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ANALYSIS OF A FULLY DISCRETE SCHEME FOR
NEUTRON TRANSPORT IN TWO-DIMENSIONAL GEOMETRY*

MOHAMMAD ASADZADEH"

Abstract. We derive error estimates for a fully discrete scheme for the numerical solution of the neutron
transport equation in two-dimensional Cartesian geometry obtained by using a special quadrature rule for
the angular variable and the discontinuous Galerkin finite element method with piecewise linear trial function
for the space variable.
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Introduction. The purpose of this paper is to establish error estimates for a fully
discrete method for the numerical solution of the neutron transport equation in
two-dimensional Cartesian geometry. We use a special quadrature rule for the angular
variable, where integration is replaced by a numerical quadrature rule involving a
weighted sum over functional values at selected directions, and we apply the discon-
tinuous Galerkin finite element method for the spatial variable.

The stationary one-velocity processes of neutron transport in a substance surroun-
ded by vacuum can be represented by the following integro-differential equation: Given
the distributed source density f and the coefficients a and tr, find u u(x, Ix) such
that for Ix e $2:

Ix" Vu(x, ix)+a(x)u(x, ix)= ftr(x, ix, ix’)u(x, ix’) dix’+f(x, ix) forxl,
(0.1)

u(x, a)=0 forxr,

where tr is the transfer kernel describing the distribution of particles arising from
scattering, fission and capturing events and a is the total cross-section. Further, 1 is
a domain in R with boundary F, S2 {ix s R3. ]ix] 1}, Ix (ix, Ix2, Ix3) and

0
a.V= Y a,,

i=

r {x r: . n(x) < 0},

where n(x) is the outward unit normal to F at x F, and finally the unknown function
u u(x, Ix) is the density at x of particles moving in the direction Ix.

The neutron transport problem was studied analytically by e.g. Davison [3] and
Vladimirov [ 14]. Numerical treatments of the problem have been restricted to separate
error estimates for either angular or spatial discretizations. Angular discretizations for
a two-dimensional problem were studied by e.g. Nelson and Victory [9] using the
Nystr/Sm discrete ordinates method. Spatial discretizations in a two-dimensional case
for one single direction were studied by e.g. Lesaint and Raviart [6] using the discon-
tinuous Galerkin finite element method.

* Received by the editors May 1, 1984, and in final revised form January 21, 1985.
t Department of Mathematics, Chalmers University of Technology, and the University of G6teborg,

S-412 96 Gfteborg, Sweden.

543



544 MOHAMMAD ASADZADEH

An analysis of a fully discrete scheme with combined spatial and angular discretiz-
ations for slab geometry (one-dimensional spatial and angular variables) was recently
done by PitkSranta and Scott 11 ]. In a two-dimensional case, with the angular variable
varying on the unit circle i.e., a case where xlcR2 and IX S {IX R2:I1 1}, a
fully discrete scheme for a model problem was analyzed by Johnson and Pitkiranta [5].

In the present text we extend the analysis of [5] to the case of a homogeneous
infinite cylindrical domain in R3. Because of the translational invariance, the relevant
spatial domain is again two-dimensional, namely the cross-section of the cylinder;
however, the relevant angular domain is now the unit disc in R2, i.e., the projection
of the surface of the unit sphere in 3 onto the plane of the cross-section of the cylinder.
Thus, in the model problem to be considered we will have x f c R2 and Ix D

<-- 1}.
The plan of the paper is as follows: In 1 we present the model problem and

show that this problem can also be formulated as a Fredholm integral equation of the
second kind for the scalar flux. In 2 we introduce notations, assumptions and some
previous results which will be used frequently. In 3 we study a quadrature approxima-
tion of weighted integrals for a class of functions relevant to our purpose and derive
some quadrature error estimates. Section 4 is devoted to a semidiscrete problem with
angular discretization. The results of this section are essential tools in the proofs of
error estimates. In 5 we study the fully discrete scheme and state our main result:
Theorem 5.1. Our concluding 6 contains error estimates obtained by applying results
of the previous sections.

1. A model problem. We shall consider the following model problem: Given a

distributed source density f and a real constant A, find the flux u(x, Ix) such that

IX. Vu(x, IX)+u(x, IX)-A f u(x, ix’)(1-lix’12) -1/2 dix’+f(x), (x, ix)fxD,
D

(1.1)
u(x, u)=0 onr ,

where f is a bounded convex domain in 2 with polygonal boundary F and

D {IX  2:I 1 <---- 1}, r;, {X F: n(x) < 0},

where n(x) is the outward unit normal to F at x F. This problem is obtained from

problem (0.1) assuming that f in (0.1) is a cylinder (cf. Remark 1.1 and the proof of
Lemma 1.1 below). Observe that our model problem corresponds to a problem with

isotropic source and a homogeneous medium with isotropic scattering.
Let us reformulate problem (1.1) using the following notation. For IX D, IX 0,

let Tu be the solution operator for the problem: Given g L2(f) find u such that

(1.2)
Ix’Vu+u=g inI,

u=0 onF,
i.e., u Tug if u satisfies (1.2). By a simple calculation we find that

(1.3) Tug(x) e-Sg(x six) ds,

with d d (x, ix) denoting the distance of x from the exterior of f in the direction -ix,

d(x, ix)= inf{s > 0: (x-/11)}.
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If g is constant on each vertical line, then the representation (1.3) is valid also for
cylindrical domains of the form Ca f x .

Introducing now the scalar flux U defined by

U(x) f u(x, /z)(1-1/xl2)-1/2
dD

and letting g A U +f, we have by (1.3)

(1.4) u(x,/x) T,()tU+f)(x), (x,/x) e f D.

Multiplying (1.4) by the weight (1-11)-/- and integrating over D we obtain the
following integral equation for the scalar flux U:

(1.5) (I-AT)U= Tf,,

where

(1.6) T JD (1 --I1=)-*/=T M.

Remark 1.1. The presence of the weight (1--1/zl2) -1/2 is a consequence of the
geometry. Consider the volume element in the spherical coordinate system

dV s sin # ds d# d, 0 s , 0 and 0 2.
Let D be the projection of S, then J =sin #. This implies that sin # d#
(1-J)-/JJ dJJ. And since d=dd=Jdd we have

dV (1 -[12)-l/s2 as d.
LEMMA 1.1. e integral operator T=o (1-1[=)-I/=T d is compact on L2().
Proof Using (1.3) and Remark 1.1, we get

Tg(x)= (1-lz)-/=T,g(x) d= (1-11)-/= e-g(x-s) dsd
D D

(1.7)

s g(x s d

Let now be an extension of g to C x R,

(x, ) g(x), x e a, z e ,
and let S be the upper half of the unit sphere

= s{(x, )eexe e0}.

We associate with each e S its ohogonal projection D: e S D and define
the distance function (, ) for (, ) (x, , ) e a x N+ x ,

(, ) inf {s > 0: -s C}.

Identifying x e and (x, O)e C, by an easy argument we get

d(;, )= d(x, ) d(x, )/11.
Let Ta and T be the following integral operators"

Ti() e (-s) ds, T= T .
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By the z-independence of and a geometrical interpretation we have

Tg(x) f(;) s2 (;- sl)s2 ds aft
e ao

__f e-I-l fn [Io e-I-y’). ]c.+ I-2(21 d Ix y, z)l
dz g(y) dy

= I(x- y, )
d g(y) dy,

where Ca+ f x R+ and -sfi. Integrating by parts we get

with

e-I(x-y’z)l 1
F(Ix- yl)

l(x Y, z)12
dz -Ix- Yl

f -oo g e-(Ix-yl2+z2)l/2 z
F(Ix y[)

(i x yi 1/2 arctan ix Yl
dz.

Making the substitution of variable arc tan z/[x-y[ and integrating by parts we
get, (compare with 10, (1.4)]).

=/2 [x [sin(1.8) F(lx el) e-Ix-yl/cs
y

d--’n’/2 COS
2

Thus

dt 2 e-I-yl/os dt.
dO

1 In F(Ix-Y])
(1.9) Tg(x) - Ix Yl

g(y) dy,

with F as in (1.8). Thus, T is an integral operator with weakly singular kernel and as
in [8] one can show that T maps L_(12) into Hi(l)). Hence T: L2(12) -> L_(12) is compact
and the proof is complete. [3

COROLLARY 1.1. The equation (1.5) is a Fredholm equation of the second kind.
Let us assume that the system described by (1.5) is subcritical, that is 0 -< A < l/A,

where A is the largest eigenvalue of T. Then (I-AT) is invertible and (I-
A T)-l: L2(- -> L2(’ is a continuous linear mapping. This implies that:

(i) For a given fe L_(12), the problem (I-AT)U= Tf has a unique solution.
(ii) There exists a constant C > 0 such that

(1.10) II(I- XT)vll >- Cllvll
where I1" denotes the L(a)norm.

From now on the letter C will denote various constants not necessarily the same
at each occurrence.

2. Notation and preliminaries. In this section we define some function spaces,
introduce discrete analogues of (1.5) and finally we state some results which we shall
refer to below.

For s >=0 let HS(fl) be the Sobolev space with the norm

Ilvll- tEs IIOvll = Ilvllo-Iloll.)-Ilvll
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and with corresponding seminorm

Io1 IIDvll -
Further, for s, r->_ 0 we define the space Hr’S(2) as in [7] with norm

(2.1) Ilvllr,- IIv(.,x2) llr)dx:+ IIV(Xl,’)ll =i4() dXl

and corresponding seminorm

(2.2) Io1,-- Io(. x=)l =, axe+ Iv(x,,.)l, ,Ix,

We shall consider a quadrature rule for weighted integrals of the form

(2.3) f u()(1-1l)-)-’/d Z u(),o,
dD A

where A {IX, , IX) is a discrete set of quadrature points Ix D with corresponding
positive weights t%, Ix A. The precise choice of quadrature points and weights will
be given in 3 below.

We shall denote by {(h a family of quasiuniform triangulations (h--g of
indexed by the parameter h, the maximum diameter of triangles K h- We introduce
the finite element space

Vh {v L2(I))" vlr. is linear, K qgh},
h "L2(-) Vh approximating Tt, which is definedand a discrete solution operator T,

by the following.
Discontinuous Galerkinfinite element methodfor (1.2). Given Ix D and g L2(f)

hfind uh( IX)= Tt,g such that

(2.4) [(IX. vuh’4"U h, I))K’4" IO [uh]v+IIX" n’ dtr]= fn gv dx, vL2(-),
KCh K-

where

(u, v),, I uv dx,
.IK

OK- {x OK" IX. n(x) < 0},

Iv]= v+-v_,

v+/-(x) lim v(x + six), x gK,
sO4-

n n(x) is the outward unit normal to OK at x OK and uh 0 on F,.
We can now state the following discrete analogues of (1.5).
The semidiscrete problem. Find u,(x, Ix) such that

(2.5) u,,(x, IX) T,.,. (A U,,, +f)(x), (x, Ix) c= 1) x A,

where U, is the quadrature approximation of the scalar flux U,

U.(x) y. u.(x,
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Multiplying (2.5) by the weight t% and summing over/z A we obtain the following
equation: Find U, L2(fl) such that

(2.6) (I-AT,)U,= T,,
where T =Y,a T.
efully discrete problem. Find u(., ) Vh such that

(2.7) u(., )= T(AU+f), A,

where U is a totally discrete approximation of the scalar flux U,

U Z Uh( ).
A

Again, multiplying (2.7) by w, and summing over A, we obtain the following fully
discrete analogue of (1.5): Find U Vh such that

xT)u T(2.8)

where
h

Our main concern will be the fully discrete problem (2.8) and our main results
are estimates of the error in scalar flux U-Uh,. To prove these estimates the main
step will be to prove that under certain assumptions on the quadrature rule (2.3) and
on the relation between n and h, (I-hTh,) -1" L2(fl) L2(fl) exists and is uniformly
bounded.

We shall also use the following propositions, the first of which is due to Anselone
[2]. For the second and third propositions we refer to Johnson and Pitk5ranta [5] and
[4], respectively.

PROPOSITION 2.1. Let T: L2(’)--) L2(- be a bounded linear operator such that for
some positive constant C

II(I-AT)wll > cIlll VV L2(a)

and let { Tn}n% be a uniformly bounded sequence of linear operators on L2(’ such that
for some positive integer m.

(2.9) e.--II(T- T.)TTII-0 as n-->o.

Then there exists a positive constant C such that for n large enough

PROPOSITION 2.2. There is a constant C such that for g L2(-

" v r,g + T,g + T,g)21 n. l as c g II.

PROPOSITION 2.3. Given g L2() there is a unique u h Tg Vh satisfying (2.4).
Moreover, there is a constant C independent of g, , h and such that

h 1/2(2.10a) III(T- T)glll Ch Tgl,,

(2.10b) III(T- TX)g[II Ch3/=l Tgl=,
(2.11) illTglll C g II,
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where

(2.12) IIIv[ll Ilvll=+h2 II ’voll + IEvOl=l nl ds Ilvll, --(v,v) ’/=
/(

K K K

3. The quadrature rule. In this section we define the quadrature rule to be used
and derive estimates for the quadrature error.

Using polar coordinates Ix (r cos o, r sin 0) for the directional variable Ix D
in the quadrature rule (2.3), we have

(3.1) u(x, r, o)(1-r2)-/-rdrd--. , u(x, Ix)t%.

Let now A {Ixkj D" Ixkj rk(cos o, sin o), k 1,. , N and j 1,. -, M} be the
set of quadrature points, where o 2rj/M, j 1,. ., M and rk are the zeros of the
orthogonal polynomials associated with the distribution da(r)= (1- r2)-/2r dr on the
interval [0, 1]. It is known (see Szeg6 [13, pp. 121-122]) that

(3.2) rk sin Ok,

where Ok is a certain point in the interval Ik,

(3.3) 0I=1. 4N+2 ’4N+2
k=l,...,N.

With each /Xk A we associate the positive weight tOkj AkWj where W 2r/M and

(3.4) a a(sk) a(Sk_) =’,/1 S2k_l --41 Sk, k 1,’" ", N,

where Sk is a certain point in the interval (rk, rk+) and So=0, s= 1 (cf. Szeg6 [13,
pp. 47-50]). This quadrature rule is different from the Sn-rules which are used in
practice; however the concrete calculations here are easy to follow. For compatibility
reasons we shall assume that N M, see 1]. The number of quadrature points in A
is then

(3.5) n MN.

Finally, for integer a _>- 1 and for L, ->_ Owe define the function space c(L,; O, 1)
{uc-([O, 1])’u is piecewise continuous and lu(r)l<=L,r[O, 1]}. If u
c(L; O, 1), then by Taylor’s formula we have

u(r) Q,,_(r)+ R(r), re [0, 1],(3.6)

where

r
Oo_,(r)

I-0
and R(r)

(a 1)!
(r- t)-’u<)(t) dt.

Introducing the Peano Kernel function defined by

1

K,(x) (a-l)!

0

x- forx_->0,

for x < O,

we have

(3.7) R(r) u(t)K,,(r t) at.
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We shall use the following result of Stroud and Secrest [12]"
LEMMA 3.1. Let u c)(L,,; 0, 1) and w be a weight function and suppose that the

quadrature approximation

u(r)w(r) dr--- 2 AkU(rk)
k=l

is exact for all polynomials of degree <= a 1. Then

l fo(3.8) u(r)w(r) dr- , AkU(rk) <---- IE,,(t)llu")(t)l dt,
0 k=l

where

0

N

E,(t)= w(r)K,(r-t) dr- , AkK,(rk-t).
k=l

Proof. Since the quadrature approximation is exact for all polynomials of degree
<-a- 1, we have using (3.6), (3.7) and Fubini’s Theorem

u(r)w(r)dr- Au(r)
k=l

Iow(r) u)(t)K(r-t) dtdr- Ak U)(t)K(rk--t) dt
k=l

((t) w(r)K(r t) dr AK(r t) dt
k=l

and the proof is complete.
We shall assume that u is suciently smooth. Then by Lemma 3.1 with w(r)=

(1- r2)-l/2r we have

(3.9)
N

u(x, r, o)(1- r2)-l/2r dr- Z AkU(X, rk, O)
0 k=l

where

El(t) (1 r2)-l/2r dr- , Ak 41 2- Ak.
rk rk

OU(X, t, o)
Ot

dt,

au(x, r, ,)

LEMMA 3.2. One has [El(t)[<-3r/4Nfor all t(O, 1).
Proof We assume, without loss of generality, that rt- < < r. Using (3.4) we get

El(t)=x/1- 2- , ak=x/1-- t2--a(Sc)+ a(Sl_l)=x/l t2--/1--S-l.
rk>

Since rl_ < Sl_ < r and rl_ < < r we have

1,)1--<41- _-4i- r

(3.10)
-r M

u(x, r, ,)- Z wu(x, r, %)
j=l

Further, it is easy to show that if u is sufficiently smooth, then we have for our choice
of uniform quadrature rule,
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and recalling (3.2) and (3.3) we end up with

O 371"
IEl(t)l <-- cos 01-1 -cos 01 sin 0 dO <= (01- 01-1)<

o_ =4N

4. The semidiscrete problem. Our aim in this section is to establish the stability
of the semidiscrete problem (2.6) using Proposition 2.1. For this purpose it suffices to
prove (2.9) with m 2. Since T, is not compact, the conclusion of Proposition 2.1"

(4.1)

does not (directly) imply the existence of a solution to (2.6). However to prove existence
we can argue as in the remark following [5, Lemma 4.1].

We shall use the following splitting of (,,)A tO,tO" For e > 0, let

Here {dk}= are the directions of the sides of . Further we shall assume that
e e(n) <-_sin w/(2N+ 1), in which case the sum

(4.2) tr(e, n)=Y"to,to-->0 as n->.

To see this note that I has in this case at most M2" n elements, moreover by (3.9)
and

we have

rl sl rl+l, 1= 1," ", N

At <-- (1 r_l)1/2- (1 r+l) 1/2 cos 01-1 -cos 01+1

0/+1 5’sin 0 dO <
dOt-1 -rl+l’ I=I,...,N.

Hence

571"
(4.3) A < l= 1 N,=4N’
and

C C C
Z" t%to,, aWjAkW! < M2N2 1 N2

We now state the main result of this section"
LEMMA 4.1. I[( T- T,) T2, -> 0 as n ->

To prove Lemma 4.1, we need the following two lemmas.
LEMMA 4.2. There exists a constant C such that for (/, v) I’ and g L2(fl),

T,g II, < Ce --7/2 g II.
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LEMMA 4.3. There exists a constant C such that for g H(f),

,,( T- T,,)g,, <- C(--+--) ,,g,, 1.

Once the Lemmas 4.2 and 4.3 have been proved, we can prove Lemma 4.1.
Proof of Lemma 4.1. Applying Lemmas 4.2, 4.3 and Proposition 2.2 we have

II(T- T) Tgll II( T- T,) E

\- -] + or(e, n)

Choosing now e.g. e N-1/7 and using (4.2), we obtain the assertion of Lemma 4.1. D
ProofofLemma 4.2. By an orthogonal coordinate transformation we may assume

that/x (lixl, 0). If (ix, v) I’, then by Proposition 2.2,

(4.4)
IIV( TT,g <-- (T,T,,g)

where O/Oix =ix. V. Recalling (1.3) we have

Thus

(4.5)

Tv T,g(x) f
dO

e-STg x six ds.

3
--( T,Tg(x)) e
Ov

-d/l"l T,,g -v
0+ e-S--( T,g(x six)) ds,
Ov

where = x-(d(x, Ix)/lixl)ix. By an easy calculation we have

Ix.n Ix.n

where n- (hi, n2) is the outward unit normal to F at . Squaring (4.5) and integrating
over f, using the facts that dx2- Ix" n/lIxl ds on F, IIx" nl->- e2 and Proposition 2.2 we
obtain"

0
(T,rg(x)) <-C irgl2

v.n tz" n

/.n Izl
ds/fllgll=

<--- Irgl v. nl ds/Cllgll=<--Ilgll--E
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Thus by (4.4)

IIV(TT,,g)]] <-- Ilgll +-T2llgll < C Ilgll-

Since by Proposition 2.2 TT.gll C IIgll. This proves the desired result. D
For the proof of Lemma 4.3 we need the following result.
LEMMA 4.4. There is a constant C such that if u(x, r, q)= u(x, Ix)= T,g(x), where

g H1(li) and Ix (r cos o, r sin q), then

(4.6)

and

A -=1 q9

Proof. Recall that

u(x, r, )=
f|,(x,r,,,,)/r
dO

where d (x, r, c) d (x, Ix ). Thus

Ou

(4.8)

drd C g

e-Sg(x six) ds,

--r e x- d-l_-----+ ao e-’(g(x-oq six)) as

1 -a/r Od [a/ Og
=-e g(x) +Jo e--(x-slz) ds,

r OIX’
where x d (ix / r) e F,, and Ix’ (r sin q, r cos ) is orthogonal to Ix. Estimating
Od/Oo in each subdomain lira {x e ll" ) e S}, we obtain

Od(x,r,) C
for x .

0 [sin s()[
Here the S’s are the sides of and is the angle between and $2. By an ohogonal
coordinate transformation we may assume that the xl-axis is parallel to S. Then

X2(4.9) d(x, r, )
sin ff()’

x=(xl, x2)eO.

Squaring (4.8) and integrating over we get

fa Ou(x’r’)2 (fale-2e(,.)/rg2 dx
dx C

sin2 6, O

i io )+ s e- ds dx C( +),
,J

with the obvious definitions for and . These terms are estimated as follows:

= exp(-2d(x,, r, )/r)g2()sin ()
N I g2() dx foclinl-1(-2exp((-2x2)/(rsinO)))_ dxz

s 2r sin r sin j

C

rlsin 1
[1
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and using the trace estimate: Ilgllr CIIgll, we find that

C
1"/ r[sin q’jl

Ilgll=

For estimating J, let us assume that/x’. Vg 0 on the complement of the 12a. Then
applying Fubini’s theorem we get

= S
2 e-2S( ’’ Vg)2 dsdxr2 s2 e-2SlVg(x-s)l2 dsdx

w,j dO

r2 s2 e-s ds IlVgll Cr=llVgll crllgll.

Summing over j we have

< Cr-1/2 min Isin q,(0)l-/=llgll,

hence using (4.3) we obtain

, Ak q dq
i=1

-<- cllgll
=1] mn Isin ()1-/ d Cllgll.

To verify (4.7) we observe that

Ou (lOdl)fd/ 0e-d/g(.) -- rEd / e-S--(g(x--slx)) ds.
Or r ao Or

Moreover Og/Or=-(s/r)(ix. Vg), and since by (4.9) Od/Or=O, thus

(4.10) Ou_ -d e-a/r fo/r -s e

Or- r g(g)+ (/X.r Vg) ds.

Squaring (4.10) and integrating over l)a we get

f’Ou(x,r,c.P) [fcd2e-2d/r

dx <= C
r4

g2() dx. Or ,.

+ s= e-=lX7g ds dx C(Ij + Jj).

We estimate as before Ij and Jj separately:

Ij
d e-a/ g

r4 (,,) dx

fIin%lxexp((-2x2)/(rsinq)) fr=< C r sin----5 dx: g2() dx

-1
|
Clsin%l x2-Z exp((-Zxz)/(rsin qj))

<_- C g
2 r sin qj a o r sin j

dx2.
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Integrating by parts we have

IJ=< CIIgll [sin 1 -2/r e_2/r r2 e_2/r Isin 1 .r3 (-e -r +r:)<=C
r

Ilgll

By the same treatment as in the estimate of Jj we find that

J_-< cIIvgll=_-< CIIgll,.

Again using the trace estimate and summing over j we have

Ou(., r, o) <
Or --r-llg]l’

thus

Proof of Lemma 4.3. Applying Lemmas 3.1, 3.2 and (3.10) we get

eM(x)l- I(T- T)g(x)l--

M N

u(x, r, )(1- r2)-l/2r dr do- , w , AkU(X, rk, (,O)
j=l k=l

0

N

u(x, r, p)(1-r2)-l/:rdr Z AkU(X, rk, P)
k=l

dq

+Z Ak
k=l

-r M

u(x, r, ,,o) d,,o- Y wu(x, r, %)
j=l

u(x,r,)
Or

dr dq
M k= Ak

u(x, r, )
dq,

and the desired result follows from Lemma 4.4.

5. The fully discrete problem. We shall prove that the fully discrete problem (2.8)
has a unique solution in Vh. To do this we shall first show that if h is properly related
to n, then

(5.1) II(T- T)TIIoO as n-.

By the argument used in the proof of Proposition 2.1 (see proof of [5, Lemma
3.1]) and by (4.1) it then follows that if n is sufficiently large, then there exists a

positive constant C such that

II(I- AT)II > cIlll
Hence, (I-hTh,) L2([’) -> L2() is injective and since Th, has finite dimensional range
and thus is compact, it follows that (I- h Th,) is one-to-one, onto and has a bounded
inverse. In particular the fully discrete problem

I T) uh Tf
has a unique solution uh, in L2([-) and since The: L2([-)-> Vh, we have U Vh, i.e.,
the fully discrete problem (2.8) has a unique solution. To prove (5.1) the main work
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will be to prove an estimate of the form:
h h(5.2) II(T T) Tgll <-- C( y)h Ilgll,

where y y(/z v) min (Isin d(tz, v)l, [tzl, Ivl), with d(/z, v) the smallest angle between
g and v, C(y)- as y0 and a > 0. Using (5.2) and the LE-stability estimate

resulting from Propositions 2.2 and 2.3, in the decomposition

(T. T)Tg ,2(T T)Tg

( + ),(T, T) hTg,

we get

II(T. The) T2gll [ h v(,) v(,)<

We shall then choose e and h related to n in such a way that hA(e, n)--> 0 and
B(e, n)-O as n-, and (5.1) will follow.

To prove (5.2) for 3,_-> e, let us first note that by an orthogonal coordinate
transformation we may assume that/z (/Xl, 0). If we reformulate the discrete problem
(2.4) using new coordinates given by

=Dx, D=(10 -v/v2)l
we obtain with/2 D/z D(/I, 0) (1, 0) and e Dv D( v, v2) (0, v2) the discrete

h hsolution operators T and To which are given by application of the discontinuous
Galerkin method on a triangulation h {) of the domain fi (Dx’x }, where

{Dx" x K} with K e h. The triangulation h has the following properties"

(5.3a) maximal side length-< Ch/y,

(5.3b) minimal side length=> Ch,

(5.3c) minimal angle >- Cy,

(5.3d) since CCh is quasiuniform, the number of triangles of c meeting at each node
is bounded by a constant independent of h and y, where y=
min (Isin d(/z, v)l, I/zl, Ivl).

LEMMA 5.1. Suppose/2 (/z, 0), (0, v2) and the discrete solution operators T
and Th are based on using a triangulation h of (l satisfying (5.3). Then for any p > O,

h hTogthere is a constant C independent ofh and y such that if 0 Tar, Oh Tar wheref
with g L2(), then

(5.4) I]O- Ohll <- C min (1, "y-3/2h1/8-o)llgl].

The proof is the same as that of [5, Lemma 5.1], except that the inequality
Ilfllo,--< Ch-*/llgll in [5], here is replaced by Ilfllo, <- Cr-lh-/"llgll. The appearance
of 3,

-3/2 in (5.4) is due to the presence of y- in the latter inequality, which is the
matter of Lemma 5.2.
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LEMMA 5.2. For any 0 < s < 1/2 there is a constant C such that, ifq is a piecewise linear

function on a triangulation qgh of f satisfying (5.3) and extended by zero outside f, then

(5.5)

where

IIq IIo, < C3"-lh-’/4A,

A 2 + h " v +E []=1 n. 1 d

<CIIglland v= (0, v2). Observe that if t Tg, then by Proposition 2.3, A IIIT[II=
-1Proof. The proof is the same as that of [5, Lemma 5.2]. The appearance of 3’

in (5.5) depends on the presence of I1 and 1/v_ in the relations: dxl=n2ds=
(n. /11) as and= (1/v2)(" V). Using the same notations as in [5] and repeating
the last step of the proof of [5, Lemma 5.2], we obtain

M-1

,[2 ]2A(l)2dl IlOll-+h E I1 ,,+ E [, d
i=1 i=1

Iff(l, )12 dd+ h I(, )12 dd
i=1

+ [[,+-,-]:
i=1

I(l, 2)12 d, d2+ h E Z(ff. V) dl d2
g R

i=l g ds

1 A2<A2=y2

where we have used = (1/2)(#" V) and =0 on . Using this result we get (see
[5])

fll(,,)ll = -1 faA(#l d#,NChn,(a) d#l C,h / )2 -1/2y-2A2

and since by (2.1)

we conclude that

Changing coordinates from back to the original coordinates x, we obtain from
Lemma 5.1 the following result" For any p > 0 there is a constant C such that for
g L2(f)

II(T. T) hT,,gll <-- C min (1, (3’(,u., ,))-3/hl/8-")llgll.



558 MOHAMMAD ASADZADEH

(5.6)

where

(5.7a)

From this estimate it follows that for p > 0

II(T T)Th,gll <-(hl/8-’a(e, n)+ B(e, n))llgll

A(e, n)= C (7(/x, v))-3/2to,to,

(5.7b) B(e,n)=C E .
(,)<e

By (4.2), (5.6) and the argument following (5.1) we obtain the basic result of this paper
as follows.

THEOREM 5.1. Suppose that h h(n) and e e(n) have bden chosen so that for
some p > 0

h/8-A(e,n)Oasn and B(e,n)Oasn,

where A(e,n) and B(e,n) are given by (5.7). en for suciently large n, (I-
AT)-" L2(fl) L2() exists and is uniformly bounded.

6. An error estimate. In this section we prove an error estimate for the scalar flux
U. We shall use the following splitting:

(6.1) E E + E,

where

J { A: min (Isin (tz, dk)l) < e (-), k l, P},

’ { " L}.
THEOREM 6.1. Let U and U satisfy (1.5) and (2.8) respectively. en there is a

constant C such that for U andf Hi(),

( 1 1/2)u- ull c +--+ h ( uIl + Ilfll).N

The proof of Theorem 6.1 is based on the following lemma.
LEMMA 6.1. ere is a constant C such that for g Hi(O)

Let us postpone the proof of Lemma 6.1 and first show that Theorem 6.1 follows
from this lemma and the splitting (6.1).

Proof of eorem 6.1. We have by (1.5) and (2.8)

h(I A T)( U- U) (T- L)(A U+f)+ (T. T)(A U +f) e. + e.

with the obvious notation. By Lemma 4.3 with g A U +f we have

(6.2) lie.I[ II(T- L)(AU+f)II C /(ll ull, + ilflll).

To estimate e we use the splitting (6.1), (2.10a) and the L-stability estimate
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resulting from Propositions 2.2 and 2.3, to obtain

CIIgll oo+Ch’/2 rolTgll-

But, for e r/M, Y.j contains at most Np elements, where p is the number of sides
of 12. Since tOkj W;Ak (27r/M)Ak, by (4.3) and Lemma 6.1 we have

Ile=ll--" <c +h 1/2

M NplIglI/ Ch Ilglll-- Ilgll,

and the desired result follows from (6.2) and Theorem 5.1. El
ProofofLemma 6.1. By an orthogonal coordinate transformation, we may assume

that/x (/Xl, 0), I/x[ r. Using Proposition 2.2 we have

0x , -<- Ilgll.

Let v (0, v2) with vl- 1 i.e., v (0,1) be orthogonal to/x, then

(6.4) I1 , II’ IIo0

Recall that

T,g(x) e- (x s/x ds and
Od u.n

Ou /x.n

Thus

+ e O-- g(x- Sld,) ds.(6.5)
Ou /X n o Ou

Squaring (6.5) and integrating over fl, using the same techniques as in the proof of
Lemma 4.4 we find that

0
(Tg) <= C e-2a/ g Xl--/xl, X2

f IFI"<= C e-2x’/r dxl Ig] 2

2

C

+ e_2S 0
g dsdx =C(I"+J"),

.to

I[[’nl
Igl=l "nlas

where we have used the fact that/x is parallel to the xl-axis, dx2 (l/X" nl/lzl) ds and
the trace estimate

Let now u. Vg 0 on N2\f; then

J" C e-2lVgl2 ds dx f llV gll e-Z ds f llV gll 2.
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Thus, by (6.3) and (6.4) we have

(6.6) T,gI IIV( T,g)II C(+’/I11" nl Ilgll.

Using (4.3) we have

/x k=l M 4N k=l rk

_C sin 0k+l
N k=l sin Ok

So that since sin Ok+i/sin Ok is decreasing,

sin Ok+ N sin 02 N sin4a

sin Ok k=l sin 01 sin a

where a 7r/(4N + 2). Hence

(6.7)

Moreover, using the splitting (6.1) we get

It is easy to show that

and since

N Ak2
k=l

Y’= <- C dO=4C
M oj_>-=/M /Isin 0j[ /Isin 0jl ao /sin 0

dO <- 7rC

we conclude

(6.8) ,l: c.

The inequalities (6.6)-(6.8) now yield the proof of Lernrna 6.1. r3
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