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ON ADAPTIVE FINITE ELEMENT METHODS FOR
FREDHOLM INTEGRAL EQUATIONS OF THE SECOND KIND*

MOHAMMAD ASADZADEHt AND KENNETH ERIKSSONt

Abstract. A posteriori and a priori error estimates are derived for a finite element discretization
of a Fredholm integral equation of the second kind. A reliable and efficient adaptive algorithm is then
designed for a specific computational goal with applications to potential problems. The reliability of
the algorithm is guaranteed by the a posteriori error estimate and the efficiency follows from the a
priori error estimate, which shows that the a posteriori error bound is sharp.
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Introduction. We consider the problem of finding an approximate solution of a
Fredholm integral equation of the second kind, i.e., of the form

(0.1) (x) r k(x, y)(y) dF(y) f(x), x e F,

where f and k are given data. In this paper we will have that k(x, y) O([x-yll-d),
where d is the dimension of F, i.e., k(x, y) will only be weakly singular.

There are many examples of problems that lead to an equation of this form. In
this note we shall specifically consider the Neumann problem for Laplace’s equation
in a domain f in Rd+l with boundary F. This problem has a single layer potential
solution that can be determined by solving an equation of the form (0.1). Similarly
the corresponding Dirichlet problem can be solved by considering a similar equation
for the double layer potential solution. A second-order elliptic equation in Rd with
smooth coefficients can also be reduced to an equation of the form (0.1) with k(x, y)
the fundamental solution of Laplace’s equation and F Rd.

The purpose of this note is to demonstrate a method for designing reliable and
efficient adaptive finite element procedures for equations of the type (0.1) based on
sharp a posteriori and a priori error estimates. Finite element methods for integral
equations have been studied by many authors. See, e.g., Atkinson [1], Ikebe [9],
Nedelec [10], Sloan [13], and Wendland [14]. Adaptive finite element methods for
integral equations have been considered more recently; c.f., e.g., [8], [11], [14], and

The general idea of an adaptive mesh-refinement finite element procedure is the
following; see also [31 and [8]: Given a continuous problem with exact solution , a
norm I1" II, and an error tolerance 5, the adaptive algorithm should construct (typically
through a sequence of successive mesh refinements and information obtained from the
corresponding approximate solutions) a mesh Th and compute the corresponding finite
element solution h such that
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Also, the total number of degrees of freedom involved in the computational process
should be (nearly) minimal. The problem of designing such an algorithm thus has
two main ingredients. First we want the algorithm to be reliable in the sense that
the desired error control (0.2) is guaranteed. Secondly, we want the algorithm to be
efficient in the sense that the constructed meshes are (nearly) optimal and nowhere
overly refined for the given error tolerance. By an optimal mesh (given the order of
approximation of the elements) we mean a mesh with a minimal number of elements
for which there exists an interpolant 5 E Vh such that I1- 511 -< 5, where Vh is the
corresponding finite element space.

Our refinement strategy and stopping criterion will be based on an a posteriori
error estimate that will guarantee the reliability of the algorithm. The derivation of
this estimate is one of the essential parts of the analysis. In order to demonstrate
the efficiency of the algorithm, we also derive a corresponding a priori error estimate.
The purpose of this estimate is to show that the a posteriori error estimate used for
the adaptive error control is of optimal order and thus that the adaptive method will
be efficient.

In order to be concrete, we have chosen to consider, specifically, one of the given
examples leading to an equation of the form (0.1), namely, the single layer potential
problem for Laplace’s equation with Neumann boundary conditions. Results similar
to the ones we obtain for this particular case can be derived for a fairly broad class
of problems of the form (0.1) and in more general situations as well.

Motivated by our particular example, we shall consider error control in a weighted
Ll-norm. Again, this should be viewed as an example; generalizing our results to error
control in other norms should present no problem; cf. Remark 4.3 below.

In this note we consider the case of a weakly singular kernel k(x, y). In a future
paper we plan to analyze the (more interesting) case of a kernel that degenerates
(at certain points) to order O(Ix yl -d) as in potential problems for Neumann and
Dirichlet problems on nonsmooth domains in Rd+l.

The rest of this note is organized as follows: In 1 we introduce the boundary
value problem under consideration and recall the derivation of the corresponding single
layer potential problem of the form (0.1). In 2 and 3 we specify our computational
goal and formulate an adaptive finite element method for the problem that is proved
to be both reliable and efficient. In 4 and 5 we derive the a posteriori and a priori
error estimates underlying the design of the adaptive procedure. Finally, in 6 we
present some numerical results.

1. The continuous problem. Consider the exterior Neumann problem (cf. Re-
marks 1.1-1.3 below)

(1.1)

Au=0 inFt’,

Ou
On

g on F,

where t is the complement of a closed bounded, simply connected domain gt c_ R3

with smooth boundary F 0, and n is the exterior (with respect to , interior with
respect to Ft) unit normal to F.

Given defined on F, we define the corresponding single layer potential

1 Jfr 1 R3(1.2) u(x) (Y)
x "yldF(y)’ x e
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Since

1

Axlx-yl =0’ xy,

we have at once that u is harmonic, i.e., satisfies Au 0 in . Also, u satisfies the
given conditions at infinity. Hence problem (1.1) has been reduced to the problem of
finding a function such that tOulOn g on F. The normal derivative Ou/On of u
can be expressed in terms of as (el., e.g., [7])

(1.3)
Ou 1 1 r 0 1
On (x) --(x) + (Y) On Ix ydr(y), x e r,

where c9/On denotes differentiation with respect to x in the direction of n. Defining
the integral operator T by

1 f 0 1
(T)(x) Jr (Y) On Ix Yl

dr(y),

our problem thus can be written in compact form as follows: Given f -2g defined
on F, find defined on F such that

(1.4) -T f.

It is well known that the operator T is regularizing and, e.g., maps functions in Lp(F)
into the corresponding first-order Sobolev space Wp (F). In particular, T is a compact
operator on Lp(F) for any p >_ 1, and so is its adjoint T* to appear below.

Remark 1.1. The underlying problem (1.1) can be formulated more generally in
Rq, of course. The fundamental solution (1/4r)(1/Ix Yl) in (1.2) is then replaced
by (1/2)log(l/Ix- Yl) for q 2 and by 1/(cqlx- yl (q-2)) for q _> 3, with cq the
q- l-dimensional surface measure of the boundary of the unit ball in Rq. All our
theoretical results can easily be obtained also for q 2 (the cases q > 3 may not be of
comparable physical interest). So far, we have implemented our adaptive algorithm
only for q 2. Numerical results are given in 6 below.

Remark 1.2. For the interior Neumann problem corresponding to (1.1), a solution
exists only if fr gdF 0, and in order to filter out a unique solution we must add a
constraint such as, e.g., f udl2 0. The counterpart of (1.4) then reads

a + Ta =2g,

ro
dF-O,

and our analysis can easily be carried over to this case as well. (For another way of
dealing with the nonuniqueness, see [2].)

Remark 1.a. The doble layer potential problems for the interior and exterior
Dirichlet problems also lead to Predholm integral .equations of the second kind. The
solution of the Dirichlet problem, in this case, is given by the double layer potential

1 f 0 1
u(x) -r ]r P(Y) Ony Ix ydr(y).

The Dirichlet boundary condition u u0 on F now leads to the equation

T* 2u0
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for the unknown , where

1 f 0 1
T*(x) ]()0 Ix dr().

It is easy to see by examining the proofs that our results can be carried over to this
situation as well. In a forthcoming paper we plan to consider the latter problem in
the case of a nonsmooth boundary, e.g., with re-entrant corners.

2. Finite element discretization. Equation (1.4) may be written in varia-
tional form as

(2.1) (, v) (T, v) (f, v) /v E L(F),

where (., .) denotes the Le(F)inner product.
We consider the simplest possible (cf. Remark 3.2 below) finite element method

for this problem, which is to seek h Yh such that

(2.2) (h, V) (Th, V) (f V) YV e Vh,

where Vh {v e n(F):vg constant for all K e Ch} and Ch {K} is a
partition of F into a finite number of elements K. The subscript parameter h, which
usually denotes the maximal diameter of the elements K, will in this paper denote the
piecewise constant function defined by h]g hK, K Ch, where h is the diameter
of K. The approximate solution h of problem (1.4) determined by (2.2), of course,
defines a corresponding approximate solution of problem (1.1), namely,

(.a) () () x 1
dr().

om (1.2) and (2.3) we easily get the error estimate

(2.4) I(u- u)(x)l (- )(Y)I x- y]
dr(y).

The error analysis for -h is most often carried out in L2(F). For x bounded away
from F, this is adequate because

(- )(x) iX
For x close to F, however, the factor [[l/x- "[[L(r) may become arbitrary large.
Below we shall therefore analyze the error -h in a more appropriate norm, which
in this case, focusing on error control at a given point x, is a weighted L-norm with
the weight w(y) 1/[x- y]. In cases of several points xi of particular interest we
may simply change the weight function to w(y) max 1/xi- y. For related results
on error estimation at particular poims, see, e.g., [4]. See also Remark 4.3 below
where we consider control of u- Uh in the maximum norm.

Remark 2.1. The method of approximation (2.3) is generally referred to as the
boundary element method, because we use finite elements on the boundary of to
solve problem (1.1). In this note we focus on the approximation of the solution of
the resulting edholm integral equation, and shall therefore use the more general
terminology finite element method. Also, there are integral equations of the form
(1.1) that do not originate from boundary potential problems (cf. above).
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3. An adaptive algorithm. We have adopted the computational goal to find
an approximate solution Uh of problem (1.1) through (2.3) and (2.2) such that

(a-) I( )(x)l _< 5,

where x is a given (fixed) point in FtU F and 5 > 0 is a given error tolerance. Below
(Theorem 4.1) we shall show that

/ 1 II(3.2) I(- )(y)l 1 :yldr(Y) < Ctb
min {Irhl Cinth lVhrh[} ll*

where rh is the residual of the approximate solution (9h of problem (1.4), i.e., rh

h T(ph f. Moreover, 7h is a mesh dependent gradient defined on the surface
manifold F (cf. below), Cstab and Cint are constants only depending on F, and

min {Irhl, Cinth IVhrhl} E min

In particular, from (3.2) we have that

(a.a) I(- )()1 , dr()<_ CsU
Y]

LI(K)
Cint

hVhrh
L1 (K) }

From now on we shall use the letter C to denote various positive constants but not
necessarily the same at each occurrence. Thus, recalling (2.4), we find that (3.1) is
guaranteed if

(3.4) C rh

LI(F)

where C Cstab/(47r). In practice, in order to attain (3.4) we proceed as follows.
Clearly, (3.4) holds if

r _< 5.
K

For each element K in the partition we would thus like to have

r _<() lx-.I () ON’

where N is the number of elements in Ch. That is, our strategy is to adapt the mesh
size hK to the size of rh so as to equidistribute the element contributions to the global
error. We then note that (3.5) may be impossible to obtain for some K when x F.
To get around this technical complication we note that (3.4) also follows from

K

rh

L(K)

provided e (with e O(hK)) and maxKechhi<; are sufficiently small.
easily from the fact that for plane elements

IX LI(K) 4

This follows
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Thus we may replace (3.5) by

(3.6) h2g x-:[ + L(K) CN’

e.g., with chK, c a small constant.
An algorithm designed to accomplish (3.1) through the control (3.6) would then

look, roughly, as follows:
1. Start with a (coarse, quasi-uniform) mesh C(h).
2. Given a mesh C(hj) compute the corresponding (hj) and its residual

r(h) O(hY) TO(hJ) f.

3 If

(3.7) ]
1/2

6
inf

]x-yl+e VKEC(hj)hK < -C-- yeK Ir(hJ)(y)l
then stop and accept (hj) (and the corresponding U(hj) defined by (2.3)). Otherwise,
refine all elements K for which (3.7) does not hold (or remesh completely) in order

to obtain a new partition C(h+1) for which the inequality in (3.7) holds for all K in

the new mesh (given r(hj) and ), and then go back to step 2 and recompute with j
replaced by j + 1.

Following the program in [5] (see also [6]) we would now like to investigate the
performance of the proposed algorithm. First we note that the method will be reliable
in the sense that once the algorithm has reached a successful stop then we know from
the a posteriori error estimate, on which the method is based (Theorem 4.1), that
(3.1) will hold for the corresponding Uh. Concerning the efficiency of the method we
would like to know first of all that it is operational in the sense that (3.1) can be
realized through mesh refinement. Note that rh depends on h so that theoretically it
could happen that min {IrhI,CinthlVhrhl} increases as h decreases in such a way that
the quantity Cstabllmin {Irhl, CinthlVhrhl}/Ix- "Ill*L1, which we try to control, never
gets small. Below (Theorem 5.1) we shall prove that

<C

This estimate shows not only that the method is operational, but also that it is efficient
in the sense that large values of V can be locally compensated for by choosing h
locally small and that, indeed, the a posteriori error estimate in (3.2) is of optimal
order since, for a general class of functions , we cannot expect to have a bound for
the error better than CIIhV/Ix- "lilLe(r). In fact, our proofs show that

Concerning the efficiency of the method we also refer to the numerical examples in
6, which show that

estimated error

exact error
< 1 + small constant.
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Remark 3.1. To have the algorithm based on the more precise estimate (3.2)
rather than on (3.4) we simply replace (3.6) by

(3.8) 11/25
inf

x-yI+ C(hj)hK <_
yeK min{lrhl :nt IVhrhl}

VK E

See also Remark 4.1 below.
Remark 3.2. The generalization of the results of this paper to methods using

higher-order polynomial approximation is straightforward.

4. The a posteriori error estimate. This section is devoted to the proof of
the a posteriori error estimate (3.2). For simplicity we shall assume that each element
K Ch can be equipped with a local coordinate system (21,2), i.e., a one-to-one
mapping FK (:1,:2) --* (Xl,X2,X3) from the plane reference element

/ { (:1,22) e R2" 21 _> 0, 22 _> 0, 1 + :2 1 },
onto K such that

(4.1)

__
ChK, 1, 2, 3, j 1, 2,

and

(4.2) Jc <_ Ch2 on K,

where (x,x2,x3) are the Cartesian coordinates on K, hK is the diameter of K, and

(4.3) JK Oxx Ox Ox3 )0,1’ 0,1’ 0:1
OXl OX2 0X3 )

With any function w defined on K we associate the function v w o FK defined on
the reference element/.

THEOREM 4.1. There are constants Cstab and Cint independent of x and h such
that

r 1
I(- )(y)l IX-yl dF(y) <- Cstab

min{Irhl Cinth lVhrhl} l[*(U:i LI(F)

where Vhrhlg h(Vh)F:.
Proof. For the error e - h, we have from (2.1) and (2.2) that

(4.4) (e, x) (Te, x) O VX e Vh.

Now let z be the solution of

(4.5) (, z) (T, z) v, Ix -I
Vv e L(r),

or, equivalently,

z -T*z
w

a.e. on F,
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where T* is the adjoint of the operator T and Iwl < 1 on F. Here different points x
and functions w give rise to different solutions z. From (4.5) with v e and using
(4.4) we obtain

(4.6) e, .ix "1
(e, z) -(Te, z) (e, z- zi) (Te, z- zi),

where z E Vh is any interpolant of z. We now choose w sign(e) e/le and write

(4.6) as

Ix-.Idr= e,
lx_.l

(- T, z z) ( T, z z)
(f h + Th, z z) (rh, z z).

The proof is then direct consequence of the following two lemms.
LEMMA 4.1. There ezists an interpolant zi V of z such that

min{lrhl,Cinth Vr} lx-’ZL(),I(rh’Z Zi)l [--"] El(F)

where Cint only depends on F and the constants in (4.1) and (4.2).
LEMMA 4.2. There is a constant Cstb independent of x and w such that

llx -. zc() Cs.

ProoofLemma 4.1. Let FK K be the bijective mapping from the reference
element K in R: onto K defining the local coordinate system (21,22) on K. With

w o FK and J as above, we then define the piecewise constant interpolant zi of
z by

JK dR/f JK d.
/

]K 2il/ constantzi

Now let be the solution of

(.7)
-zx- (- )j
0 0 on 0/,

fRCdK=O.
The existence of a unique solution of this problem is guaranteed by the fact that

fR (2 2)JK d/ 0. We find, using (4.7) and Green’s formula, that

(4.8)
rh (Z Zi) dK /h (2 2) Jg d

W.V dR.

The solution of problem (4.7) may be represented in terms of the associated Green’s
function and the data (2- i)JK in the usual way. Differentiating this represen-
tation and using well-known bounds for the derivatives of the logarithmic singularity
of the Green’s function for a two-dimensional problem, we get, for any y in K,

I(s)l
ds
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and consequently with q(y) Ix- FK(y)I (cf. (5.4)),

ds
q(y) IV(y)l

_
Cq(y)

lY- i q(s)

Thus, also using (4.1) we have

(4.9)

Here, in the last step, we have used the fact that ZilK is constant and

Furthermore, we have that

(4.10) hrh
LI(K)

Now (4.8)-(4.10) give

(4.11)
rh (Z Zi) dK <_

LI(K)
VK Ch.

Clearly we also have that

K
rh (Z Zi) dK rh VK E Ch.

Together our estimates now show that

rh (Z Zi) dK
L(K)

By summation over all K the desired result now follows. 0
Remark 4.1. Obviously, one can have that Irhl << hlThrhl, for instance, if f is

highly oscillatory. Locally one can also have that hlVhrh << Irhl. On the other hand,
it is not clear that the latter inequality can hold globally. In practice, it is probably
enough to consider the simple estimate (set zi _= 0 above)

LI(F)
<C
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Note also that computing Vhrh is somewhat more involved than just computing rh.
In our numerical tests below we have used an algorithm based on the latter simplified
estimate.

We now return to the proof of the stability Lemma 4.2.

Proof of Lemma 4.2. Recall the dual equation

W
z -T*z a.e. on F,

where

01
(T*z)(y) z(s) Ons lY sl

--dr(s).

Let E F and M be given by

M sup Ix Yl ]z(Y)l x fl Iz(f)l
y6F

Furthermore, let d > 0 be the largest constant such that

1c (llnsl + 1) _< for 0 < s < d,

where C is the final constant (only depending on F) in the estimate

01
IT*z()l _< Iz(s)l an I- sl

dr(s)

Mfr 1 C

Ix- I I- I dr()
<_ CM(I lnlx- 911 + 1).

Then, if Ix- l < d, we have that

(4.12)
M Ix 11z()l < Iw(9)l + x 911(T*z)

<_ l +CM lx-f] (l lnlx-911+ l) _< l +--
M

On the other hand, if Ix OI -> d, we set Ms SUpy6B Iz(y)l, where

B {y e F’Iy- fl < d’},
d

d’ <
-2

We have that

Ix- 1MB sup

< Ix-llz(9)l < 2

minyeB x Yl maXyer Ix Yl Iz()l.

Moreover,

0 1

On If- sl
dr(s)



ADAPTIVE METHODS FOR SECOND KIND INTEGRAL EQUATIONS 841

1

For d’ sufficiently small this gives

1

and hence

+- + iz(s)l
0 1

\s Ons I- sl
dr(s)

MB C
dr(s)+ Ilzll max

sEF\B

+ CMBd’ + C IlZllLl(r) d"

(4.13) Ix 11z()l <: 2 +

0 1

C

d’ {{Z{{L(r)
We now claim that there is a constant C independent of x such that

(4.14) IlzllL (r)
c,

In fact, since [[w/{x- "{{{L,(r) _< C, this follows from the more general estimate

(4.15) }{z{IL(r _< C 1 _<p_< oo.

For x bounded away from infinity, the desired stability estimate of Lemma 4.2 now
follows from (4.12) and (4.13)-(4.14). For Ixl large (x away from F), the desired
estimate follows directly from (4.15) with p . Thus it suffices to prove (4.15). We
then note that (I- T*)z w/Ix- "1, so that (4.15) follows from the fact that I- T*
has a bounded inverse as an operator on Lp(F), 1 _< p _< oc. In fact, since the integral
kernels of T and T* are weakly singular, both operators are compact on Lp(F). Thus
if we can show that I- T* is one-to-one it follows from Fredholm theory that it is
also onto; consequently I-T* is invertible with (I-T*)-I" L(F) -, L(F) bounded
and (4.15) follows.

To prove that I T* is one-to-one it suffices to show that I- T is one-to-one
(see, e.g., [12], Theorem 4.25), i.e., we want to prove that

(I- T) 0 implies 0.

We recall that with u defined by

() ()
{

we have that (I- T) -2g implies

Due

On g"

Thus, if (I- T) 0 (i.e., g 0) we have that

Au 0 in gY,
Oue

On
=0 onF,

u - 0 as Ix{- o,

dr(y),
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which implies that u 0 in /. In particular, u vanishes on F, and since u is also
harmonic in the interior of it follows that u 0 in all of R3. Consequently,
(Oue/On) (Oui/On) 0. We have thus demonstrated that I- T is one-to-one and
the proof is complete.

Remark 4.2. Implementation of the adaptive algorithm outlined in 3 involves,
in particular, finding an appropriate numerical value (the smaller the better) for the
stability constant Cstab from Lemma 4.2. One could try to backtrack Cstab through
the proof of Lemma 4.2, but this procedure would probably lead to a rather pessimistic
(too large) value. A more practical approach would be to try to estimate Cstab from
an approximate solution of the dual problem (4.5). One complication then is that
the data in this problem depends on the unknown error; recall from the proof of
Theorem 4.1 that we consider (4.5) with w sign( h) where is unknown. In
the present situation it is reasonable to believe that IIIx- .IZllL(r) should be more
or less independent of w for Iwl 1 (cf. below and the corresponding discussion
in [6]). It would then suffice to solve the dual problem numerically with one or a
few different choices of w to get a reasonable estimate of the constant Cstb. In fact,
it may not even be necessary to estimate Ctb at all since IIIx- .IZllL(r) should
be close to one for small h. To justify this statement we consider for simplicity the
two-dimensional counterpart of our given potential problem with F the unit circle. In
this case it is possible to solve the dual problem analytically. We find that T*(y)
-1/2 fr w(s) ds constant and from this that

1
z() Iog (Ix i og (Ix  1)1

Here, for w sign( h), the integral term should be much smaller than.the first
term because w is oscillatory, and thus we expect to have 2nz(y)/I log Ix- Y[I w(y)
for small h in this case. We believe that this should not be specifically related to the
particular situation we have considered here but hold fairly much in general as long
as the kernel is weakly singular and F is smooth.

In the general case of an algorithm based on (3.8), we also need to find an ap-
propriate numerical value for Cint. This constant is bically an interpolation error
constant (although this is not quite transparent from the derivation; cf. also [6]). A
reasonable estimate for Cint can thus be obtained by seeking the smallest possible
constant for which 112- illLl(f) <-- C1[7[[L1(/), where i is the mean value of 2, i.e.,
for q 2 one may put Cint 1/2 whereas for q 3 (and triangular elements) simple
calculations indicate that it should be possible to put Cint 1/4. It should be clear
that these values are based on somewhat heuristic arguments; to obtain a full proof
value we have to backtrack the constant through the proof of Lemma 4.1, which may
lead to a somewhat more pessimistic estimate.

Remark 4.3. Above we have considered control of u- Uh at a particular point x
through control of p- h in a weighted Ll-norm. A posteriori estimates for error
control in other norms can be obtained similarly. For example, let us consider maxi-
mum norm control of u- Uh, i.e., as our computational goal, to find an approximate
solution Uh of (1.1) such that

(4.16) u UhllL(a,) <-- 6.

From (1.2) and (2.3) we obtain for any p e (2, oc] and q p/(p 1),
1

suplit -< 1
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In order to obtain an estimate for IIa--ahllLp(r), we consider now for a given w E Lq(F)
the dual problem

z-T*z-w a.e. on I.
We recall from the discussion in the proof of Lemma 4.2 that I- T* has a bounded
inverse on Lq(F), so that, in particular,

I111() -< c Iill(r)
We thus obtain with e =- h,

<--Ilrh]lL(r) IIZlIL(r) < C Ilrn]lL(r)
and consequently, by duality,

If we summarize, we thus have

Ilu UhltL<,) <_ C IlrhllLp<r> p (2, ].

From this estimate we can easily set up an adaptive scheme similar to that in 3 for
obtaining (4.16).

5. Eiticiency and an optimal a priori error estimate. In this section we
shall verify the efficiency of the constructed adaptive algorithm. As a by-product we
will also get an optimal a priori error estimate for the finite element method under
consideration. Our main result is the following.

THEOREM 5.1. There is a constant C such that for h suJflciently small,, _< c I ’1IX "1 L1 (r) LI

This estimate shows, in particular, that the a posteriori error bound in Theorem
4.1 is of optimal order and thus indicates that our adaptive method will be eJficient
(cf. the discussion in 3 above). Combining the a posteriori error estimate of Theorem
4.1 with Theorem 5.1 we get as a corollary the following a priori error estimate.

THEOREM 5.2. There is a constant C such that for h su]ficiently small,

<C
Ll(r)

To prove Theorem 5.1 we shall need a few technical lemmas.
LEMMA 5.1. The residual rh can be represented as

( P) T( ) ( Ph) ,
where Ph is the usual L2-projection onto Vh.

Proof. The variational equation

(ah, V) (Tah, v) (f, v) Vv e Vh
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can equivalently be written.in the form

9h PhTgh + Phf

Thus

rh ah Tah f (Ph I)(f + Tah)
(Ph I)(a- Ta + Tah)
(I Ph) T (a ah) (I Ph)

which is the desired result.
Now we give a weighted L1 estimate for the L2-projection, which we shall use to

estimate each term of the above representation.
LEMMA 5.2. There is a constant C such that

(r)

Proof. For the L2-projection Ph we have

(P, ) (, v) w e y.

Thus, setting v 1 on K, v 0 elsewhere, we get

PhlKm(K)- /K dr,

where rn(K) (.9(hc) is the surface measure of K. Using this we get

dr=lPlgl/g l:ldF<
NOW,

JK JL IldI1 dr <_ maxK Ix "[ Ix :[

and, for dist(x, K) >_ ChK, C > O,

g

1 m(K) m(K)
ix-:1 dr < < C

minKIx--.] maxglx--.I

whereas, for dist(x, K) O(hK), fK 1/Ix- "1 dF O(hK), and therefore the proof is
complete.

We shall also need the following error estimate in L1.
LEMMA 5.3. There is a constant C such that for h sufficiently small,

II hllL(r) C IlhVllL(r)
Proof. From the equations

(I T)99 f
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and

we have that

(I- PhT)h Phf,

(T PT) ( ) ( P) ( + T) ( P) .
Thus if we can show that

(5.1)

then we will have

(I- PhT) -1 IILI(L1) -- C,

and the proof will be complete. V1

Thus it only remains to prove (5.1).
LEMMA 5.4. There is a constant C such that for h sufficiently small,

II(I- Th)-IIIL(L1)
_

C,

where Th PhT.
Proof. In the proof of Lemma 4.2 we demonstrated that

Assume now that

We then have

I1(I- T)-IlILI(L)
_

C.

(z- T) g.

(I-

and using (5.2) we obtain

(5.3) IIIIL, <- C
Recalling the L1-stability of the L2-projection, we have that

where T Vh is an interpolant of T determined by T[K T(xk) for some

xk@K.
On the other hand, with k(x, y) (1/2)(O/On)(1/[x- .),
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For a fixed y we let Bd(y) {x "Ix- y[ <_ d}, where d is a sufficiently small and fixed
positive constant. Recall that k(x, y) O(Ix- y1-1); hence for x E Bd(y) using polar
coordinates we have that

Ik(x, y) ]g (xi, Y)I dr(x)

_
E. /KinBd(y)
O(d),

(Ik (x, y)l + Ik (x, y)l) dr(x)

whereas for other points x, i.e., x F/Bd(y), we have that

/K{\Bd(y)
<-- Jfr\B(u)

Ik (x, y) k (x, Y)I dr(x)

C
h(x) Ix’ Y’eI dF(x) _< Ch (I In d + 1),

where maxr h. Since d is assumed to be sufficiently small, we get from (5.3) for
sufficiently small that

I1)11Lx C ]lgllLx -- C (d + LI

This gives the desired result.
We may now give the following.

rh:

L1

Proof of Theorem 5.1. Recall from Lemma 5.1 the representation of the residual

rh (I- Ph) Te- (I- Ph) .
Let 5 6 Vh be an interpolant of . Then, since

we have, using Lemma 5.2,

LI(F) LI(F) LI(F)

Moreover,

<C
Te

Here

IX-.I ,(r) Ix-l
dr(y) Ix

0 1
--dr(z)

Now, since (O/Ony)(1/ly zl) O(1/ly- zl) we obtain, using Fubini’s Theorem,

(5.4)
LI(F)
c I(z)l Ix y[ly-zldr(y) dr(z)

C ] I(z)] (I In Ix zll + 1) dr(z).
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Finally we have that

+
Ll(r)

h7

Xw.i
It follows that

ILl(r)
Using Lemma 5.3 we have that

and consequently,

I,x Ll(r) L(r)

+ CI le(z)l (I In Ix zll + 1)dr(z)
L(r) Jr

Ll(r) Ll(r)

nl(r)

<C
Ll(r)

which proves the efficiency (Theorem 5.1) and also the a priori error estimate

L(r) Ll(r)

of Theorem 5.2.

6. Numerical experiments. For simplicity we consider here the two-dimen-
sional counterpart of problem (1.1) and seek, for a simple closed curve F in the plane,
the single layer potential

l jrr ( 1 )u(x)= (yllog Ix--I dr(y),

where (flh E Yh is the solution of (2.2) now with

lfra(s) 0 ( 1 )T(y)= nylOg lyL-sl dF(s),

and Vh consisting of all piecewise constant functions on a partition of F into curve
segments of length proportional to h. As before, x is a fixed point in which we want
to control the error in Uh and 5 is the given error tolerance. The counterpart of the
error estimate (3.3) for the present two-dimensional case shows that the desired error
control will follow if CstabllWxrhllLl(r) _< (, where rh h--Th--f is the residual and
wx(y) (1/2r)l log (1/Ix-yl)l is the weight function originating from the single layer
potential representations of u and Uh in two dimensions. Unless otherwise stated the
tolerance 5 was set to 0.01. The stability constant Cstab W&S put to one (cf. Remark
4.2).
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Computed solution

()

O.07.q

0.06

0.06

0.04.

0.0

O.O3
0 7

Mesh size

2 $ 4 $ 6

x-- (-1,0) f=v 6 = 0.01
n = 130 ex = 0.0069 e = 0.0070.

(b)

FG. 1.

In the first set of experiments discussed in Examples 1-3 below, we have taken F to
be the unit circle, parameterized in the usual way using the polar angle v, 0 <_ v _< 2r.
In this case it is possible to solve the problem analytically (cf. Remark 4.2) so that
we may compare computed errors with exact errors. The exact error will be denoted
by ex and the estimated error by e. A comparison of the two on the accepted meshes
(see Figs. 1-3) indicates that our adaptive method is both reliable and efficient. Note,
however, that the difference between e and ex may be larger in the early stages of
the adaptive process when the meshes are not yet properly refined. For definiteness,
note also that by "the exact error" we here mean ll(- gh)WxlIL(F) (rather than

Uh)(x)l).
In each case the algorithm started from a uniform partition with mesh size of

order one. The number of iterations (successive remeshings) required to reach the
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Computed solution

(a)

Mesh size

0 2 4 6

= (-1, O) .t" = x/l - -/1 = o.o
n 60 ez 0.0067 e = 0.0067.

(b)

FIG. 2.

desired error control ranged from five to thirteen. The number of elements on the
final mesh is denoted by n.

In our first example we have isolated the effect on the mesh size due to the
singularities in the weight function wx. In the following examples we will see combined
effects of the singularities in w and in the solution.

Example 1. We first consider the case f(v) v and x (-1, 0) with a singularity
in w at v r. Note that the discontinuity in the data f at (1,0) is not important
here, because it is located at a mesh point and we use piecewise discontinuous poly-
nomial approximation. Thus, here the solution is (uniformly) smooth on each mesh
subinterval and only the singularities in w will influence the variation in the local
mesh size.

Figure la shows the computed solution h. Note that, for convenience, we have not
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0.16

0.14

0.12

Mesh size

0 2 ) 4 5 6

z-(0,1 f- 5=0.01
n 66 ex = 0.0090 e = 0.0095.

Mesh size

0.01

0.01

x=(O, 1) f=V/]v-r/2l =0.002
n = 358 ez = 0.0015 e = 0.0015.

(d).

FIG. 2. (continued).

plotted the piecewise constant function 99h but rather its piecewise linear interpolant.
Figure lb shows the corresponding mesh size h similarly represented by a piecewise
linear interpolant as a function of v. We note that the mesh has been refined near
v 7r to compensate for the singularity in the weight function wx wx(y(v)) at
v 7r. (One can also see that the mesh size is comparatively large near v 27r/3 and
v 47r/3 due to the fact that the weight function w happens to be small near these
two points.)

Example 2. We shall now consider two examples with (genuine) singularities also
in the data f to see the combined effect on the local mesh size of adaptation with
respect to singularities both in Wx and f.

We first take f(v) v/iv- 7r/2 I. Figure 2a shows the computed solution. We
note in particular the singularity at v 7r/2. Figures 2b-c show the mesh function h



Computed solution

(a)

(b)

(c)

0
0 2 4 6

.f=

0.1

Mesh size

2 3 4 $ 6

z-(O 1) f- q’i.i-,-o = o.o
n 109 ez- 0.0076 e = 0.0086.

Mesh size
0.12

0.O6

x= (--1 O) f-- V/I,+i+oIo = 0.01

n 290 ez 0.0097 e 0.0100.

FIG. 3.
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for two different locations of the point x. In Fig. 2b we have put x (-1, 0). We note
the refinement near the singularity in f at v /2 and the refinement near v
due to the singularity in wx. In Fig. 2c we have chosen x (0, 1) so that we now have
two singularities to account for at v /2. Additional refinement is now required to
compensate for the combined singularities of f and Wx. Figure 2d shows the mesh
size for the same problem setting the error tolerance somewhat lower (5 0.002). We
now see two levels of refinements reflecting the fact that two different singularities are
involved in the refinement process.

Example 3. This example is similar to Example 2. Here we consider the case

f(v) 1Iv 1 + 0.001. Figure 3a shows the computed solution. In Fig. 35 we
have taken x (0, 1). We note the refinement near v r caused by the singularity in f
and the somewhat less pronounced refinement near v /2 caused by the singularity
in wx. In Fig. 3c we have taken x (-1, 0) and again we see that the mesh has been
additionally refined near the point of combined singularities.

In our second set of experiments we shall take into account also the effect of F
being nonsmooth, and will thus have up to three sources of singularities influencing
the adaptively chosen local mesh size. We consider the case when F consists of the
two circular arcs bounding the lens-shaped region:

,x2) 0.5 V/1 x21<_x2 <_ -0.5 + V/1 x2, x/r/2<_xl<_ v/2}
Note that our theoretical results do not cover this case, since in our analysis we have
assumed F to be smooth. We plan to return to this problem for a detailed study in a

forthcoming paper.
In our two examples below we have assumed all relevant data to be symmetric

with respect to the x2 variable. Consequently, the mesh size and solution will show
the same type of symmetry. We may thus reformulate the given problem as a problem
on the upper circular arc segment xl cos(v), x2 -0.5 + sin(v), /6 _< v _< 5/6.

Example 4. In this example we take f 1 and 5 0.002. We first consider the
case x (0, 0). Figure 4a shows the computed solution. Note the singularities in the
solution at both endpoints corresponding to the two points of nonsmoothness on F.
Figure 4b shows the mesh-size h. We note the refinements at both endpoints, which are
now caused by the singularity in F alone. Figure 4c concerns the case x (v/2, 0). In
this case we have again a combined effect of two sources of singularities and additional
refinement is required near v r/6 because of the singularity in the weight function
Wx

Example 5. We now consider the case f(v) log(Iv- /61) and 5 0.005.
Figure 5a shows the computed solution. In Fig. 5b we have x (0, 0). We note
the refinements at both end-points and the somewhat more pronounced refinement
to the left near v r/6 from the combined effect of the singularity in f and the
singularity in F. Finally, in Fig. 5c we consider the effects of combining all three
sources of singularities in F, f and w by choosing x (v/2,0) requiring even
further refinement near v /6.

Remark 6.1. Our simple examples have been intended to illustrate the general
ideas, especially for three-dimensionM problems; note for instance that for planar
problems and F smooth, the kernel of the integral operator T is in fact smooth (con-
stant in our case) in which case the given potential problem may be solved more easily
by other methods.



(a)

Computed solution
(16

0-5

0.45

114

0.35

(b)

Mesh size

0.03

I032

0.5 1.5

z (0, O) f 1 0.002
n 64 e 0.0014.

(c)

Mesh size

0.045

0.0

0.0

O.03

0.02

0.O2

0.01

0.01

0.00

(vile, o)
n-- 102

1. 2 2.5

f-- 1 --0.002
e 0.0016.

FIG. 4.



Computed solution

0.0

0.0

0.0

0.045

0.0

0.0

0.03

0.025

(b) 0.%; i"’
= (o, o1

n- 64

Mesh size

’i i 5
f log I’- /61 , O.OO5
e 0.0039.

Mesh size

0.03+

0.01

0.01

z = (x/’5/2, O) f = log Iv- r/6l
n 129 e 0.0047.

0.005

FIG. 5.
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