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Abstract The paper considers the convergence study of the stabilized P1 finite el-
ement method for the time harmonic Maxwell’s equations. The model problem is
for the particular case of the dielectric permittivity function which is assumed to be
constant in a boundary neighborhood. For the stabilized model a coercivity relation
is derived that guarantee’s the existence of a unique solution for the discrete prob-
lem. The convergence is addressed both in a priori and a posteriori settings. Our
numerical examples validate obtained convergence results.
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1 Introduction

In implementing the finite element methods for the Maxwell system, the divergence-
free edge elements are the most advantageous from a theoretical point of view
[12, 13]. On the other hand for the time-dependent problems, where a linear sys-
tem of equations need to be solved at each iteration step, the divergence-free ap-
proach requires an unrealistic fine degree of time resolution. To circumvent this
difficulty, it has been suggested to use the continuous P1 finite elements which pro-
vides inexpensive and reliable algorithms for the numerical simulations, in partic-
ular compared to H(curl) conforming finite elements. Based on this fact, in this
paper we consider stabilized P1 finite element for the approximate solution of time
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harmonic Maxwell’s equations when the dielectric permittivity function is constant
in a boundary neighborhood. This converts the Maxwell’s equations into a set of
time-independent wave equations on the boundary neighborhood.

An outline of this paper is as follows. In Section 2 we introduce a model problem
for the time harmonic Maxwell’s equations obtained through Laplace transform of
the time-dependent equations. In Section 3 we introduce our finite element scheme,
prove its well-posedness. as well as a optimal a priori and a posteriori error bounds
which are derived in a, gradient dependent, triple norm. In the a posteriori case the
boundary residual is in the form of a normal derivative and therefore is balanced by
a multiplicative power of the mesh parameter h. Section 4 is devoted to implementa-
tions and justify the robustness of the approximation procedure. Finally, in Section
5 we conclude the results of the paper.

Throughout the paper C will denote a generic constant, not necessarily the same
at each occurrence and independent of the mesh parameter and solution, unless oth-
erwise specifically specified.

2 The mathematical model

We study the time-harmonic Maxwell’s equations for electric field Ê (x,s), under
the assumption of the vanishing electric charges, given by

s2
ε(x)Ê(x,s)+∇×∇× Ê(x,s) = sε(x) f0(x), x ∈ Rd , d = 2,3

∇ · (ε(x)Ê(x,s)) = 0
(1)

where ε(x) = εr(x)ε0 is the dielectric permittivity, εr(x) is the dimensionless relative
dielectric permittivity and ε0 is the permittivity of the free space. Furthermore

∇×∇×E = ∇(∇ ·E)−∇
2E. (2)

The equation (1) is obtained through the Laplace transformation in time

Ê(x,s) :=
∫ +∞

0
E(x, t)e−stdt, s = const. > 0 (3)

where E (x, t) is the the solution of time-dependent Maxwell’s equations:

ε(x)
∂ 2E(x, t)

∂ t2 +∇×∇×E(x, t) = 0, x ∈ Rd ,d = 2,3, t ∈ (0,T ].

∇ · (εE)(x, t) = 0,

E(x,0) = f0(x),
∂E
∂ t

(x,0) = 0, x ∈ Rd , d = 2,3.

(4)
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Ω1

Ω2ε = 1

ε ∈ [1,d1]

Ω2ε = 1

a) Ω = Ω1∪Ω2 b) Ω2

Fig. 1 Domain decomposition in Ω .

Note that, since we have a non-zero initial condition: E(x,0) = f0(x), the problem
(4) is adequate as a coefficient inverse problem to determine the function ε(x) in (4)
through a finite number of observations E at the boundary [6].

To solve the problem (4) numerically, we consider it in a bounded convex and
simply connected polygonal domain Ω ⊂ Rd ,d = 2,3 with boundary Γ : We define
Ω2 :=Ω \Ω1, where Ω1 ⊂Ω has positive Lebesgue measure and ∂Ω ∩∂Ω1 = /0. In
this setting cutting out Ω1 from Ω , the new subdomain Ω2 shares the boundary with
both Ω and Ω1: ∂Ω2 = ∂Ω ∪∂Ω1, Ω =Ω1∪Ω2, Ω1 =Ω \Ω2 and Ω̄1∩Ω̄2 = ∂Ω1,
(see Fig. 1).

To proceed we assume that ε(x) ∈C2(Rd),d = 2,3 satisfies

ε(x) ∈ [1,d1] , for x ∈Ω1,

ε(x) = 1, for x ∈Ω \Ω1,

∂ν ε = 0, for x ∈ ∂Ω2.

(5)

Remark 1. Conditions (5) mean that, in the vicinity of the boundary of the compu-
tational domain Ω , the equation (4) transforms to a time-dependent wave equation.

At the boundary Γ := ∂Ω of Ω , we use the split Γ = Γ1∪Γ2∪Γ3, so that Γ1 and
Γ2 are the top and bottom sides, with respect to y- (in 2d) or z-axis (in 3d), of the
domain Ω , respectively, while Γ3 is the rest of the boundary. Further, ∂ν(·) denotes
the normal derivative on Γ and ν is the outward unit normal to Γ .

Remark 2. In most estimates below, it suffices to restrict the Neumann boundary
condition for the dielectric permittivity function to: ∂ν ε(x) = 0, on Γ1∪Γ2.

Now, using similar argument as in the studies in, e.g., [5] and by Remark 1,
for the time-dependent wave equation, we impose first order absorbing boundary
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condition [11] at Γ1∪Γ2:

∂ν E +∂tE = 0, (x, t) ∈ (Γ1∪Γ2)× (0,T ]. (6)

To impose boundary conditions at Γ3 we can assume that the surface Γ3 is located far
from the domain Ω1. Hence, we can assume that E ≈ E inc in a vicinity of Γ3, where
E inc is the incident field. Thus, at Γ3 we may impose Neumann boundary condition

∂ν E = 0, (x, t) ∈ Γ3× (0,T ]. (7)

Finally, using the well known vector-analysis relation (2) and applying the Laplace
transform to the equation (4) and the boundary conditions (6)-(7) in the time domain,
the problem (1) will be transformed to the following model problem

s2
ε(x)Ê(x,s)+∇(∇ · Ê(x,s))−4Ê(x,s) = sε(x) f0(x), x ∈ Rd ,d = 2,3

∇ · (ε(x)Ê(x,s)) = 0,

∂ν Ê(x,s) = 0, x ∈ Γ3,

∂ν Ê(x,s) = f0(x)− sÊ(x,s), x ∈ Γ1∪Γ2.

(8)

3 Finite element method

We have the usual notation of the inner product in [L2(Ω)]d : (·, ·), d ∈ {2,3}, and
the corresponding norm ‖ · ‖ , whereas 〈·, ·〉Γ is the inner product of [L2(Γ )]d−1 and
the associated L2(Γ )-norm is denoted by ‖ · ‖Γ . We define the L2 scalar products

(u,v) :=
∫

Ω

u · v dx, (u,v)ω :=
∫

Ω

u · v ωdx, 〈u,v〉Γ :=
∫

Γ

u · v dσ ,

and the ω-weighted L2(Ω) norm

‖u‖ω :=
√∫

Ω

|u|2 ωdx, ω > 0, ω ∈ L∞(Ω).

3.1 Stabilized model

The stabilized formulation of the problem (8), with d = 2,3, reads as follows:

s2
ε(x)Ê(x,s)−4Ê(x,s)−∇(∇ · ((ε−1)Ê(x,s)) = sε(x) f0(x) x ∈ Rd ,

∂ν Ê(x,s) = 0, x ∈ Γ3,

∂ν Ê(x,s) = f0(x)− sÊ(x,s), x ∈ Γ1∪Γ2,

(9)
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where the second equation of (8) is hidden in the first one.

3.2 Finite element discretization

We consider a partition of Ω into elements K denoted by Th = {K}, satisfying the
minimal angle condition. Here, h = h(x) is the mesh parameter defined as h|K = hK ,
representing the local diameter of the elements. We also denote by ∂Th = {∂K} a
partition of the boundary Γ into boundaries ∂K of the elements K such that vertices
of these elements lie on Γ .

To formulate the finite element method for (9) in Ω , we introduce the, piecewise
linear, finite element space W E

h (Ω) for every component of the electric field E:

W E
h (Ω) := {w ∈ H1(Ω) : w|K ∈ P1(K), ∀K ∈Th},

where P1(K) denote the set of piecewise-linear functions on K. Setting WE
h (Ω) :=

[W E
h (Ω)]3 we define f0h to be the WE

h -interpolant of f0 in (9). Then the finite el-
ement method for the problem (9) is formulated as: Find Êh ∈WE

h (Ω) such that
∀v ∈WE

h (Ω)

(s2
εÊh,v)+(∇Êh,∇v)+(∇ · (εÊh),∇ ·v)− (∇ · Êh,∇ ·v)

+ 〈sÊh,v〉Γ1∪Γ2 = (sε f0h,v)+ 〈 f0h,v〉Γ1∪Γ2 .
(10)

Theorem 1 (well-posedness). Under the condition

f0,h ∈ L2,ε ∩L2,1/s(Γ1∪Γ2), (11)

on the data, the problem (10) has a unique solution Êh ∈WE
h (Ω).

Proof. See [1].

3.3 Error analysis

In this subsection first we give a swift a priori error bound and then continue with
a posteriori error estimates. For the sake of completeness, we set up an adaptive
algorithm for the a posteriori setting. This, however, requires a thorough and lengthy
implementations procedure which is beyond the scope of the present paper and may
be considered in a future study.
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3.3.1 A priori error estimates

To derive a priori error estimates we consider the continuous variational formulation
and define linear and bilinear forms in the finite element space WE

h (Ω):

a(Ê,v) =(s2
εÊ,v)+(∇Ê,∇v)+(∇ · (εÊ),∇ ·v)

− (∇ · Ê,∇ ·v)+ 〈sÊ,v〉Γ1∪Γ2 , ∀v ∈ H1(Ω)
(12)

and
L c(v) := (sε f0,v)+ 〈 f0,v〉Γ1∪Γ2 , ∀v ∈ H1(Ω). (13)

Hence we have the concise form of the variational formulation

a(Ê,v) = L c(v), ∀v ∈ H1(Ω). (14)

This yields the Galerkin orthogonality [7] by letting, in (12) and (13), v ∈WE
h (Ω),

as well as replacing f0 by f0,h in (13). Subtracting from (14) its discrete version and
letting e(x,s) := Ê(x,s)− Êh(x,s) be the pointwise spatial error of the finite element
approximation (10), we get

a(Ê− Êh,v) = 0, ∀v ∈WE
h (Ω), (Galerkin orthogonality). (15)

Now we are ready to derive the following theoretical error bound

Theorem 2. Let Ê and Êh be the solutions for the continuous problem (9) and its
finite element approximation, (10), respectively. Then, there is a constant C, inde-
pendent of Ê and h, such that

|||e||| ≤C ‖ hÊ ‖H2
w(Ω) .

where w = w(ε(x),s) is the weight function which depends on the dielectric permit-
tivity function ε(x) and the pseudo-frequency variable s.

Proof. See the proof of Theorem 2 in [1].

3.3.2 A posteriori error estimates

For the approximate solution Êh = Êh(x,s) of the problem (9), we define the residual
errors

−R(Êh) :=s2
ε(x)Êh−4Êh−∇(∇ · ((ε(x)−1)Êh)− sε(x) f0,h(x), and

−RΓ (Êh) :=h−α

(
∂ν Êh + sÊh− f0,h(x)

)
, for x ∈ Γ1∪Γ2, 0 < α ≤ 1.

(16)

By the Galerkin orthogonality we have that R(Êh)⊥WE
h (Ω). Now the objective is

to bound the triple norm of the error e(x,s) := Ê(x,s)− Êh(x,s) by some adequate
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norms of R(Êh) and RΓ (Êh) with a relevant, fast, decay. This may be done in
a few, relatively similar, ways, e.g., one can use the variational formulation and
interpolation in the error combined with Galerkin orthogonality. Or one may use a
dual problem approach setting the source term (or initial data) on the right hand side
as the error.

The proof of the main result relies on assuming a first order approximation for
the initial value of the original field f0(x) := E(x, t)|t=0− , for β ≈ 1, viz,

‖ f0− f0,h ‖ε≈‖ f0− f0,h ‖1/s,Γ≈‖ f0− f0,h ‖(ε−1)2/s,Γ= O(hβ ). (17)

Theorem 3. Let Ê and Êh be the solutions for the continuous problem (9) and its
finite element approximation (10), respectively. Further we assume that we have the
error bound (17) for the initial field f0(x) := E(x, t)|t=0− . Then, there exist interpo-
lation constants C1 and C2, independent of h, and Ê, but may depend on ε and s
such that the following a posteriori error estimate holds true

|||e||| ≤C1 h ‖R ‖+C2 hα ‖RΓ ‖1/s,Γ1∪Γ2 +O(hβ ), (18)

where α ≈ β ≈ 1.

Proof. See [1]

An adaptivity algorithm

Given an admissible small error tolerance TOL > 0, we outline formal adaptivity
steps to reach

|||e||| ≤ TOL. (19)

To this end we start with a course mesh with mesh size h and
Step 1. Compute the approximate solution Êh and its corresponding domain and

boundary residuals R and RΓ , respectively.
Step 2. Check whether

C1 h ‖R ‖+C2 hα ‖RΓ ‖1/s,Γ1∪Γ2 +O(hβ )≤ TOL? (20)

for α ≈ β ≈ 1.
Step 3. If (20) is valid stop and accept the current h-function. Otherwise, refine

in regions where the contribution to the right hand side in (18) is large (on each iter-
ation step you need to choose a criterion for this largeness). Replace the h-function
by the new refined one and go to Step 1.

4 Numerical examples

We refer to [1] for complete description of numerical tests. Numerical tests are
performed in the computational domain Ω = [0,1]× [0,1]. The source data f (x),x∈
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R2 (the right hand side) in the model problem (8) for the electric field Ê = (Ê1, Ê2)
is chosen such that the function

Ê1 =
2

s3ε
π sin2

πxcosπysinπy,

Ê2 =−
2

s3ε
π sin2

πycosπxsinπx.
(21)

is the exact solution of the model problem (8).
We define the function ε as

ε(x,y) =
{

1+ sinm
π(2x−0.5) · sinm

π(2y−0.5) in [0.25,0.75]× [0.25,0.75],
1 otherwise.

(22)
for an integer m > 1.

The computational domain Ω is discretized into triangles K of sizes hl = 2−l , l =
1, ...,6. Numerical tests are performed for different m = 2, ...,9 in (22), s = 20 in
(8), and the relative errors e1

l ,e
2
l are measured in L2-norm and the H1-norms, re-

spectively, which we compute as

e1
l =
‖Ê− Êh‖L2

‖Ê‖L2

, (23)

e2
l =
‖∇(Ê− Êh)‖L2

‖∇Ê‖L2

. (24)

Here,

Ê :=
√

Ê2
1 + Ê2

2 Êh :=
√

Ê2
1h + Ê2

2h. (25)

Figure 2 presents convergence of P1 finite element scheme for m = 2,9 in (22).
Tables 1-2 present convergence rates q1,q2 for m = 2,9 which we compute as

q1 =

log
(

e1
l h

e2
l 2h

)
log(0.5)

, q2 =

log
(

e2
l h

e2
l 2h

)
log(0.5)

,
(26)

where ei
l h,e

i
l2h, i = 1,2, are computed relative norms ei

l , i = 1,2, on the finite ele-
ment mesh with the mesh size h and 2h, respectively. Similar convergence rates are
obtained for m = 3,4,5,8. Figure (3) shows computed and exact solutions on dif-
ferent finite element meshes for m = 2 and m = 9 in (22). We observe that our P1
finite element scheme behaves like a first order method for H1(Ω)-norm and second
order method for L2(Ω)-norm.
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l nel nno e1
l q1 e2

l q2

1 8 9 2.71 ·10−2 8.60 ·10−2

2 32 25 6.66 ·10−3 2.02 3.25 ·10−2 1.40
3 128 81 1.78 ·10−3 1.90 1.75 ·10−2 8.99 ·10−1

4 512 289 4.13 ·10−4 2.11 1.02 ·10−2 7.79 ·10−1

5 2048 1089 1.05 ·10−4 1.97 5.29 ·10−3 9.42 ·10−1

6 8192 4225 2.65 ·10−5 1.99 2.70 ·10−3 9.69 ·10−1

Table 1 Relative errors in the L2-norm and in the H1-norm for mesh sizes hl = 2−l , l = 1, ...,6, for
m = 2 in (22). Here, nel is number of elements and nno is number of nodes in the mesh.

l nel nno e1
l q1 e2

l q2

1 8 9 1.73 ·10−2 7.29 ·10−2

2 32 25 3.33 ·10−3 2.38 3.57 ·10−2 1.03
3 128 81 8.98 ·10−4 1.89 2.15 ·10−2 7.33 ·10−1

4 512 289 2.36 ·10−4 1.93 1.08 ·10−2 9.94 ·10−1

5 2048 1089 6.09 ·10−5 1.96 5.26 ·10−3 1.04
6 8192 4225 1.55 ·10−5 1.98 2.62 ·10−3 1.00

Table 2 Relative errors in the L2-norm and in the H1-norm for mesh sizes hl = 2−l , l = 1, ...,6, for
m = 9 in (22). Here, nel is number of elements and nno is number of nodes in the mesh.

Fig. 2 Relative errors for m = 2 (left) and m = 9 (right).

5 Conclusion

We presented convergence analysis for the stabilized P1 finite element scheme ap-
plied to the solution of time harmonic Maxwell’s equations with constant dielectric
permittivity function ε(x) in a boundary neighborhood. For the convergence study
of stabilized P1 finite element method for a time dependent problem for Maxwell’s
equations we refer to [2]. Optimal a priori and a posteriori error bounds are derived
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|Eh|,m = 2

h = 0.125 h = 0.0625 h = 0.03125 h = 0.015625
|E|,m = 2

h = 0.125 h = 0.0625 h = 0.03125 h = 0.015625
|Eh|,m = 9

h = 0.125 h = 0.0625 h = 0.03125 h = 0.015625
|E|,m = 9

h = 0.125 h = 0.0625 h = 0.03125 h = 0.015625

Fig. 3 Computed vs. exact solution for different meshes taking m = 2 and m = 9 in (22).
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in weighted energy norms and numerical results validate obtained theoretical error
bounds.

Proposed scheme can be applied for the solution of coefficient inverse problems
with constant dielectric permittivity function in a boundary neighborhood, see [3, 4,
5, 8, 9, 10, 14, 15] for a such problems.
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