Ty )f +A(T—Ty)) Tiaf + A T(T — Tay) Taaf
+A(T—=Ty)Taf+ A T(T—Ty) Ty Tnf+ A (T = Tog) Ta Tnef

(4.8)
FAYT(T = Ta)) T TnUn + AT — Ty ) T3 TaUn + A2 THU - UYY)
.
=Y Lf+R, Ty TyUn+ R, Ty TNUn + AT (U — UYY),
j=1
with the obvious meanings of I, j=1,2,---,7 and R;, i=1,2. Now taking the

L.(Q)-norm of both sides of (4.8), we have
7 2
GHNU-Ukls= L 15/ gt T IRTuTNUN Loy HIAPI T (U = U | Lo
j=1 i=1

Here the quantities || [f|, ), j=1, -, 7, will be estimated using Lemma 4.1 below.
For |RT\TNUn | L), i=1,2, we will use Lemma 4.2. The last quantity, || T*(U —
U‘,&))]]Lw(m will be handled using the fact that T is regularizing in the sense that for
7>0, T°:L,,,(Q)~> L.(Q). In the proof of Lemma 4.2 we will use the following
splitting with e =1/ M:

(4.10) Y 0,0, ) w0t )Y oo,

m
(1.v)€ Qpm X QN (m,v)eld, (pov)eld;

where
]s ={(/""s V) € QM X QN: min (Sin 7(/-‘«, V)’ Sin ’Y(/"L, dn)) = g, n= 1, T, PO}a
Je= Qu X Qn\J,,

2 2
w#=—7T and w,,=—7—T.

M N
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We recall that, as in the previous splitting, y(u, v) is the smallest angle between u
and v, P, is the number of sides of ), and d, are the directions of the sides of ().
Now we are prepared to state the main result of this section.
THEOREM 4.1. Suppose that A~' ¢ o(T) and let 0 >0. Then there exist constants
8>0, 7>0, C, and N, such that for N= N, and M ~ N2,

1 1
|U-UXlLo= CA(N2‘6_+P (log N)3>(|Ig|| wizay tllgllwi@)s

where g =AU + f.
The proof of Theorem 4.1 is based on the following three results.
LEMMA 4.1. There is a constant C >0 such that

C
(T = Tvo)f | Loy =7, Uog M) fllwco-
LEMMA 4.2. If A" € o(T), then there is a constant C, and an integer N, such that
for N= N, and M ~ N?,

1

1
7= T TuTwUx o= G+ 37 008 N 1 i

LEMMA 4.3. For 7> 0 there exists a constant C such that T*: L,,.(Q) > L(Q), i.e.,
1Tk Ly = ClbllL,, -

We postpone the proofs of these results and first show that Theorem 4.1 follows
from them.
Proof of Theorem 4.1. We have, using (1.7) and (4.6),

(4.11) U-UWY=ATy(U=Ux)+(T~Ty)AU+Y).

Using interpolation and the same technique as in the proof of Theorem 3.1, we can
show that for 6 >0 and sufficiently large N there exist constants § >0, 7>0, and C
such that

(4.12) |U=Un|t,,n= CN"|Ig]| wirdQ)-
Now by Lemma 4.3, (3.3), (4.11), and (4.12),

1 1
(4.13) [T2(U~ U)o =Cl st JUglwizo +lglw, ),
N M

and thus the desired result follows from (4.9), Lemma 4.1, Lemma 4.2, and (4.13). O
Proof of Lemma 4.1. Let S; be the jth side of Q) and ;(«) be the angle between
S; and u = (cos a, sin «). Defining for k=1, -, M,

[2(/( -7 2k77]
Jk = > s
M M
and A; as the union of the J, containing the direction of S; and the adjacent J; closest

to the direction of §;, and letting

P
So=U A, and Qy=0QuNS,,

Jj=1
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we have
le(x)—TMf(X)|=ILTMf(X) dp - Fb T.f(x)w,
(4.14) éj T.f(x)du— Y T.f(xX)w,
S\Sp Qm\ Qo

+ J T,f(x) du —g: T.f(x)w, |:=A,t By,
So o
with the obvious notation. Now applying (2.6a) to S\S,, we have
C d
|Ao| = J T.f(x)du— ¥ T,.f(x)w, éﬁj — T,f(x)| de
S\ S, Qm\Qo 5\8,| 0

and as in the proof of Lemma 3.3

(T = Clminlsin (@) 1S Twico-

Loo(€2)

Thus,

C
Al = ([ il ) e )1 s
S\Sy 7
(4.15)

C
= (log M)|||f I wic-

On the other hand, using (2.10),

| modu- 5 T,

| Boll L.y = sup
xef) reQqy

@16) =c( Py +1sil) sup | Tsto)

1 1
=CP, ™M 1AL = C—M £l Locr)»

where |Sy|~ 1/ M is the length of S,. Now (4.14)-(4.16) complete the proof. O
Proof of Lemma 4.2. The splitting (4.10) and repeated application of (2.10) together
with Lemma 4.1 yield

mv)ed,

+ “(T_ TM) z , waVTMT,,UN ”00

(m,v)ele

=

(108 M) Z w/.:,wv” T/.LTVUN ” wl)

(m,v)el,

+Ce| T, T,Uy

s}

(4.17)

loo

=

(logM) Y 0,0,|VAT,T,UN)|x

(m,v)el,

Zn

+C|:Xl/l—(log M)+£]|| Un llo-
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Observe that since (u, v)eJ,, we have sin y(u,v)=¢ and for n=1,2,---, Py,
sin y(u, d,) = e. Now assuming u = (1, 0) and using (2.10), we find that

)

Further recalling (3.15) and using the same argument as in the proof of Lemma 3.5,
we have

. _ IS}
"VX(T[.LTVUN)"‘)Oé CISIH 7’(/% V)‘ ‘(" UN ||oo+ a_l/(TMTuUN)

9 . -
“a—V(T,LTuUN) = C(minlsin y(g, d,)) | Un |,

so that
V(T T, Uyl = C(min]sin y(u, v)|[sin y(g, d.)]) ™" | Un ||co-

Summing now first over v and then over u, we obtain

w,,

0,0, |V AT, T,Un)|o=C min — - Un |l
(%%EL " " ( ’-L N)” (M.%EJH n SIN Y(P«, V) sin Y(MQ dn) ” N”

' da 'd
(4.18) éCH da 1| B UN

= Cllog &*|| Un ||o-

Moreover, since A ™' o(T), Lemma 3.2 implies that there exists an integer N, such
that for N= N,, (I—ATx) "' exists and is a uniformly bounded operator on L,(Q),
1=p=oc0. Thus by (2.4) and (2.10) for N= N,

(4.19) TUN o= 1T = ATN) Mool TaeS oo = ColLf o

Taking finally e ~1/ N” and combining (4.17)-(4.19) the desired result follows. 0
Proof of Lemma 4.3. Recall that if h is zero in the complement of (), then

=|x=yl|

Th(x)=J rx—_y‘h(y) dyEJ k(x=y)h(y) dy=(k*h)(x),  h(x)=0, xeQ.
Q Q

Thus by Young’s inequality
1 1
IT?hlleo= 1 k= Bl = [IK[l, |1k * hl|q,;+;= 1, Th(x)=0, x£Q

and

1 11
k= hllg=lkl Al 1T+==—+—.
q r s

In the above inequalities, k is our kernel function. We set r = p to obtain 2/p+1/s=2
and, with s=1+7, we have p=1+1/(1+27)e(1,2). With this p, ke L,() and the
proof is complete. 0

5. Eigenvalue estimates. In this section we prove error estimates for the approxima-
tion of simple isolated eigenvalues of our integral operator T. Eigenvalues of T are
of physical interest and in particular the smallest positive eigenvalue is related to
criticality.



80 M. ASADZADEH

Since Ty does not converge in the operator norm to 7, we cannot directly apply
the known standard arguments as in [4] and [6] to derive the desired eigenvalue
estimates. What is lacking is a proof of an equality of the dimensions of certain
eigenspaces of Ty and T. However, by Lemma 5.1, Ty converges in the operator norm
to T* and using this result we are able to verify the crucial condition concerning the
dimensions of eigenspaces of Ty and T.

Because of the limited regularity of the scalar flux U, by Theorem 3.1 the sharpest
estimate for the convergence of eigenvalues is obtained for p =1.

THEOREM 5.1. Let A be an isolated eigenvalue of T with algebraic multiplicity 1 and
let T'c p(T) be a circle centered at . Then there exists an integer N, such that for
N = N,, Ty has exactly one eigenvalue Ay €Int B(A, ') with algebraic multiplicity 1.
Further assume corresponding eigenfunction g€ Wi °(Q) for some 8> 0. Then for >0
there exists a constant C, , such that

(5.1) A =AnN|=C N7, N=N,.

Here p(T) is the resolvent set of T and B(A, T") is the disc centered at A with dB=T.
We first review, for the sake of completeness, a rather standard and known
argument giving a general form of Theorem 5.1 for linear operators on Banach spaces
(Theorem 5.2).
Let X be a complex Banach space with norm ||-||; F: X - X a bounded linear
operator and {Fx}~_, a family of bounded linear operators on X such that for g € X,

(5.2) |Fg— Fngl|l >0 as N -co.

We assume that A is an isolated eigenvalue of F with index » and finite algebraic
multiplicity m = v. Then there exists a circle I' in the complex plane centered at A,
which separates A from o(F)\{A}. We denote by P(A, F) the spectral projection
(1/2i) f;(z— F) ™" dz associated with the eigenspace

X (A, F)=null (A = F)”

and let E(A, F) =Range (P(A, F)) be the corresponding generalized eigenspace. It is
easy to verify that

E=E(A F)=X(A, F),
dim E(A, F)=m,
(A=F)"P(A,F)=0 and (A—F)"'P(A, F)#0

(see, e.g., [6, Chap. 5] and [8, p. 573]). Now let us assume that there exists a constant
C and an integer N, such that for N = N,

(5.3) [(z=Fy) '|=C Vzel.
Here ||| is the operator norm defined by
A
|A]| =sup {——”“gg”“ igeX, g# 0}.

Considering (5.3) we may define the projection operator

1 _
P(A,FN):%J(Z_FN) le,
I

associated with the eigenspace

Ey=E(on, Fn)=null(A,— Fy)"®- - -@null (A, — Fy)",



L, AND EIGENVALUE ERROR ESTIMATES 81

where on = o (Fy) N B(A, '), B(A, ') is the disc centered at A with 9B =1I"and A;e oy
are eigenvalues of Fy with algebraic multiplicities m; and indices »;. Finally we assume
that for sufficiently large N,
(5.4) m=dim E(A, F)=dim E(on, Fn)= ), m;,.
j=1

We are now ready to formulate the following general result.

THEOREM 5.2. Let A be an isolated eigenvalue of F:X - X with finite algebraic
multiplicity m and assume that (5.2)-(5.4) hold. Then there exist exactly m eigenvalues,
counted with their multiplicities, AN € on of Fn and a constant C such that

(5.5) max |A —Ay|=C|F-Fxlg,
ANEON
where ||| denotes the operator norm restricted to E.

The proof of Theorem 5.2 is based on Propositions 5.1-5.3 below. See also, e.g.,
[4], [6], and [12].
ProrosiTioN 5.1. If (5.2) and (5.3) hold then

|(Py~P)P| >0 as N>,

where P= P(A, F) and Py = P(A, Fyn).
Proof. Since (z—F) ' and P commute we have for ue X

(P—Px)Pu :2L J [(z=F)'—(z—Fy) "1Pud:z
v

i
=—1—J (z—Fy) (F—FN)P(z—F) 'udsz,
2 )y

and

|(P=Pxy)Pul|=C sulp I(z=Fx) " II(F = Fx)P| suP [(z=F) 'ul.

When we use (5.3) there exists a constant C such that for sufficiently large N
(P = Py) Pul|= C||(F = Fx) Pl ||ul|.
Since the dimension of the range of P is finite, P is compact. Thus by (5.2) we have
|(F~Fy)P[>0 as N~
and the proof is complete. 0
We define the operator By : E > E as the restriction of Py to E, Byu = Pyu, for
ueE.
ProPosITION 5.2. If (5.2)-(5.4) hold, then there exist an integer N, and a constant
C such that for N = N,
(a) By is an isomorphism from E onto Ey;,
(b) IBNII=C.
Proof. Let ¢y, - -, ¢, be a basis of the space E. Since P is a projection onto E
Ika: Pi, i::1,~ T, m.
Set
¢in = Bngi = Pnei, i=1,--,m
We have, using Proposition 5.1, that for 1=i=m,

”‘Pi_GDi,N”=”(P_PN)‘Pi":||(P_PN)P§D.'||'>0 as N - 0.



82 M. ASADZADEH

Since {¢;}/~, is a basis of E, this proves that for sufficiently large N, ¢, n, i=1,-- -, m,
are linearly independent and using (5.4) we conclude that {¢; 5 }iZ, is a basis of Ex.
Hence (a) is proved. The proof of (b) follows easily from the fact that E and Ey are
finite-dimensional. 0

Now we consider the operators A and Ax : E - E defined by

Au=Fu for uckE,
and
A= By FyBayu for ueE.

The operators A and Ay are well defined because E and E, are invariant under F
and Fy, respectively. Here A is the only eigenvalue of A and the eigenvalues of Ay
are those of Fy in B(A, I).

PropPosiTION 5.3. Assume that (5.2)-(5.4) are valid. Then for sufficiently large N
we have

”A*AN“E = ”F_FN”E~
Proof. Since Py and Fy commute we have for u € E,
(A—An)u = Fu— By FyPnu = Fu— B PyFau.

Observe that there is no guarantee that Fyu e E and consequently By Py cannot be
replaced by the identity operator in this last relation. However, we have

Now using Proposition 5.2(b) together with the fact that Py is uniformly bounded
(because of (5.2)) we obtain for u € E and for sufficiently large N,

“(A“AN)“” = CH(F“FN)““, .

and this gives the desired result. o
Proof of Theorem 5.2. We have by Proposition 5.3

A~ Ax]= C sup {[(F = Fy)ul, [lull = 1}.

Since E is finite-dimensional, A and Ay as operators on E can be represented by
matrices with A and Ay as eigenvalues. Hence by an error estimate for eigenvalues of
matrices given in, e.g., Wilkinson [20],
max A =An|=]|A=AN|=SC|(F—FN)u|, ucE and ||Ju| =1,

and the proof is complete. 0

Let us return to our special case with the operators F and Fy replaced by T and
Tn, respectively, and m =1. As stated in the beginning of this section, to derive the
sharpest estimate for the convergence of eigenvalues we now take X = L,(Q)). For our
problem, condition (5.2) follows from the fact that T converges pointwise to T and
(5.3) is a result of Lemma 3.2. Below we prove Theorem 5.1 by verifying (5.4) for our
operators T and T, with m = 1. Condition (5.4) may be proved directly if || F— Fy| -0,
as N — o0, but this is not necessarily true in our case. However, we will prove that
| T?—T%|| >0, as N> co. Using this we prove (5.4) with m =1 first for T> and T
and then for T and Ty.

LEMMA 5.1. We have

| T*—T\),»0 as N>, 1=p<co.
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Proof. We have
1T = TN], =1 T(T = Tn)+ T(T = T\) Ty + (T = T\) T -
Since T and T* are compact we see that
IT(T= T, = [(T* = TR) T*), >0 as N >
and
|T(T—TN) TN, = | TA(T*~TX)T*||,, >0 as N ->oco.

Thus Lemma 3.4 gives the desired result. 0

Below, for 0# A € o(T), we let I' denote a circle in the complex plane centered
at A°, separating A° from o(T*)\{A°} and set 6y = o(Tx) NInt B(A>, T).

LEmMMA 5.2. For sufficiently large N

dim E(A°, T?) =dim E(&n, TW).
Proof. Let K =T, Kx =Ty and for 0=t =1 define
Kn.=(1-1)K+tKy;

note that Kyo=K, Kn;= Ky, and ||[Kn,||= C. We denote by o, the part of the
spectrum of Ky, o(Ky,,), contained in the interior of B(A”, ). The projection operator
P(O'N,r, KN,t) =-—1—: J' (Z - I<N,t)g1 dz
2qri )i

is well defined and using Lemma 5.1 we can show that it is a continuous function of
t (see [3, Thm. 3a]). Further by a result of Riesz and Nagy [15, p. 268] we have the
following: If the difference of two projections is of norm less than 1, then their ranges
are of equal dimensions. (In the estimate of the norm of the difference of P(on,,, Kn,/)
and P(ow,, Kn,), |s—t| and the length of ' are involved in the constant on the
right-hand side. This constant, because of the length of I~“, can be made less than one.)
Hence for sufficiently large N,

=dim E(&n, TN). g
Now we are prepared to complete the proof of our eigenvalue estimate.

Proof of Theorem 5.1. By the spectral mapping theorem A € o(T) if and only if
A eo(T?). Now we use the equality

T’ =X =(T=A)(T—=xeP™P)(T—1e*>h),
to obtain the decomposition
(5.6) EWA, T)=EW\ T)@EA ™)' TY@E(A “/, T)

(see, e.g., [17, Thm. 5.9-D]). In our case T as an operator on L,({)) has only real
eigenvalues. To see this, let v e L,(Q) be an eigenfunction of T corresponding to the
eigenvalue A, so that

(5.7) Tv = Av.

Now arguing as in the proof of Lemma 4.3, T*: L,(Q) - L,(Q), and by (5.7), T>v = A’v;
thus ve L,(Q), and hence (5.7) implies that v is also an eigenfunction of T as an
operator on L,(Q)) with the same eigenvalue A and since T is self-adjoint on L,(Q}),
we have A € R. Thus the two last eigenspaces in (5.6) are empty and

(5.8) dim E(A, T) =dim E(A°, T%).
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Since dim E(A, T) =1, Lemma 5.2 together with (5.8) imply that ¢ is a real number.
This fil_lows since because of_tlle structure of T (real positive weights), if &€ o(TX)
then &y € o(TY), so that if &y # dn, dim E(Fw, Th) =2, which contradicts Lemma
5.2 and (5.8). The analogue of (5.6) for & and Ty is
(5.9) E(dn, TN)=E(Vén, TN)®E(VGy eV, TO@ E(Vay eV, Ty).
Now if one of the last two elgenspaces in the right-hand side of (5.9) is nonempty,
say E(V&n e“'"m’ ', Tn) # D, then ¥y e/ co(Ty) and again because of the
structure of Tn, Von ™ co(Ty); hence E(V6n P Ty) # &. Consequently
dim E(én, TN) =2, and this is again a contradxctxon We conclude that

dlmE(\/ NaTN) dlmE(U’N,T )
This completes the proof of (5.4) for our case m=1. Now Theorem 3.1 gives the
desired result since for the normalized eigenfunction ge W3 °(Q) corresponding to
the eigenvalue A, (3.2) implies that

IA—/\Nléll(T_TN)g“Ll(Q)é CN¥2+9. D

6. Numerical results. In order to determine the rate of convergence for the discrete
ordinates method in some concrete cases and also test the efficiency of the postprocess-
ing procedure, we have performed some numerical computations on the following
two-dimensional neutron transport equation:

6. weVulx, w)+tulx, w)=AUX)+f(x), xeQ=1I
6.1
u(x, w)=0, xel', ={xel'=60Q: pn-n(x)<0},
where I°=[0,1]x[0,1], u € S={u € R*: || =1}, and n(x) is the outward unit normal
tol"at xel.

This problem is equivalent to the following integral equation for the scalar flux

U (see (1.7)):

(6.2) (I-ATYU=Tf.

The discrete ordinates method gives the following semidiscrete analogue of (6.2)
(see (2.4)):

(6.3) (I—=ATN)Uy=Tnf,

where N is the number of discrete directions on S.
We compute Uy using the iteration below:

Uy " =Ty(AUW+f), m=0,1,2,---,

(6.4) U o,
The iterations are continued until m+1= L, where
(6.5) U = UN ") L@=107¢,

and Uy is defined to be U'Y.
A postprocessed solution U7, is also computed (see (4.5)-(4.6)), i.e.,

Ut =Tu(AUY+f),
Uk =T, AU +f), k=01,

where UY) = Uy is computed as in (6.4)-(6.5) and M = N°.

Remark 6.1. In the computations we also discretize in the space variable using
the discontinuous Galerkin finite element method with mesh parameter h =1/20, 1/50
and uniform triangulations of I” (see [2]).

(6.6)



6.1. Data. We perform the iteration (6.4)-(6.5) with N =6, 9, 12, 18, 36 and the
postprocessing procedure (6.6) with N =6 and M =36 for the following data. Let
f=fp be the characteristic function of the domain D < I°. We consider the following

cases:
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(D1) A=0.2 and D={(x,,x,): (x,—3/4)+(x,—3/4)*=(0.2)%},
(D2) A=0.2 and D={(x,,x): (x;—1/2)*+(x,—1/2)>=(0.2)%},
(D3) A=0.3 and D={(x,,x): (x,—1/2)*+(x,—1/2)*=(0.3)*}.

Each of the cases (D1)-(D3) is solved twice, once with h =1/20 and the second time

with h=1/50.

6.2. Results. In Tables 1-6 we compare U = U,;q with Uy and U¥ where N =6,
9, 12, 18. Below ey = U — Uy, e*:= U — U¥ and L denotes the number of iterations

in (6.4) for N = 36.

TABLE 1
Case D1, with h=1/20; L=16.

Norm
Error L L L
U 0.494163 0.611624 1.665514
(A 0.066632 0.079378 0.245124
ey 0.028889 0.035967 0.101383
e, 0.014218 0.017859 0.064952
ey 0.006515 0.008202 0.025387
e* 0.009415 0.011435 0.027280
TABLE 2
Case D2, with h=1/20; L=17.
Norm
Error L L Lo
U 0.601861 0.694524 1.736332
e 0.065268 0.079722 0.306480
ey 0.026942 0.034496 0.114590
e, 0.019370 0.025200 0.084097
es 0.007661 0.009823 0.035274
e* 0.009452 0.011680 0.030788
TABLE 3
Case D3, with h=1/20; L=235.
Norm
Error L L L
U 2.454003 2.613289 4.522570
e 0.095097 0.115746 0.428698
€y 0.049798 0.062952 0.217018
e, 0.038930 0.050942 0.190969
e 0.015510 0.019816 0.063142
e* 0.054172 0.066849 0.153723
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TABLE 4
Case D1, with h=1/50; L=16.

Norm
Error L, L, Lo
U 0.534893 0.658920 1.726658
e 0.073383 0.086619 0.271352
ey 0.032836 0.040532 0.111557
e, 0.017447 0.022298 0.095111
e 0.009490 0.011772 0.039077
e* 0.010576 0.012690 0.029262
TABLE 5
Case D2, with h=1/50, L=17.
Norm
Error L, L, L
U 0.636361 0.735342 1.791415
e 0.073927 0.090938 0.329555
€y 0.032881 0.041574 0.129138
e 0.025804 0.033993 0.110757
e 0.010783 0.013486 0.046468
e* 0.010629 0.013895 0.038291
TABLE 6
Case D3, with h=1/50; L=235.
Norm
Error L, L, Lo
U 2.462085 2.625772 4.526402
e 0.109765 0.134892 0.496076
ey 0.062966 0.079828 0.250217
e 0.047498 0.061768 0.207581
ey 0.020606 0.025912 0.076828
e* 0.054509 0.071086 0.167479

6.3. Conclusion. By Theorem 3.1, for the discrete ordinates method, we expect
the convergence rates 1/ ya, where a =2 for the L, estimate and @ =1 in the L., case.
Tables 1-6 show the convergence rates 1/ ya with a =1.6-2.2 and « =~ 1.3-1.8 for L,
and L., respectively. The difference between the theory and computations may depend
on the choice of Usq, which is also discretized in space, as the “exact” scalar flux U.
Observe that in (D1)-(D3), fe H?*(Q). Hence by (6.2) the exact scalar flux U has
the required regularity in Theorem 3.1 (Ue Wi ?(Q), 8>0o0r Ue W)(Q), 1 =p <0).

As for the postprocessing procedure we see that the L, errors for e* are consider-
ably less than those for e4, in particular if f has small support. Further we have
lle*)lo~ lleslls (cf. Theorem 4.1).
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