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1 Introduction

We design an efficient and accurate numerical method for the pencil beam
equations based on the principle of solving

• An exact transport problem on each collision free spatial segment: Let
x be the beam penetration direction, {xn} an increasing sequence of
discrete points indicating collision sites and {Vn} be a correspond-
ing sequence of piecewise polynomial spaces on meshes {Tn} on the
transversal variable x⊥. Then given the approximate solution Jh,n ∈
Vn at the collision site xn solve the pencil beam equation exactly on
the collision free interval (xn, xn+1) with the data Jh,n to give the
solution Jh,n+1

− at the next collision site xn+1, before the collision.

• A projection: Compute Jh,n+1 = Pn+1J
h,n+1
− , with Pn+1 being a

projection into {Vn+1}.

There are variety of methods of this type differing in the choice of piecewise
polynomial spaces {Vn} (degree of polynomials, orthogonal polynomials,
continuous or discontinuous polynomials) and in the projections Pn, (Lp-
projections, 1 ≤ p ≤ ∞, interpolation projections).

Generally the exact transport problem, because of the presence of the dif-
fusion term, in the pencil beam equations, if solvable, is highly nontrivial.
Besides, simple projections as L2-projection would create oscillatory behav-
ior in the presence of discontinuities (e.g., on skin/tissue and tissue/bone
interface, in the medical physics applications of the beam algorithms).

Our main purpose in this note is to present an approach leading to exact
transport for model cases of pencil beam problems by characteristic methods
and also containing a modified L2-projection raising the stability properties.
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An alternativa approach; the Streamline Diffusion Method (SD; a general
finite element method for hyperbolic type problems), is studied by this
author giving a priori error estimates for Vlasov-Poisson equations in [1],
for the Fermi and Fokker-Planck equations in [2] and [3] and a posteriori
error estimates for Fermi and Fokker-Planck equations in [4]. Our method

is obtained throufg two basic modifications of a standard Galerkin method:
First, the test functions are modified so that to give a weighted least square
control of the residual R, (measuring how well the approximate solution
satisfies the considered differential equation locally), of the approximate
solution, and secondly artificial viscosity is added to the diffusion coefficient
of the form Ch2|R(Jh)|, where h is the local mesh size.

We shall consider a variant of the SD-method based on using trial functions
which are discontinuous in the beams penetration direction x and contin-
uous in the transversal variables x⊥. Orienting the incident-transversal
mesh approximately along the characteristics we get a particular SD-method
suitable for convection dominated convection-diffusion problems referred as
Characteristis Streamline Diffusion (CSD).

The domain Q := Ix × Iy × Iz is subdivided into slabs Sn = In
x × Iy ×

Iz, with In
x = (xn, xn+1) corresponding to a collision-free path in the x-

direction and Iy and Iz are bounded symetric intervals representing, to-
gether, the transversal variable x⊥ = (y, z). Each slab Sn has its own
incident-transversal finite element mesh T̂n. Consequently, at each collision
site xn we have two transversal meshes T̂ +

n = T̂n|xn and T̂ −n = T̂n−1|xn ,
respectively. In general T̂ +

n 6= T̂ −n and tha passage of informatiom from one
slag to the next is performed through a modified L2-projection. The CSD-
method performs this modified projection and the exact transport results
from satisfying, in model cases, the convection equations exactly on each
slab separately.

An outline of this paper is as follows: In section 1 we derive L2 estimates
for smooth solutions. Section 2 is devoted to the amount of numerical
dissipasion. In section 3 we study stability in the maximum norm and finallu
in our concluding section 4 we give optimal error estimates for the discretized
problem. Throughout the paper C will denote an absolut constant not
necessarily the same at each accurence.

A model Problem

We sketch the derivation, through the Gaussian multiple scattering theory,
of the Fokker-Planck and Fermi pencil beam equations relevant in electron
dose calculations. Detailed derivation strategy can be found in [?], relaying
on Fourier tachniques, [?], using spherical harmonics and [?], based on sta-
tistical physics approaches. Below we give a general idea. For this purpose,
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we start from the steady-state, monoenergetic transport equation:

ω · ∇xψ(x, ω) + σt(x)ψ(x, ω) =
∫

S2
σs(x, ω · ω′)ψ(x, ω) dω′, in Q, (1)

associated with the boundary conditions ψ(L, y, z, ω) = 0, ξ < 0, and

ψ(0, y, z, ω) =
1
2π
δ(1− ξ)δ(y)δ(z), ξ > 0, (2)

with x = (x, y, z) ∈ [0, L]×R×R, ω = (ξ, η, ζ) ∈ S2, describing the spread-
ing of a pencil beam of particles normally incident upon a purely scattering,
source-free, slab of tickness L. Here ψ is the density of particles at the point
x moving in the direction of ω, σt, and σs are total and scattering cross-
sections, respectively. Assuming a forward peaked scattering procedure, the
transport equation 1 may, asymptotically, be approximated by the following
Fokker-Planck equation

ω · ∇xψ
FP = σ

[
∂

∂ξ
(1− ξ2)

∂

∂ξ
+

1
1− ξ2

∂2

∂ϑ2

]
ψFP , (3)

where ϑ is the azimuthal angle with respect to the z-axis and

σ ≡ 1
2
σtr(x) = π

∫ 1

−1

(1− ξ)σs(x, ξ) dξ, (4)

is the transport cross-section for a purely scattering medium. In the asymp-
totic expansions leading to The Fokker-Planck equation the absorbtion term
σtψ on the left-hand side of 1 associated with a Taylor expansion of ψ on
the right-hand side would give the right-hand side of 5 and a neglected
remainder term of order O(σ2),
see [4] for the details. A further approximation, assuming thin slab by
letting

L× σ ¿ 1, (5)

and simple algebraic manupulations yields to a perturbation of the Eq. 5,
to the following Fermi equation;

ω0 · ∇xψ
F = σ∆ηζψ

F , (6)
ψF (0, y, z, η, ζ) = δ(y)δ(z)δ(η)δ(ζ), ξ > 0, (7)

ψF (L, y, z, η, ζ) = 0, ξ < 0, (8)

here ω0 = (1, η, ζ), where (η, ζ) ∈ R × R and ∆ηζ = ∂2/∂η2 + ∂2/∂ζ2.
Geometrically, the Eq.6 corresponds to projecting ω ∈ S2 in the Eq. 3,
along ω = (ξ, η, ζ) onto the tangent plane to S2 at the point (1, 0, 0). In
this way the Laplacian operator, on the unit sphere, in the right-hand side
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of the Fokker-Planck equation 3 is transfered to the Laplacian operator
on this tangent plane, as on the right-hand side of the Fermi equation 6.
The equations 3-6 are formulted for the flux function ψ, while usually the
measured quantity (dose) is related to the current function

j = ξψ. (9)

Now we consider a two dimensional version of Eqs. 1- 4 leading to the
following Fokker-Planck problem, see also [2]: For 0 < x < L and −∞ <
y <∞, find ψFP ≡ ΨFP (x, y, θ) such that

ω · ∇xψ
FP = σψFP

θθ , θ ∈ (−π/2, π/2), (10)

ψFP (0, y, θ) =
1
2π
δ(1− cos θ)δ(y), θ ∈ S1

+, (11)

ψFP (L, y, θ) = 0, θ ∈ S1
−, (12)

where ω = (ξ, η) ≡ (cos θ, sin θ), S1
+ = {ω ∈ S1 : ξ > 0} and S1

− = S1 \S1
+.

We use the scaling substitution

z = tan θ, θ ∈ (−π/2, π/2), (13)

and introduce the scaled current function J by

J(x, y, z) ≡ j(x, y, tan−1 z)/(1 + z2). (14)

Note that, now z corresponds to the angular variable θ. Below we shall
keep θ away from the poles ±π/2, and correspondingly formulate a problem
for the current function J , in the bounded domain Q ≡ Ix × Iy × Iz =
[0, L]× [−y0, y0]× [−z0, z0]:

Jx + zJy = σ AJ, (x, x⊥) ∈ Q, (15)
Jx(0, y,±z0) = 0, for y ∈ Iy, (16)
J(0,±y0, z) = 0, for ± z < 0, (17)

J(0, x⊥) = f(x⊥), (18)

where x⊥ ≡ (y, z) is the transversal variable and we have replaced the
product of δ-functions (the source term) at the boundary by a smoother
L2-function f . The diffusion operator

A = ∂2/∂z2, (Fermi), (19)

A· = ∂/∂z[a(z)∂/∂z (b(z)·)], (Fokker-Planck) (20)

where a(z) = 1 + z2 and b(z) = (1 + z2)3/2. We shall study the Fermi
equation. Fokker-Planck case is, basically, the same except some tedious
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factors and therefor is omitted. Detailed Fokker-Planck studies can be found
in [2]. We note that the transport cross section depends on enery and
therefor on the spatial variables: σ ≡ σ(x, y) = 1/2σtr(E(x, y)).

The non-degenerate approximation of 12 would be as follows:

L(J) := Jx + β · ∇⊥J − ε∆⊥J = 0, (21)

where ε ≈ Cσ/2 = Cσtr/4, C ≈ (C1 + C2)/2, ∆⊥ := ∂2/∂y2 + ∂2/∂z2,
is the transversal Laplacian operator, and from now on β ≡ (z, 0). In our
studies below A is given by 16 corresponding to the Fermi equation, exten-
sions to the Fokker-Planck case 17 are straight forward ,but lenghty (see
our a priori error analysis in [2] containing such extensions), and therefore
are omitted.

Note that introducing the change of coordinates (x, x̄⊥) = (x, x⊥−xβ) and
writting J̄(x, x̄⊥) = J(x, x⊥), we can formulate Eq. 21 as follows:

J̄x − ε∆⊥J̄ = 0, in [0, L]× Iy × Iz, J̄(0, x̄⊥) = f(x⊥), (22)

since ∂J̄
∂x = ∂

∂xJ(x, x̄⊥ + xβ) = ∂J
∂x + β · ∇J . If ε = 0, then the solution of

Eq. 22 is given by J̄(x, x̄⊥) = f(x̄⊥) and that of Eq. 21 by

J(x, x⊥) = f(x⊥ − xβ). (23)

Clearly the characteristics of Eq. 21 with ε = 0 are given by x⊥ = x̄⊥ +
xβ, x > 0, and in this case (ε = 0) the solution J(x, x⊥) is constant along
characteristics. Let now {xn} be an increasing sequence of x-values with
x0 = 0 and let {Tn} be a corresponding sequence of triangulation Tn of
Iy × Iz into triangules K and let Vn be the space of continuous peicewise
linear functions on Tn, Vn = {v ∈ C(Iy × Iz) : v is linear onK,K ∈ Tn}.
Here and below C(Ω) denotes the continuous functions v : Ω → R an a set
Ω.
The Characteristic Galerkin method for Eq. 21 may be formulated as follows
in the case of ε = 0: For n = 1, 2, . . . , N , find Jh,n ∈ Vn such that
∫

Iy×Iz

Jh,n(x⊥)v(x⊥) dx⊥ =
∫

Iy×Iz

Jh,n−1(x⊥−h̄nβ)v(x⊥) dx⊥, ∀v ∈ Vn,

(24)
where h̄ = xn − xn−1 and Jh,0 = f . In other words

Jh,n = PnTnJ
h,n−1, (25)

where Pn : L2(Iy × Iz) → Vn is the L2-projection defined by (Pnw, v) =
(w, v), ∀v ∈ Vn, where (·, ·) denotes the inner product in L2(Iy × Iz), and
Tnv(x⊥) = v(x⊥ − h̄nβ). Thus Eq. 25 may be expressed as exact transport
(Tn)+ projection Pn.
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Next we formulate the SD-method for Eq. 21 and then the CSD-method
as a special case with oriented phase-space, performed as peneterated-
transversal, elements. For n = 1, 2, . . . , N , let T̂n = {K̂} be a finite element
subdivision of the slab Sn = In

x × I⊥, In
x = (xn, xn+1), I⊥ = Iy × Iz, into

finite elements K̂ and let V̂n ba a space of continuous piecewise polynomials
on T̂n of degree at most k. For k = 1 and small ε the SD-method may be
formulated as follows: For n = 1, 2, . . . , N , find Ĵh ≡ Ĵh|Sn

∈ V̂n such that
∫

Sn
(Ĵh

x + β · ∇⊥Ĵh) (v + δ(vx + β · ∇⊥v)) dxdx⊥ (26)

+
∫

Sn
ε̂∇⊥Ĵh · ∇⊥v dxdx⊥ +

∫
I⊥
Ĵh,n

+ vn
+ dx⊥

=
∫

I⊥
Ĵh,n
− vn

+ dx⊥, ∀v ∈ V̂n,

where vn
±(x⊥) = lim∆x→0+ v(x±∆x, x⊥), ε̂ = max(ε,F(ChαR(Jh))/Mn),

with
R(Jh) = |Ĵh

x + β · ∇⊥Ĵh|+ |[Ĵh]|/hbarn, on Sn, (27)

where [vn] = vn
+ − vn

−, F(v) is the elementwise average of v and ∆ is a
small parameter in general of order O(h) locally and α = 2−κ, κ small and
positive. Here h(x, x⊥) is a continuous function measuring the local size of
finite elements K̂ ∈ T̂n. Further Mn = maxx⊥ |Jh,n

+ (x⊥)|, is a normalization
factor. Note that Eq. 26 is nonlinear in Ĵh|Sn since ε̂ depends on Ĵh. By a
fixed point argument using monotonicity, it is possible to show the existence
of a solution to the Eq. 26. The stearmline diffusion modification is given
by δ(vx + β · ∇⊥v) and the degenerate-shock-capturing modification by
ε̂. Approximationg β by piecewise constants on each slad, the streamline
diffusion modification will disappear in the CSD-method.

We now make a special choice of the finite element subdivision T̂n = {K̂}
of Sn and the corresponding finite element space V̂n to obtain the CSD-
method. Let T̂n = {K̂} be a subdivision of Sn given by the prismatic
elements oriented along characteristics

K̂n = {(x, x̄⊥ + (x− xn)β : x̄⊥ ∈ K ∈ Tn, x ∈ In
x }, (28)

where Tn = {K} is a triangulation of I⊥ given above. Further, let V̂n be
defined by

V̂n = {v̂ ∈ C(Sn) : v̂(x, x⊥) = v(x⊥ − (x− xn)β), v ∈ Vn}, (29)

with Vn the space of continuous piecewise linear functions on Tn as above.
In other words V̂n consists of the continuous functions v̂(x, x⊥) on Sn such
that v̂ is constant along characteristics x⊥ = x̄⊥ + xβ parallel to the sides
of the prismatic elements K̂n and vn

+ is piecewise linear on Tn for x = xn.
With this choice the SD-method 26 reduces to the following method since
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∂v̂
∂x + β · ∇⊥v̂ = 0 if v̂ ∈ V̂n: For n = 1, 2, . . . , N, find Ĵh ≡ Ĵh|Sn

∈ V̂n such
that
∫

Sn

ε̂∇⊥Ĵh · ∇⊥v dxdx⊥ +
∫

I⊥
Ĵh,n

+ vn
+ dx⊥ =

∫

I⊥
Ĵh,n
− vn

+ dx⊥, ∀v̂ ∈ V̂n,

(30)
where

ε̂ = max

(
ε,F(Chα |[Ĵh,n]|

h̄n
)/Mn

)
, on Sn,

and h(x, x⊥) = hn(x⊥ − (x − xn)β), where hn(x⊥) gives the local element
size of Tn. If now ε is small, then Eq. 59 may be written as

∫

I⊥
ε̃∇⊥Ĵh,n

+ · ∇⊥v dx⊥+
∫

I⊥
Ĵh,n

+ v dx⊥ =
∫

I⊥
Ĵh,n
− v dx⊥, ∀v ∈ Vn, (31)

where ε̃ = F(Chα|[Ĵh,n]|)/Mn. Writing Ĵh,n
+ = Jh,n, we can thus state

Eq.59 as follows (since Ĵh,n
− = TnJ

h,n−1): For n = 1, 2, . . . , N, find Jh,n ∈
Vn such that
∫

I⊥
ε̃∇⊥Jh,n · ∇⊥v dx⊥ +

∫

I⊥
Jh,nv dx⊥ =

∫

I⊥
TnJ

h,n−1v dx⊥, ∀v ∈ Vn,

(32)
where Jh,0 = f and ε̃ = F(Chα

n|Jh,n − TnJ
h,n−1|)/Mn. Introducing the

operator P̃n : L2(I⊥) ∩ L∞(I⊥) → Vn defined by

(P̃nw, v) + (ε̃∇⊥P̃nw,∇⊥v) = (w, v), ∀v ∈ vn, (33)

where ε̃ = F(Chα
n|P̃nw − w|)/max |P̃nw|, and (·, ·) denotes the L2(I⊥)m

inner product with m = 1, 2, we can write Eq. 61 as

Jh,n = P̃nTnJ
h,n−1. (34)

Obviously, P̃n may be viewed as a modification of the usual L2-projection
Pn : L2(I⊥) → Vn defined above by (Pnw, v) = (w, v), ∀v ∈ Vn, obtained by
adding artificial viscosity with coefficient ε̃ = F(Chα

n|P̃nw−w|)/max |P̃nw|.

Note that the mesh size hn of the triangulation Tn may vary with x⊥
(and, evidently also, with n); it is reasonable to require that |∇⊥hn(x⊥)| ≤
c, x⊥ ∈ I⊥, where c is a sufficiently small constant and assume that |K| ∼
hn(x⊥), if x⊥ ∈ K ∈ Tn. For simplicity we assume in this note that Tn

is quasiuniform so that we may take hn constant. The extensions to the
general non-uniform mesh is straightforward.
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Error estimates for smooth solutions

In this section we give the standard error estimates for the Characteristic
Galerkin method (CG) 25 and the CSD-method 63, in the case of a smooth
exact solution. In this case we may choose ε̃ = 0 in 62 so that 25 and
63 indeed coincide. Our point is that using the CSD-approach we obtain
sharper results than through the standard CG-approach, as we shall now
see.
Starting with the standard error estimates for the CG-method we have for
Jn = J(xn, ·) that

‖Jn − Jh,n‖ ≤ ‖TnJ
n−1 −PnTnJ

h,n−1‖
≤ ‖TnJ

n−1 −PnTnJ
n−1‖+ ‖PnTnJ

n−1 − PnTnJ
h,n−1‖

≤ Ch2
n‖Jn−1‖H2(I⊥) + ‖jn−1 − Jh,n−1‖,

using a standard error estimate for Pn of the form ‖w−Pnw‖ ≤ Ch2
n‖w‖H2(I⊥),

the boundedness of Pn : L2 → L2 in the form ‖Pnw‖ ≤ ‖w‖ and the fact
that ‖Tnw‖ = ‖w‖. By iteration we get

‖JN − Jh,N‖ ≤
N∑

n=1

Ch2
n‖Jn−1‖H2(I⊥) = O(Nh2), (35)

if hn ∼ h for all n and J is smooth.
The standard error estimate [4] for the SD-method 26 with V̂n given by 58
and with ε̂ = 0 states that

‖JN − Jh,N‖+
(∑N

n=1 ‖Jh,n − TnJ
h,n−1‖

)1/2

(36)

≤
(∑N

n=1 Ch
4
n−1‖Jn−1‖H2(I⊥)

)1/2

≤ C
√
Nh2,

if J is smooth, which is clearly sharper than 64. To prove the estimate 64
for 25 we note that with eh,n = Jh,n−Jn, we have by 23 for n = 1, 2, . . . , N ,

(eh,n − Tne
h,n−1, v) = 0, ∀v ∈ Vn. (37)

Now since ‖Tne
h,n−1‖ = ‖eh,n−1‖, we have

1
2
‖eh,N‖2 +

1
2

N∑
n=1

‖eh,n − Tne
h,n−1‖2 (38)

=
N∑

n=1

(eh,n − Tne
h,n−1, eh,n) +

1
2
‖eh,0‖2

=
N∑

n=1

(eh,n − Tne
h,n−1, Jn − PnJ

n)
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≤ 1
4

N∑
n=1

‖eh,n − Tne
h,n−1‖2 +

N∑
n=1

‖Jn −PnJ
n‖2,

where we used Eq. 71 with v = PnJ
n − Jh,n, the fact that eh,0 = 0,

and Cauchy’s inequality. Recalling now the above standard estimate for
‖PnJ

n − Jh,n‖, we ontain Eq. 68.

Note that the stability estimate 25 underlying 64 and 68, respectively, are
as follows

‖Jh,n‖ ≤ ‖f‖, n = 1, 2, . . . , N, (39)

‖Jh,N‖+
N∑

n=1

‖Jh,n − TnJ
h,n−1‖2,= ‖f‖2, (40)

where 73 reflects that ‖Pnw‖ ≤ ‖w‖ and ‖Tnw‖ = ‖w‖ for w ∈ L2(I⊥), and
Eq. 74 follows by choosing v = Jh,n in 23 and noting as in 72 that

1
2
‖Jh,N‖2 +

1
2

N∑
n=1

‖Jh,n − TnJ
h,n−1‖2

=
N∑

n=1

(Jh,n − TnJ
h,n−1, Jh,n) +

1
2
‖f‖2 =

1
2
‖f‖2.

The improvment using Eq. 74 indicates that the classical stability concept
based on 73 is not fully adequate; to obtain sharp results it seems to be
necessary, and also natural, to include dissipation terms in the stability
estimates.

The estimate 68 is sharp as an estimate for ‖JN − Jh,N‖; for the discontin-
uous Galerkin method with piecewise linears, which corresponds to 25 with
Pn being the L2-projection onto the piecewise linears, in [4], we have shown
that in general the error ‖JN − Jh,N‖ with N = O(h−1), h̄ = O(h), is not
better than O(h3/2) which corresponds to 68 with N = O(h−1).

To sum up, we get for Eq. 25 with the standard CG-approach , ‖JN −
Jh,N‖ = O(Nh2), while the more careful asnalysis in the SD-approach gives
‖JN−Jh,N‖ = O(

√
Nh2). With N = O(h−1), we thus have ‖JN−Jh,N‖ =

O(h) with the CG-approach and ‖JN − Jh,N‖ = O(h3/2) with the SD-
approach if the exact solution J is smooth.

Numerical Diffusioin

We shall now seek quantitative estimates for the dissipation in 25, i.e., the
CG-method or equivalently the CSD-method without the shock-capturing
perturbation, and in the CSD-method 63 with shoch-capturing.
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For Eq. 25 using 74
‖Jh,N‖2 +DN = ‖f‖2, (41)

where

DN =
N∑

n=1

‖Jh,n − TnJ
h,n−1‖2, (42)

may be taken as a quantitative measure for the dissipation. Introducing
TnVn−1 = {Tnv : v ∈ Vn−1}, we have TnJ

h,n−1 ∈ TnVn−1 and to estimate
DN we are led to estimate ‖Jh,n − TnJ

h,n−1‖ = ‖(Pn − I)w‖ with w =
TnJ

h,n−1 ∈ TnVn−1, i.e., the L2-error in the L2-projection of a piecewise
linear function TnJ

h,n−1 on one mesh TnVn−1 onto a set of piecewise linears
Vn on a different mesh. Obviously, by standard estimates we have for w ∈
TnJ

h,n−1 the following first order estimate:

‖(Pn − I)w‖ ≤ Chn‖w‖H1(I⊥), (43)

with no standard second order counterpart since w /∈ H2(I⊥) if w ∈ TnVn−1.
However, there is in fact a second order analogue of 81 available which takes
the form:

‖(Pn − I)w‖ ≤ C(h2
n + h2

n−1)
2‖∆⊥,n−1w‖, (44)

where ∆⊥,n−1 : H1(I⊥) → TnVn−1 is a discrete Laplacian defined by
−(∆⊥,n−1ϕ, v) = (∇⊥ϕ,∇⊥v), ∀v ∈ TnVn−1, see [4].

Inserting 83 into 79 we obtain assuming hn ≤ h,

DN ≤ C

N∑
n=1

h4

h̄n
‖∆⊥,n−1TnJ

h,n−1‖2h̄n. (45)

With h̄n = h the inequality 84 suggests that the dissipation in 25 corre-
sponds to adding a diffusion term of the form ch3∆2

⊥J to the continuous
equation. In particular for smooth solution it appears that 25 adds lttle
diffusion as compared to a first order upwind scheme with a corresponding
continuous diffusion term of the form Ch∆⊥J with much larger diffusion
coefficient. Thus, 25 does not appear to add excessive numerical diffusion
unless of course we take h̄n small compared to hn, so that very many L2-
projections of different meshes will be performed. On the other hand in
some sense 25 contains too little numerical diffusion since oscillations may
occure at discontinuities of the exact solution.

We now turn to the CSD-method 63 which obviously adds more numerical
diffusion than the CG-method due to modification on ε-term. The stability
estimate corresponding to 77 in this case takes the form

‖Jh,N‖2 + D̃N = ‖f‖2, (46)

10
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where

D̃N = DN + 2
N∑

n=1

∫
ε̃|∇⊥Jh,n|2 dx⊥, (47)

where ε̃ = F(Chα
n|Jh,n−TnJ

h,n−1|)/Mn. It follows that the shock-capturing
term in the CSD-method corresponds to adding a viscouse term of the form
−div(ε̂∇⊥J) to the continuous equation with ε̂ = ε̃/h̄n in Sn. If the ex-
act solution is smmoth, we expect by 83 to have ε̂ = O(h3) if hn ≤ h and
h̄n = h, (α = 2), i.e. the same amount of viscosity without the perturbation.
However, close to discontinuity of J (assuming f is discontinuous) we may
have |Jh,n− TnJ

h,n−1| = O(1) at least for n small, and then ε̂ = O(1), i.e.,
the shock-capturing term may add significant additional numerical diffusion
in regions of nonsmmothness of the exact solution.

Stability in the Maximum norm

The stability, in the maximum norm, for the CSD-method being a particular
SD-method reads as follows: For a given L > 0 there is a constant C such
that if Jh,n, n = 1, 2, . . . , N satisfies 61, then if xn ≤ L we have

‖Jh,n‖∞ ≤ C‖f‖∞, (48)

where ‖v‖∞ = supx∈Ix
|v(x)|. The estimate 89 may alternatively be ex-

pressed as follows

‖Jh,n‖p ≤ ‖Jh,n−1‖p, if p ≤ ch−κ/4, (49)

where κ > 0 appears in the definition of ε̂ in 26, c is a sufficiently small
constant, and ‖ · ‖p denotes the Lp(I⊥)-norm:

‖v‖p =
(∫

I⊥
|v(x)|p dx⊥

)1/p

, p ≥ 1. (50)

More precisely, 89 follows from 90 by an inverse estimate letting p→∞. To
prove 90 thge essential step is to choose in 61, v = πn

(
(Jh)p−1

)
, where p is

an even natural number πn : C(I⊥) → Vn is the standard nodal interpolation
operator to get

∫

I⊥
(Jh,n)p dx⊥ +

∫

I⊥
ε̃∇perpJ

h,n · ∇perp

(
πn((Jh,n)p−1)

)
dx⊥ (51)

=
∫

I⊥
TnJ

h,n−1(Jh,n)p−1 dx⊥ + En, (52)

where

En =
∫

I⊥
(Jh,n − TnJ

h,n−1)
(
(Jh,n)p−1 − πn((Jh,n)p−1)

)
dx⊥. (53)

11
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Now by standard interpolation error estimates

|En| ≤ Cp2

∫

I⊥
|Jh,n − TnJ

h,n−1|h2
n|∇⊥Jh,n|2‖Jh,n‖p−3

∞,K dx⊥, (54)

where ‖v‖∞,K = supx⊥∈K |v(x⊥)| on K. On the other hand, see [4], we have
for some constant c independent of p = 2m, m = 1, 2, . . . , n = 1, 2, . . . , N ,

∫

I⊥
ε̃∇perpJ

h,n · ∇perp

(
πn((Jh,n)p−1)

)
dx⊥ (55)

≥ c

p2

∫

I⊥
ε̃|∇⊥Jh,n|2‖Jh,n‖p−2

∞,K dx⊥. (56)

For simplicity we now assume that ε̃ is defined slightly differently compared
to the above, assuming now that Mn = 1+ ‖Jh,n‖∞,K on K ∈ Tn, in which
case |En| is dominated by the right hand side of 93 so that recalling 91:

∫

I⊥
(Jh,n)p dx⊥ ≤

∫

I⊥
TnJ

h,n−1(Jh,n)p−1 dx⊥, if p ≤ ch−κ/4, (57)

with c sufficiently small. Finally, 90 now follows by applying Hölder in-
equality to 94. Note that the proof of the crucial estimate 93 is carried out
element by element and uses in an essential way that Vn consists of picewise
linears.
We shall use the high accuracy and good stability features of the streamline
diffusion Galerkin method, studied in [2], based on
a) A phase-space discretization based on piecewise polynomial approxima-
tion with basis functions being continuous in x⊥ and discontinuous in x.
(Discontinuity in all variables , corresponding to the a priori error esimates
for the discontinuous Galerkin in [2], is a seemilngly chalenging a posteriori
problem).
b) A streamline diffusion modification of the test function giving a weighted
least square control of the residual R(Jh) = L(Jh) of the finite element
solution Jh.
c) Modification of the transport cross-section σtr = 2σ so that an artificial
transport cross-section σ̂tr is obtained modifying ε as

ε̂(x, x⊥) = max
(
ε(x, y), c1hR(Jh)/|∇⊥Jh|, c2h(x, x⊥)3/2

)
, (58)

where h is a total mesh-size and ci, i = 1, 2 are sufficiently small constants.
For the original degenerate problem ε̂ is defined by replacing ε in 23 by σ.
With a simplified form of the artificial transport cross-section as

ε̂ = max(ε, c1h), (59)

12
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the SD-modification b) may be omitted. The a posteriori error estimate un-
derlying the adaptive algorithm is, in the case of discretizing in the transver-
sal variable (y, z) = x⊥ only, basically as follows:

‖êh‖Q ≤ CsCi‖ε̂−1h2R(Jh)‖Q, (60)

where êh = Ĵ − Jh, with Ĵ being the solution of 22 with ε replaced by ε̂
and

e = J − Jh = (J − Ĵ) + (Ĵ − Jh) := ê+ êh. (61)

Note that J − Ĵ is a perturbation error caused by changing ε to ε̂ in the
continuous prolem 22. Further Cs is a stability constant, Ci is an interpo-
lation constant and |‖·|‖Q is the |‖·|‖L2(Q)-norm. In the simplified case 25
the error estimate 26 takes the form

|‖êh|‖Q ≤ CsCi|‖hR(Jh)|‖Q. (62)

The adaptive algorithm is based on 26 and seeks to find a mesh with as few
degrees of freedom as possible such that for a given tolerance TOL> 0,

CsCi|‖ε̂−1h2R(Jh)|‖Q ≤ TOL, (63)

which, through 26, would L2-bound êh. To control the remaining part of the
error; i.e., ê = J − Ĵ , we may adaptively refine the mesh until ε̂ = ε, giving
J = Ĵ , or alternatively approximate ê in terms of ε̂− ε. To approximately
minimize the total number of degrees of freedom of a mesh with mesh size
(x, x⊥) satisfying 60, typically a simple iterative procedure is used where a
new mesh-size is computed by equidistribution of element contributions in
the quantity CsCi|‖ε̂−1h2R(Jh)|‖Q with the values of ε̂ and R(Jh) taken
from the previous mesh.
The structure of the proof of the a posteriori error estimate 60 is as folows:
i) Representation of the error êh in terms of the residual R(Jh) and the
solution ψ of a dual problem with êh as right hand side.
ii) Use of the Galerkin orthogonality to replace ψ by ψ − Ψ, where Ψ is a
finite element interpolant of ψ.
iii) Interpolation error estimates for ψ −Ψ in terms of
certain derivative Dψ of ψ and the mesh-size h.
iv) Strong stability estimate for the dual solution ψ estimating Dψ in terms
of the data êh of the dual problem.
Below we specify the steps i)-iv). Recall that Ĵ satisfies

Ĵx + β · ∇⊥Ĵ − ε̂∆⊥Ĵ = 0, in Q, (64)
Ĵ(0, x⊥) = f(x⊥), for x⊥ ∈ Iy × Iz, (65)

Ĵz(x, y,±z0) = 0, for (x, y) ∈ [0, L]× Iy, (66)

Ĵ(0,±y0, z) = 0, for z ∈ Γ−0 , (67)

13
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with Γ−0 = Γ− ∩ {x = 0}, where Γ−(+) = {x ∈ Γ = ∂Q : β̃ · n(x) < 0(>
0), β̃ = (1, β)}, and Γ0 is defined analogeously, so that Γ0 = {(x, y,±z0)}∪
{(x,±y0, 0)}.
Suppose now that Jh ∈ Vh, where Vh ⊂ L2(Q) is a finite element space, is
a Galerkin type approximate solution satisfying

Jh
x + β · ∇⊥Jh − ε̂∆⊥Jh = R, in Q, (68)

Jh(0, ·) = fh, in Iy × Iz, (69)

Jh = 0, on Γ−0 , and Ĵh
z = 0, on Γ0, (70)

where fh is a Galerkin approximation of f and the residual R satisfies
Galerkin orthogonality relation

∫

Q

Rv dx dx⊥ = 0, ∀v ∈ Vh. (71)

We shall also use the following semi-consistency assumption:
∫

Γ−s
Jh|n · β̃| dΓ =

∫

Γ−s
J |n · β̃| dΓ, (72)

where Γ−s := Γ− \ {x = 0}, is the side-inflow boundary. xotObserve that
both in our continuous and discrete model problems 61 and 62, primarily,
we may assume

J |Γ−s = Jh|Γ−s = 0, (73)

however, there is no guarantee that “after-collision” particles would obey the
same boundary condition as 68. Therefore, assumption 64 is to ensure that:
in the approximation procedure the toltal inflow of particles is preserved.
In the sequal and to avoid multiple-indices, we shall refer to all approximated
functions with alternate sub or super-index h. Subtracting 62 form 61 gives
the following equation for the error êh = Ĵ − Jh:

Lêh ≡ êh
x − β · ∇⊥êh − ε̂∆⊥êh = −R, in Q, (74)

êh(0, ·) = f − fh, in Iy × Iz, (75)
êh = 0, on Γ−0 , and êh

z = 0, on Γ0. (76)

We now introduce a dual for the non-degenerate problems 61 or 62 and 71
as

L∗ψ = −ψx − β · ∇⊥ψ − ε̂∆⊥ψ = êh, in Q, (77)
ψ = 0, on Γ+, and ψz = 0, on Γ0. (78)

Let us, for simplicity, start to consider the original Fermi case by replacing,
in 61-62, β ·∇⊥, ∆⊥, and ψ by z∂y, ∂zz, and ϕ, respectively. Then we have

14
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the following version of the dual problem 72:

L∗ϕ = −ϕx − zϕy − ε̂ϕzz = êh, in Q, (79)
ϕ = 0, on Γ+, and ϕz = 0, on Γ0. (80)

Recall that, in 73, ε̂ is obtained from 13 by replacing ε by σ. We shall use
ε̂ for both degenerate and non-degenerate cases, the meaning would be ob-
vious from the context. Using, 72, we get the following error representation
formula:

‖êh‖2 = (êh,L∗ϕ) =
∫

Q
êh(−ϕx − zϕy − εϕzz) dx dx⊥

= (Lêh, ϕ)− ∫
Iy×Iz

êhϕ
∣∣∣
x=L

x=0
dy dz − ∫

Ix×Iz
zêhϕ

∣∣∣
y=y0

y=−y0

dx dz

− ∫
Ix×Iy

εêhϕz

∣∣∣
z=z0

z=−z0

dx dy +
∫

Ix×Iy
εêh

zϕ
∣∣∣
z=z0

z=−z0

dx dy :=
∑5

i=1 Ii.

Below we identify the terms Ii, i = 1, . . . 5, more closely. We have that

I1 = (Lêh, ϕ) = −
∫

Q

Rϕdx dx⊥. (81)

The incidental boundary conditions give

I2 = − ∫
Iy×Iz

êh(L, x⊥)ϕ(L, x⊥) dx⊥ +
∫

Iy×Iz
êh(0, x⊥)ϕ(0, x⊥) dx⊥

=
∫

x=0
(f − fh)ϕdx⊥, (82)

while the outflow boundary conditions, i.e., ϕ = 0, on Γ+ imply that

I3 = − ∫
Ix

{∫ z0

0
zêhϕ

∣∣∣
y=y0

y=−y0

dz +
∫ 0

−z0
zêhϕ

∣∣∣
y=y0

y=−y0

dz

}
dx

=
∫

Ix

∫ z0

0
zêh(x,−y0, z)ϕ(x,−y0, z) dzdx

− ∫
Ix

∫ 0

−z0
zêh(x, y0, z)ϕ(x, y0, z) dzdx

=
∫
Γ−s

êhϕ|n · β̃| dΓ,

where, n is the outward unit normal defined at the boundary and, for the
sake of generality, we have not used the assumption 64, yet. Thus

I2 + I3 =
∫

Γ−
êhϕ|n · β̃| dΓ. (83)

Further since ϕz = êh
z = 0, for z = ±z0, we have I4 = I5 ≡ 0. Summing up

we get

|‖êh|‖2 = −
∫

Q

Rϕdx dx⊥ +
∫

Γ−
êhϕ|n · β̃| dΓ. (84)
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We use Galerkin orthogonality relation ?? and write
∫

Q

Rϕdx dx⊥ =
∫

Q

R(ϕ−Phϕ) dx dx⊥ =
∫

Q

(R−PhR)(ϕ−Phϕ) dx dx⊥,

(85)
where Ph : L2(Q) → Vh is the L2(Q)-projection. By Cauchy-Schwarz in-
equality we may estimate the boundary integral term in 79 as

∫

Γ−
êhϕ|n · β̃| dΓ ≤

(∫

Γ−
|êh|2|n · β̃| dΓ

)1/2

×
(∫

Γ−
ϕ2|n · β̃| dΓ

)1/2

. (86)

Now using an interpolation error, with a symmetry assumption ϕyy = ϕzz

inherited from 64, of the form

|‖ε̂h−2(ϕ− Phϕ)|‖Q ≤ Ci|‖ε̂∆⊥ϕ|‖Q ≈ Ci|‖ε̂ϕzz|‖Q, (87)

together with a strong stability estimate for the dual problem 73 of the form

|‖ε̂ϕzz|‖Q ≤ Cs|‖êh|‖Q, (88)

we get that

−
∫

Q

Rϕdxdx⊥ ≤ CsCi|‖h2ε̂−1(R−PhR)|‖Q|‖êh|‖Q. (89)

To estimate the boundary integrals we recall the L2 trace thorem

|‖u2|‖L2(∂Ω) ≤ C|‖u|‖2L2(Ω)|‖u|‖2W 1
2 (Ω), (90)

and also the inverse estimate

|‖v|‖2W 1
2 (Ω) ≤ C|‖h−1v|‖2L2(Ω), (91)

where W r
p is the usual Sobolev space consisting of functions having their

derivatives up to order r in Lp, u and v are sufficiently smooth functions and
Ω has a Lipschitz boundary, see [3] or [4] for the details. So that applying
87-88 to ϕ and Q we get
∫

Γ−
|ϕ|2|n · β| dΓ ≤ C‖ϕ|‖Q‖ϕ‖W 1

2 (Q) ≤ C‖ϕ−Phϕ‖Q‖ϕ− Phϕ‖W 1
2 (Q)

≤ C‖ε̂h−2(ϕ−Phϕ)‖Q‖ε̂−1h2(ϕ− Phϕ)‖W 1
2 (Q)

≤ CCs(Ci)2|‖êh|‖Q|‖ε̂−1h3∆⊥ϕ|‖Q,

where C depends on the trace theorem and inverse inequality constants.
Recalling 13 we have that ε̂ > h3/2 and therefore ε̂−1h3 ≤ h3/2 ≤ ε̂. Hence

|‖ε̂−1h3ϕzz|‖Q ≤ |‖ε̂−1h3∆⊥ϕ|‖Q ≈ |‖ε̂ϕzz|‖Q ≤ Cs|‖êh|‖Q. (92)
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Thus ∫

Γ−
|ϕ|2|n · β| dΓ ≤ CT (CsCi)2|‖êh|‖2Q. (93)

At this moment we need to invoke 64, (note that if there is a feasable
information on behavior of the secondary particles at the inflow boundary
we would be able to continue without using ??), identifying 77 as

∫

Γ−
|êh|2|n · β̃| dΓ =

∫

{x=0}
|f − fh|2|n · β̃| dΓ. (94)

Inserting 84, 89 and 90 in 79 we obtain

|‖êh|‖Q ≤ CsCi


|‖h2ε̂−1(R−PhR)|‖Q +

(
CT

∫

{x=0}
|f − fh|2|n · β̃| dΓ

)1/2

 .

(95)
Thus we have estimated the error in terms of the residual and the inci-
dent boundary error and we have a complete control over all the involved
constants (note that CT being a theoretical constant is not effected by our
approximation procedure). The estimate 91, which is an analogue of 26, is
appropriate in the present contest with R satisfying the Galerkin orthogo-
nality relation 63 and f being a sufficiently smooth approximation for the
product of incident δ functions at the boundary.
first line. To avoid all numbering, use the eqnarray*

2 Conclusion

• Remember that other instructions for paper

preparation are given on the RGD21 WEB or FTP sites.

• The Scientific Organizing Committee (rgd@cnrs-bellevue.fr)

will do its best to help you in case of difficulty.

References

[1] Asadzadeh, M., Streamline Diffusion Methods for Fermi and Fokker-
Planck Equations, TTSP, 26, 319-340(1997).

[2] Asadzadeh, M., On Convergence of FEM for the Fokker-Planck Equa-
tion, Proc. 20RGD, ed. by Ching Shen, Peking University press, 309-
314(1997).

[3] Börgers, C. and Larsen, E. W., Asymptotic derivation of the Fermi
pecil beam approximation, Nucl. Sci. Eng. 123, 343-357(1996).

17



21st International Symposium on Rarefied Gas Dynamics

[4] Eyges, L., Multiple scattering with energy loss, Phys. Rev. 74,
1534(1948).

[5] Fermi, E., quoted in Rossi B. and Greisen K., Cosmic ray theory, Rev.
Mod. Phys. 13, 240(1941).

[6] Jette, D., Electron dose calculation using multiple-scattering theory. A.
Gaussian multiple-scattering theory, Med. Phys. 15, 123-137(1988).

[7] Pomraning, G. C., The Fokker-Planck operator as an asymptotic limit,
Math. Mod. Meth. Appl. Sci. 2, 21-36(1992).

18


