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Abstract

We consider a Fermi pencil-beam model in two-space dimensions ðx; yÞ, where x is aligned with the beam’s pene-
tration direction and y together with the scaled angular variable z correspond to a, bounded symmetric, transversal

cross-section. The model corresponds to a forward–backward degenerate, convection dominated, convection–diffusion

problem. For this problem we study some fully discrete numerical schemes using the standard- and Petrov–Galerkin

finite element methods, for discretizations of the transversal domain, combined with the backward Euler, Crank–

Nicolson, and discontinuous Galerkin methods for discretizations in the penetration variable. We derive stability es-

timates for the semi-discrete problems. Further, assuming sufficiently smooth exact solution, we obtain optimal a priori

error bounds in a triple norm. These estimates give rise to a priori error estimates in the L2-norm. Numerical imple-
mentations presented for some examples with the data approximating Dirac d function, confirm the expected perfor-

mance of the combined schemes.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The Fermi pencil-beam equation is derived from the Fokker–Planck equation through an asymptotic
expansion. The Fokker–Planck equation itself is yet another asymptotic limit of the linear Boltzmann
equation, see [6]. Both asymptotic derivations relay on the assumption of forward-peaked scattering in a
transport process.
In this work we focus on approximation techniques and study some fully discrete schemes for the nu-

merical solution of a pencil-beam model in two-space dimensions. Introducing a scaled angular variable z
our model problem would correspond to a forward–backward, degenerate type, convection dominated,
convection–diffusion problem in a slab of thickness L, x 2 Ix :¼ ½0; L�, with a symmetric cross-section
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I? :¼ Iy � Iz :¼ ½	y0; y0� � ½	z0; z0�, where y0, z0 2 Rþ. Thus the physical domain, Ix � I?, is now three-
dimensional and the corresponding Fermi equation is modelling the penetration (in the direction of the x-
axis) of narrowly focused pencil-beam particles, incident at the transversal boundary of an isotropic slab,
entering into the domain at the origin ðx; y; zÞ ¼ ð0; 0; 0Þ. Because of the forward-peakedness assumption
the radiation scattering from the beam particles would cover bounded transversal intersections which, for
simplicity, are assumed to be convex. Further, for the isotropic background media we may assume that all
involved functions are symmetric, i.e., they are even in y and z.
In this setting, our model problem is thus formulated as follows: given the incident source intensity f at

x ¼ 0, find the current u defined on the domain X :¼ Ix � I? satisfying the Fermi pencil-beam equation

ux þ zuy ¼ euzz in X ¼ Ix � I?;

uzðx; y;�z0Þ ¼ 0 for ðx; yÞ 2 Ix � Iy ;

uð0; x?Þ ¼ f ðx?Þ for x? 2 I?;

uðx; x?Þ ¼ 0 on C	
~bb n fð0; x?Þg;

8>>><
>>>:

ð1:1Þ

where C	
~bb ¼ fðx; x?Þ 2 C :¼ oX; ~nn � ~bb < 0g is the inflow boundary with respect to ~bb :¼ ð1; z; 0Þ, (z ¼ tan h;

	p=2 < h < p=2, corresponds to scaled angular variable), x? :¼ ðy; zÞ and 2e ¼ rtrðx; yÞ. Here rtrðx; yÞ is
called the transport cross-section which is a positive small and decreasing function of ðx; yÞ and corresponds
to the deposit of energy due to particle collisions. Finally ~nn :¼ ~nnðx; x?Þ is the outward unit normal to C at
ðx; x?Þ 2 C. This problem corresponds to a forward–backward (depending on sign of z in (1.1)) convection
dominated (small e) convection–diffusion problem which can be interpreted as a time-dependent (with x
corresponding to the time variable) degenerate type (convection in y, diffusion in z) problem.
For the convection dominated problems having hyperbolic nature, (assuming that the exact solution in

the Sobolev space Hkþ1), the standard finite element schemes with a quasi-uniform triangulation and a mesh
size h, would have a convergence of order OðhkÞ, versus Oðhkþ1Þ for elliptic and parabolic problems, see [10].
These estimates are in some modified L2-norms associated with the weak formulation of the problem. The
idea of including artificial viscosity term, e.g., by adding some amount of diffusion in the equation, is to
create smoothing effects improving the poor behaviour of the standard Galerkin (SG) method for hyper-
bolic type problems, see, e.g., [8]. Here, using a semi-streamline diffusion (SSD) method through a modified
form of the test functions, we can automatically add a proper amount of spatial viscosity in the y-direction.
If we could add the same amount of viscosity in the z-direction then we would have an improved con-
vergence rate by Oðh1=2Þ. However, because of the assumption of forward peaked scattering in angle and
energy, creating more amount of diffusion in the z-direction is unphysical. Therefore e will be kept in the
range h26 e6 h, and the optimality of our final L2-error estimates are stated in this context. Note that the
SSD method is performed only on x?, whereas the usual streamline diffusion (SD) finite element method is
applied also on the x variable. This improves the convergence rate in the triple norm by Oðh1=2Þ, see, e.g.,
[2,8,10]. However, in the L2-estimates, because of the absence of an absorption term in the equation, the
relation between e and the mesh size h: e P h2, would cause to a reduced convergence rate by Oðe1=2Þ � OðhÞ.
Some related studies of the Fokker–Planck and Fermi pencil-beam models can be found in [2–4]. In [2] a

priori error estimates are derived for a fully discrete problem using the usual SD and discontinuous
Galerkin (DG) finite element methods, while [3] is devoted to the a posteriori error estimates in the same
setting. The characteristic methods, based on the technique of exact transportþ projections are considered
in [4], see also [11].
Below first we study the semi-discrete schemes where we discretize in the transversal variable x? ¼: ðy; zÞ,

using the SG and SSD finite element methods with weakly imposed boundary conditions, and derive some
stability estimates. The convergence results in the semi-discrete part are based on Galerkin orthogonality
and strong stability estimates derived for certain bilinear forms. As for the fully discrete problem: because
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of the structure of the equation the penetrating variable x is interpreted as a time variable and treated by
usual time discretization techniques such as: DG, backward Euler or Crank–Nicolson methods.
One of the basic applications of the Fermi pencil-beam models is in the dose calculations of the radiative

cancer therapy, see [9]. Our computational results, in concrete examples, indicate the reliability of different
numerical schemes proposed in this context. We present fast and efficient, deterministic, schemes compet-
itive with the commonly used stochastic algorithms and derive convergence rates and stability estimates.
An outline of this note is as follows: we start by presenting the semi-discrete approximation by the SG

finite element method in Section 2, prove a stability result for this type of discretization in Section 2.1 and
derive the error estimates in Section 2.2. The corresponding investigations using the SSD approximation are
presented in Section 3. Section 4 is devoted to fully discrete algorithms. Numerical simulations, for some
relevant examples, together with the study of the behaviour of either discretization algorithms are intro-
duced in Section 5. Finally in Section 6 we comment the numerical results. Throughout the paper C will
denote an absolute constant unless otherwise explicitly stated.

2. The standard Galerkin method

In this section we discretize in x? ¼ ðy; zÞ using a finite element approximation based on quasi-uniform
triangulation of the rectangular domain I? ¼ Iy � Iz with a mesh size h. To this approach we let b ¼ ðz; 0Þ
and define the inflow (outflow) boundary as

C	ðþÞ
b :¼ fx? 2 C :¼ oI? : nðx?Þ � b < 0 ð>0Þg; ð2:1Þ

where nðx?Þ is the outward unit normal to the boundary C at x? 2 C. Now we introduce a discrete finite
dimensional function space Vh;b � H 1

b ðI?Þ with,

H 1
b ðI?Þ ¼ v 2 H 1ðI?Þ : v

n
¼ 0 on C	

b n fð0; x?Þg
o
; ð2:2Þ

such that, 8v 2 H 1
b ðI?Þ \ HrðI?Þ,

inf
v2Vh;b

kv	 vkj 6Cha	jkvka; j ¼ 0; 1 and 16 a6 r; ð2:3Þ

where for positive integer s, k � ks denotes the L2-based Sobolev norm of functions with all their partial
derivatives of order 6 s in L2, see Adams [1]. An example of such Vh;b is the set of sufficiently smooth
piecewise polynomials P ðx?Þ of degree 6 r, satisfying the boundary condition given in (2.2).
To proceed we introduce a bilinear form, A : H 1

b ðI?Þ � H 1
b ðI?Þ, defined by

Aðu; vÞ ¼ ðux; vÞ? þ ðzuy ; vÞ?; 8u; v 2 H 1
b ðI?Þ; ð2:4Þ

then the continuous variational problem is: find a solution u to (1.1) such that

Aðu; vÞ? þ ðeuz; vzÞ? ¼ 0 8v 2 H 1
b ðI?Þ;

uð0; x?Þ ¼ f ðx?Þ:

�
ð2:5Þ

Let ~uu 2 Vh;b be an auxiliary interpolant of the solution u of (1.1) defined by

Aðu	 ~uu; vÞ ¼ 0 8v 2 Vh;b: ð2:6Þ
Now the objective is to solve the following discrete variational problem: find uh 2 Vh;b, such that

ðuh;x; vÞ? þ ðzuh;y ; vÞ? þ ðeuh;z; vzÞ? ¼ 0 8v 2 Vh;b;
uhð0; x?Þ ¼ fhðx?Þ;

�
ð2:7Þ
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where fh is assumed to be a finite element approximation of f which coincides with the interpolant ~uuð0; x?Þ
of uð0; x?Þ. Here, ðu; vÞ? ¼

R
I?
uðx?Þvðx?Þdx? and kukL2ðI?Þ ¼ ðu; uÞ1=2? . To distinguish, we use the following

inner products notations: ð�; �Þ? and ð�; �ÞX, where X ¼ ½0; L� � I? :¼ Ix � I?, for integrations over I? and
Ix � I?, respectively. Finally, we assume that the mesh size h is related to e according to:

h26 e6 h:

2.1. Stability

In this part we prove a stability lemma in both inner products, ð�; �Þ? and ð�; �ÞX, to guarantee the control
of both continuous and discrete solutions by the data. For simplicity we introduce the triple norm,

jjjvjjj2~bb ¼ 1
2

Z
Cþ
~bb

v2ðn � ~bbÞdC þ ke1=2vzk2L2ðXÞ; ð2:8Þ

where ~bb ¼ ð1; bÞ and Cþ
~bb
:¼ C n C	

~bb ¼ ½0; L� � Cþ
b [ ffLg � I?g.

Lemma 2.1. For u satisfying (1.1) we have that,

sup
x2Ix

kuðx; �ÞkL2ðI?Þ 6 kf kL2ðI?Þ; ð2:9Þ

jjjujjj2~bb ¼ 1
2
kuð0; �Þk2L2ðI?Þ: ð2:10Þ

Proof. We let v ¼ u, in the first equation, in (2.5). Using (2.4) we obtain,

1

2

d

dx
kuk2L2ðI?Þ þ ðzuy ; uÞ? þ ke1=2uzk2L2ðI?Þ ¼ 0: ð2:11Þ

Using integration by parts, in y, we may write

ðzuy ; uÞ? ¼ 1
2

Z
Iz

z u2ðy0Þ



	 u2ð 	 y0Þ
�
dz ¼ 1

2

Z
Cþ

b

ðn � bÞu2 dC; ð2:12Þ

which, inserting in (2.11), gives that,

1

2

d

dx
kuk2L2ðI?Þ þ

1

2

Z
Cþ

b

ðn � bÞu2 dC þ ke1=2uzk2L2ðI?Þ ¼ 0: ð2:13Þ

Now, since
R

Cþ
b
ðn � bÞu2 dCP 0, by (2.13), ðd=dxÞkuk2L2ðI?Þ 6 0, i.e., kuk

2
L2ðI?Þ is decreasing in x and hence,

kuðx; �ÞkL2ðI?Þ 6 kuðx0; �ÞkL2ðI?Þ; 06 x0 6 x6 L ð2:14Þ

and thus

kuðx; �ÞkL2ðI?Þ 6 kf kL2ðI?Þ; 8x 2 ½0; L�: ð2:15Þ

This gives the first statement of the lemma. Integrating (2.13) over x 2 ½0; L� we get,

1

2
kuðL; �Þk2L2ðI?Þ þ

1

2

Z L

0

Z
Cþ

b

ðn � bÞu2 dC þ ke1=2uzk2L2ðXÞ ¼ 1
2
kuð0; �Þk2L2ðI?Þ: ð2:16Þ

Observe that the first two terms above add up to ð1=2Þ
R

Cþ
~bb

ðn � ~bbÞu2 dC, so that we obtain the second as-
sertion of the lemma and the proof is complete. �
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By the same argument as in Lemma 2.1 we obtain the semi-discrete version of the stability estimate for
SG problem:

Corollary 2.1. The solution uh of problem (2.7) satisfies the stability relations,

sup
x2Ix

kuhðx; �ÞkL2ðI?Þ 6 kuhð0; �ÞkL2ðI?Þ; ð2:17Þ

jjjuhjjj2~bb ¼ 1
2
kuhð0; �Þk2L2ðI?Þ: ð2:18Þ

2.2. Convergence

In this part we state and prove convergence rates, both in the L2-norm and in the triple norm, for the SG-
method for the semi-discrete problem with weakly imposed boundary conditions. Our main results are
Lemma 2.2 and Theorem 2.1 below. For the hyperbolic problems with an absorption term of Oð1Þ, and
u 2 HrðXÞ, the optimal convergence rate for the SG in the L2-norm is Oðhr	1Þ. Our equation, although
degenerate, is not purely hyperbolic: the diffusive term in z on the right hand side corresponds to add
of artificial viscosity, of order OðeÞ, in the z-direction. This improves the triple norm estimate by
Oð

ffiffi
e

p
Þ � Oð

ffiffiffi
h

p
Þ. However, turning to the L2-norm estimate because of the lack of absorption term, using

Poincare inequality, and due to h26 e6 h, we get a factor of Oðe	1=2Þ � Oðh	1Þ on the right hand side of the
L2-estimate, which corresponds to lose of an accuracy of e	1=2 � h	1. We have shown these phenomena in
Lemma 2.2 and Theorem 2.1 below.

Lemma 2.2 (error estimate in the triple norm). Assume that u and uh satisfy (1.1) and (2.7), respectively. Let
u 2 HrðXÞ, rP 2, then there is a constant C such that,

jjjuh 	 ujjj~bb 6Chr	1=2kukr: ð2:19Þ

Proof. By adding first equation in (2.7) and (2.6) we get, using (2.5), that

ððuh 	 ~uuÞx; vÞ? þ ðzðuh 	 ~uuÞy ; vÞ? þ ðeðuh 	 ~uuÞz; vzÞ? ¼ 	ðux; vÞ? 	 ðzuy ; vÞ? 	 ðeuz; vzÞ? þ ðeðu	 ~uuÞz; vzÞ?
¼ 0þ ðeðu	 ~uuÞz; vzÞ?:

Let now v ¼ uh 	 ~uu, then using the same argument as in the stability estimate we may write,

1

2

d

dx
kuh 	 ~uuk2L2ðI?Þ þ

1

2

Z
Cþ

b

ðn � bÞðuh 	 ~uuÞ2 dC þ ke1=2ðuh 	 ~uuÞzk
2
L2ðI?Þ

6
1
2
ke1=2ðuh 	 ~uuÞzk

2
L2ðI?Þ þ

1
2
ke1=2ðu	 ~uuÞzk

2
L2ðI?Þ;

or equivalently,

d

dx
kuh 	 ~uuk2L2ðI?Þ þ

Z
Cþ

b

ðn � bÞðuh 	 ~uuÞ2 dC þ ke1=2ðuh 	 ~uuÞzk
2
L2ðI?Þ 6 ke1=2ðu	 ~uuÞzk

2
L2ðI?Þ:

Now integrating over x 2 ½0; L�, implies that

kðuh 	 ~uuÞðL; �Þk2L2ðI?Þ þ
Z

Cþ
~bb
nCL

ð~nn � ~bbÞðuh 	 ~uuÞ2 dC þ ke1=2ðuh 	 ~uuÞzk
2
L2ðXÞ

6 ke1=2ðu	 ~uuÞzk
2
L2ðXÞ þ kðuh 	 ~uuÞð0; �Þk2L2ðI?Þ;
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where CL ¼ ffLg � I?g. Thus recalling uhð0; �Þ ¼ ~uuð0; �Þ ¼ fh, and the definition of the jjj � jjj~bb norm we have

jjjuh 	 ~uujjj2~bb 6 ke1=2ðu	 ~uuÞzk
2
L2ðXÞ:

Writing uh 	 u ¼ ðuh 	 ~uuÞ þ ð~uu	 uÞ, the desired result follows from the following interpolation estimate:
�

Proposition 2.1. Let h26 eðx; yÞ6 h, then there is a constant ~CC such that,

jjju	 ~uujjj~bb 6 ~CChr	1=2kukr: ð2:20Þ

Proof. The proof is based on classical interpolation error estimates, see [5], [7] and [10]: Let u 2 HrðXÞ, then
there exists an interpolant ~uu 2 Vh;b, of u and interpolation constants C1 and C2 such that

ku	 ~uuks 6C1hr	skukr; s ¼ 0; 1;
ju	 ~uuj~bb 6C2hr	1=2kukr;

where

juj~bb ¼
Z

Cþ
~bb

u2ð~nn � ~bbÞdC

0
@

1
A
1=2

:

Now recalling the definition of jjj � jjj~bb we have,

jjju	 ~uujjj2~bb ¼ 1
2
ju	 ~uuj2~bb þ ke1=2ðu	 ~uuÞzk

2
L2ðXÞ

6
1
2
ju	 ~uuj2~bb þ ke1=2k2L1ðXÞkðu	 ~uuÞzk

2
L2ðXÞku	 ~uuk2H1ðXÞ 6

1
2
C22h

2r	1kuk2r

6
1
2
ju	 ~uuj2~bb þ ðsupIx�Iy eÞ þ C21~eeh

2r	2kuk2r 6Ch2r	1kuk2r ;

where in the last step we used ~ee :¼ sup e6 h and C ¼ maxðC21 ;C22=2Þ. Letting now ~CC ¼ C1=2 the proof is
complete. �

From this result we now obtain the desired estimate in the L2-norm:

Theorem 2.1. For u 2 HrðXÞ, satisfying (2.7) and with uh being the solution of (2.7), there is a constant
C ¼ CðX; f Þ such that

ku	 uhkL2ðXÞ 6Chr	3=2kukr: ð2:21Þ

Proof. By a simple application of the Poincare inequality

ku	 uhkL2 6Ckðu	 uhÞzkL2 ð2:22Þ

and using Lemma 2.2 we have

ke1=2ðu	 uhÞzkL2 6Chr	1=2kukr: ð2:23Þ

Thus, since e P h2, we obtain (2.21). �
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Observe that in C ¼ CðX; f Þ, the X dependence is because of e ¼ eðx; yÞ and the Poincare inequality,
while the f dependence comes from the assumed identity uhð0Þ :¼ ~uuð0Þ ¼ f .

3. A smoothing Petrov–Galerkin method

Below we introduce a SSD approach which includes a diffusion generating test function in the y-
direction over the usual SG procedure. We show the strong stability of this scheme. Its smoothing prop-
erties are obvious, from the diffusivity (in y and z), as seen by the numerical implementations in Section 5.
However, the admissible size of, eðx; yÞ is very small, this implies unrealistically fine degree of numerical
resolution. In the numerical examples we have chosen e in the borderline of a numerically realistic and
physically admissible value. So at the end the dominant smallness parameter is e not the (comparably) large
diffusion that the method adds in the y-direction. We shall not carry out convergence analysis of this
scheme. Instead we refer to [2] for the complete analysis in the general SD case.
The degenerate character of the problem (1.1) contributes to the anisotropic nature of the diffusion. Using

the SSD scheme we obtain an equation with somewhat improved regularity in the y-direction.More precisely
the SSD test functions having the form vþ dvb automatically add an extra diffusion term, dðvb; vbÞ, to the
variational formulation, which combined with ðv;	evzzÞ ¼ ðevz; vzÞ term gives a, non-degenerate, weakly,
diffusive equation, (x is interpreted as the time variable), with a full diffusion of order OðeÞ, h26 e6 h, (while
we have assumed d � h).
Below we derive stability estimates for the continuous problem based on the SSD variational formu-

lation. The corresponding discrete version is obtained in a similar way and therefore omitted. As we
mentioned above the modified test function has the form: vþ dvb with dP e, b ¼ ðz; 0Þ, vb ¼ b � r?v and
r? ¼ ðo=oy; o=ozÞ, and v satisfying the boundary conditions in (1.1). Multiplying the differential equation
in (1.1) by vþ dvb and integrating over I? yields,

ðux þ ub 	 euzz; vþ dvbÞ? ¼ ðux; vÞ? þ dðux; vbÞ? þ ðub; vÞ? þ dðub; vbÞ?
þ ðeuz; vzÞ? þ dðeuz; ðvbÞzÞ? ¼ 0: ð3:1Þ

To derive the basic stability estimate we let v ¼ u in (3.1) and get

1

2

d

dx
kuk2? þ dðux; ubÞ? þ 1

2

Z
Cþ

b

ðn � bÞu2 dC þ dkubk2? þ ke1=2uzk2? þ dðeuz; ðubÞzÞ? ¼ 0: ð3:2Þ

The inner product in the last term can be written as,

ðeuz; ðzuyÞzÞ? ¼ ðeuz; zuyzÞ? þ ðeuz; uyÞ? ¼ 1
2

d

dy

Z
I?

ezu2z dy dz
� �

	 1
2

Z
I?

eyzu2z dy dzþ ðeuz; uyÞ?:

Now since by the symmetry assumption u is even in y and z, the integrands above are odd functions in z,
and their integrals over the symmetric interval Iz are identically zero. Hence (3.2) can be written as:

1

2

d

dx
kuk2? þ dðux; ubÞ? þ 1

2

Z
Cþ

b

ðn � bÞu2 dC þ dkubk2? þ ke1=2uzk2? þ dðeuz; uyÞ? ¼ 0: ð3:3Þ

Now we multiply the differential equation in (1.1) by dux, integrate over I? and perform an integration by
parts to obtain

dkuxk2? þ dðux; ubÞ? þ dðeuz; uxzÞ? ¼ 0: ð3:4Þ
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Note that,

ðeuz; uxzÞ? ¼ 1
2

d

dx

Z
I?

eu2z dx? 	 1
2

Z
I?

exu2z dx?: ð3:5Þ

Adding (3.3) and (3.4) and using (3.5) we have,

1

2

d

dx
kuk2? þ dkux þ ubk2? þ 1

2

Z
Cþ

b

ðn � bÞu2 dC þ ke1=2uzk2? þ dðeuz; uyÞ?

þ d
2

d

dx

Z
I?

eu2z dx? 	 d
2

Z
I?

exu2z dx? ¼ 0: ð3:6Þ

We shall also use the following trivial inequality,

jðeuz; uyÞ?j6 1
2
ke1=2uzk2? þ 1

2
ke1=2uyk2?: ð3:7Þ

Now we make an additional symmetry assumption on the transversal plane viz.,

ke1=2uyk? � ke1=2uzk?: ð3:8Þ

Observe that e ¼ ð1=2Þrtrðx; yÞ � 1=l, where l, the mean distance between two successive collisions, is an
increasing function of x and y. The justification of this phenomenon lies on the fact that we have a model
starting with dense collisions which gradually in the penetration direction x, towards to the end, i.e., on
leaving the physical domain, transfers to a particle distribution with rarefied character. (Note that, because
of the lack of absorption term in the equation, a problem with an increasing e would be unstable.) Thus, as
we have assumed, e is decreasing and ex 6 0, henceZ

I?

exu2z dx? 6 0: ð3:9Þ

Inserting (3.7)–(3.9) in (3.6) we get,

1

2

d

dx
kuk2?
�

þ d
Z
I?

eu2z dx?

�
þ 1
2

Z
Cþ

b

u2ðn � bÞdC þ dkux þ ubk2? þ ð1	 dÞke1=2uzk2? 6 0: ð3:10Þ

Thus for sufficiently small d �
ffiffi
e

p
� 1, (actually d < 1 would suffice)

d

dx
kuk2?
�

þ d
Z
I?

eu2z dx?

�
< 0 ð3:11Þ

and hence, ðkuk2? þ d
R
I?

eu2z dx?Þ is strictly decreasing in x. As a consequence, we have 8x0 2 ½0; L�,

kuðx0; �Þk2L2ðI?Þ þ dke1=2uzðx0; �Þk2L2ðI?Þ 6 kuð0; �Þk2L2ðI?Þ þ dke1=2uzð0; �Þk2L2ðI?Þ; ð3:12Þ

which gives the first stability estimate for the continuous SSD method:

kuðL; �Þk2L2ðI?Þ þ dke1=2uzðL; �Þk2L2ðI?Þ 6 kf k2L2ðI?Þ þ dke1=2fzk2L2ðI?Þ ð3:13Þ

and also, integrating over x0 2 ½0; L�, we get the second stability estimate:

Lemma 3.1. Assuming (3.8) and with d < 1 we have the stability estimate

jjjujjj2~bb þ dkux þ ubk2L2ðXÞ 6C kf k2L2ðI?Þ
�

þ dke1=2fzk2L2ðI?Þ
�
: ð3:14Þ
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Remark. Note that in deriving (3.14) from (3.10)–(3.13) we get the d-terms: d
R
I?

eu2z ðL; x?Þdx? ¼
dke1=2uzðL; �Þk2L2ðI?Þ and ð1	 dÞke1=2uzk2L2ðIx�I?Þ adding up to �ke1=2uzk2L2ðXÞ, which is included in jjjujjj2~bb. Fur-
ther,

1

2
kuðL; �Þk2L2ðXÞ þ

1

2

Z L

0

Z
Cþ

b

ðn � bÞu2 dC ¼ 1
2

Z
Cþ

~bb

ðn � ~bbÞu2 dC; ð3:15Þ

is also included in jjjujjj2~bb. Thus the assertion of Lemma 3.1, is simply,

dkux þ ubk2L2ðXÞ þ ke1=2uzk2L2ðXÞ þ
1

2

Z
Cþ

~bb

ðn � ~bbÞu2 dC6C kf k2L2ðI?Þ
�

þ dke1=2fzk2L2ðI?Þ
�
; ð3:16Þ

where we may take C � ð1=2ð1	 dÞÞ � ð1=2ð1	 hÞÞ < 1=2, for h < 1=4. Comparing this estimate with the
second assertion of Lemma 2.1, i.e., (2.10), we get,

kux þ ubkL2ðXÞ 6Cke1=2fzkL2ðI?Þ; C < 1=2: ð3:17Þ

Using the equation this yields,

keuzzkL2ðXÞ 6Cke1=2fzkL2ðI?Þ; C < 1=2: ð3:18Þ

The estimate (3.18) states that if e ¼ Oð1Þ then the solution is regularized in the sense that f 2 Hr ffiffi
e

p ðI?Þ
implies u 2 Hrþ1

e ðXÞ. However, this is obviously affected by small e values and, in particular, distorted when
e ¼ ð1=2Þrtrðx; yÞ ! 0.

Remark. The discrete version is now obtained by replacing u by a suitable uh, having the desired ap-
proximation properties. The corresponding semi-discrete convergence analysis would slightly improve the
results of Section 2 (Lemma 2.2, Proposition 2.1 and Theorem 2.1) by OðhrÞ where 06 r < 1=2. We em-
phasise that, the general convergence studies for the SD method show that the suitable compatibility re-
lations are d � h and e � h, whereas, as we mentioned earlier, the physical parameter e � h2. To be concise
we skip deriving SSD convergence rates and refer the reader to related estimates in [2] and [10].

4. The fully discrete problem

In this section, we derive the algorithms corresponding to the SG and SSD schemes for I? combined with
DG, backward-Euler (BE) and Crank–Nicolson (CN) methods for the penetration interval Ix. The ap-
proximation techniques in Sections 2 and 3 are designed for discretizations in the transversal variable
x? ¼ ðy; zÞ. We could include the penetration variable x, in this procedure as an additional space variable,
as it is, see the analysis in [2], where full discretizations are made in all three variables using both the usual
SD and the DG methods, see also [10,12]. However, in order to efficiently determine the beam intensity at
different transversal cross-sections, discretization procedures for the penetration variable x is treated sep-
arately and as a time variable, in similar time dependent problems. Thus, in extending our semi-discrete
algorithms to a higher dimensional case containing also discretizations in x, we consider the time dis-
cretization schemes for Ix, such as DG, BE and CN.
We introduce the bilinear forms:

aðu; vÞ :¼ ðub; vÞ? þ dðub; vbÞ? þ ðeuz; vzÞ? þ dðeuz; ðvbÞzÞ?; ð4:1Þ

bðu; vÞ :¼ dðu; vbÞ? þ ðu; vÞ? ð4:2Þ
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and rewrite the problem (3.1) as finding a solution u 2 H 1
b ðI?Þ such that,

bðux; vÞ þ aðu; vÞ ¼ 0; 8v 2 H 1
b ðI?Þ: ð4:3Þ

We subsequently use the finite dimensional subspace Vh;b � H 1
b ðI?Þ and represent the discrete solution uh by

a separation of variables viz:

uhðx; y; zÞ ¼
XM
i¼1

niðxÞ/iðy; zÞ; ð4:4Þ

Table 1

Backward Euler

Dirac e�4h–e
�
2h Hyperbolic e�4h–e

�
2h Maxwellian e�4h–e

�
2h Cone e�4h–e

�
2h

Galerkin elements

L2 26:79–8:44 0:155–0:062 0:333–0:184 0:344–0:207

L1 27:92–10:28 0:182–0:091 0:434–0:267 0:442–0:293

L1 48:69–16:99 0:224–0:090 0:407–0:263 0:476–0:313
~LL2 13:63–1:806 0:064–0:013 0:123–0:042 0:115–0:047

Semi-streamline diffusion elements

L2 27:16–8:522 0:151–0:064 0:322–0:179 0:320–0:203

L1 27:75–9:676 0:184–0:095 0:420–0:261 0:441–0:287

L1 50:93–15:22 0:208–0:083 0:418–0:246 0:433–0:287
~LL2 13:33–1:801 0:063–0:014 0:118–0:041 0:110–0:045

Table 2

Crank–Nicolson

Dirac e�4h–e
�
2h Hyperbolic e�4h–e

�
2h Maxwellian e�4h–e

�
2h Cone e�4h–e

�
2h

Galerkin elements

L2 26:93–8:473 0:156–0:063 0:356–0:180 0:345–0:209

L1 27:99–10:32 0:183–0:091 0:454–0:257 0:442–0:295

L1 49:12–17:27 0:225–0:091 0:469–0:270 0:478–0:315
~LL2 13:73–1:814 0:065–0:014 0:122–0:041 0:115–0:047

Semi-streamline diffusion elements

L2 27:33–8:527 0:152–0:064 0:332–0:178 0:321–0:204

L1 27:80–9:697 0:185–0:095 0:426–0:254 0:415–0:288

L1 51:50–15:24 0:208–0:084 0:426–0:245 0:434–0:286
~LL2 13:44–1:806 0:063–0:015 0:117–0:040 0:110–0:045

Table 3

Discontinuous Galerkin

Dirac e�4h–e
�
2h Hyperbolic e�4h–e

�
2h Maxwellian e�4h–e

�
2h Cone e�4h–e

�
2h

Galerkin elements

L2 29:04–9:809 0:161–0:061 0:309–0:200 0:303–0:237

L1 29:75–11:56 0:202–0:088 0:428–0:275 0:420–0:311
L1 52:54–21:13 0:224–0:089 0:429–0:417 0:404–0:498
~LL2 13:40–2:065 0:064–0:012 0:117–0:043 0:110–0:051

Semi-streamline diffusion elements

L2 29:24–10:17 0:152–0:067 0:304–0:193 0:296–0:220

L1 30:19–10:51 0:188–0:090 0:437–0:247 0:428–0:264
L1 53:34–19:71 0:221–0:100 0:428–0:382 0:401–0:455
~LL2 13:28–2:068 0:063–0:014 0:117–0:042 0:110–0:049
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where M � 1=h. Now we let v ¼ /j for j ¼ 1; . . . ;M , and insert (4.4) into the semi-discrete counterpart of
(4.3) to obtain,

XM
i¼1

n0
iðxÞbð/i;/jÞ þ

XM
i¼1

niðxÞað/i;/jÞ ¼ 0; j ¼ 1; . . . ;M : ð4:5Þ

In the matrix form (4.5) may be represented by Bn0ðxÞ þ AnðxÞ ¼ 0, where B ¼ ðbijÞ with bij ¼ bð/j;/iÞ and
A ¼ ðaijÞ with aij ¼ að/j;/iÞ. For small d the matrix B, being positive definite, is invertible and therefore we
can reformulate (4.5) as,

n0ðxÞ þ AnðxÞ ¼ 0; ð4:6Þ
where A ¼ B	1A. However inverting B is among other things expensive. Therefore we instead consider a
Choleski decomposition of B ¼ ETE, which leads to

g0ðxÞ þ AgðxÞ ¼ 0; gð0Þ ¼ g0; ð4:7Þ

where now A ¼ ðE	1ÞTAE	1 and g ¼ En. The (stiff) solution of (4.7) is:

gðxÞ ¼ g0 expð	AxÞ: ð4:8Þ
The matrix equations presented in this section can now be easily implemented for usual finite element test
functions (with d ¼ 0). In this manner our algorithm can be used to compare the SG and SSD methods.

Fig. 1. Some of the initial conditions used.
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A fully discrete scheme is obtained by also discretizing (4.6) in the x variable. Below we combine both SG
and SSD schemes, for discretization in x?, with the most common time discretization techniques applied to
our x variable. To achieve the most general schemes for the x discretization we extract them from
Pade approximations of the form, Unþ1 ¼ ElmUn for nP 0, where Elm ¼ rlmðAÞ. Here, rlmðxÞ ¼ glmðxÞ=dlmðxÞ
with,

glmðxÞ ¼
Xm

j¼0

ðl þ m 	 jÞ!m!
ðl þ mÞ!j!ðm 	 jÞ! ð	xÞj!; ð4:9Þ

dlmðxÞ ¼
Xl

j¼0

ðl þ m 	 jÞ!l!
ðl þ mÞ!j!ðl 	 jÞ! x

j: ð4:10Þ

For instance r01ðxÞ ¼ 1	 x corresponds to forward Euler, r10ðxÞ ¼ 1=ð1þ xÞ to backward Euler and r11 to
Crank–Nicolson scheme:

Un
h 	 Un	1

h

kn

� �
þ AUn

h ¼ 0; backward Euler; ð4:11Þ

Un
h 	 Un	1

h

kn

� �
þ A

Un
h þ Un	1

h

2

� �
¼ 0; Crank–Nicolson: ð4:12Þ

Other such choices will easily provide comparisons for alternative methods.

Fig. 2. An example of a solution. The Dirac initial condition is used with e ¼ 0:002, h ¼ 0:025 and k ¼ 0:0005.
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Fig. 3. Galerkin vs. semi-streamline elements for Dirac initial condition at h ¼ 0:2 for the slice, 	16 y6 1 at z ¼ 	0:9.

Fig. 4. Galerkin vs. semi-streamline elements for Dirac initial condition at h ¼ 0:1 for the slice, 	16 y6 1 at z ¼ 	0:9.
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5. Numerical examples

To justify the theoretical estimates of Sections 2 and 3 we present numerical examples testing the
convergence rates of both the SG and SSD. The implementations are performed over four different initial

Fig. 5. Galerkin vs. semi-streamline elements for Maxwell initial condition at h ¼ 0:2 for the slice, 	16 y6 1 at z ¼ 	0:9.

Fig. 6. Galerkin vs. semi-streamline elements for Maxwell initial condition at h ¼ 0:1 for the slice, 	16 y6 1 at z ¼ 	0:9.
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conditions: cone-Maxwellian-hyperbolic- and modified Dirac-impulses, all approximating our data: the
Dirac d function.
We split the problem into two steps. First we discretize the two-dimensional domain I? ¼ Iy � Iz by

means of continuous piecewise linear Galerkin approximation ‘‘cG(1)’’, and establish a mesh there in order
to obtain a semi-discrete solution and subsequently we apply one of the three schemes, BE, CN or DG to
step advance in the x-direction, (higher order elements could also be implemented in a similar way). Our
cG(1) basis functions have the form, /i ¼ a1y þ a2zþ a3.
In some special cases (for instance, for e ¼ eðxÞ, see [9]) the closed form exact solution for (1.1) is

available:

uðx; y; zÞ ¼
ffiffiffi
3

p

pex2
expð	2½3 y=xð Þ2 	 3 y=2ð Þzþ z2�=ðexÞÞ: ð5:1Þ

This allows us to draw some limited comparisons in terms of the actual error. In addition to being a limited
case, (5.1) also displays singularities near the origin which, (although removable), makes it difficult to
numerically implement as is. Obviously the final solution depends on initial conditions and therefore it is
not correct to compare (5.1) with the solutions we obtain numerically since the underlying initial conditions
were not the same to start with. For instance we can not numerically provide an initial data of the form of a
Dirac d function. We therefore use four different types of computable initial conditions, each approximating
the Dirac d function, in the L1 sense, for comparison purposes. Through these examples we will also as-
certain how strongly can differences in initial conditions affect our estimates on convergence established in

Fig. 7. L1 cumulative error vs nodes for SG and SSD for Dirac. The solutions at x ¼ 1 are found for h ¼ 0:2.
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Sections 2 and 3. In the results that follow we see comparable convergence rates for solutions with cor-
responding initial data for both SG and SSD discretizations.
Tables 1–3 above summarise errors: the comparisons (differences) between solutions obtained from all

the initial conditions used under both types of finite elements. We particularly calculate the error in L2, L1,
L1 and ~LL2-norms, where ~LL2 is a weighted L2-norm defined by

kuk~LL2
¼ 1

3

X
si

jsij
X3
j¼1

ðuðfijÞÞ
2

 !1=2
; ð5:2Þ

where si are the mesh elements and fij denote the midpoints of the edges of si.
The calculations are performed on an Origin 2000 supercomputer with varying number of processors

used at each running occasion. A total of almost 200 supercomputer hours were used for all the necessary
computations. The finest mesh used (for at least some of the examples) for our domain X has a step size of
h ¼ 0:025 in the y and z variables and step size k ¼ 0:0005 in the x variable. This creates a total of 6,561,000
nodes (in three dimensions) and in particular 6561 (¼ 81� 81) nodes (in two dimensions) for each ‘‘exact’’
solution which will be used to calculate the norms in error estimates with solutions due to lesser number of
nodes. The values in the tables are provided for e ¼ 0:05 and d ¼ 0:05. These calculations are performed
under all four types of considered initial conditions, for each case of finite elements, under all three types of
time increment methods for three different mesh sizes. This gives a total of, 5� 2� 3� 3 ¼ 90 different
solution evaluations. The accepted ‘‘exact’’ solution for these comparisons is denoted by u�. We let
e�h ¼ u� 	 Uh, where Uh denotes the approximate solution for a mesh size h on ðy; zÞ. All solutions are
provided for x ¼ 1 and therefore the norms are calculated at this value of x.

Fig. 8. L1 cumulative error vs nodes for SG and SSD for Maxwell. The solutions at x ¼ 1 are found for h ¼ 0:2.
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The initial conditions used in calculating the values in the tables can be seen in Fig. 1. In Fig. 2 the
approximate solution is displayed for a Dirac type of initial condition in the finest mesh used.
In the Tables 1–3 we see the convergence of each scheme as the step size is reduced. We also detect a

slight improvement in using SSD over SG in terms of the consistent decrease in the respective error. De-
pending on the initial condition used the rates of this decay vary.
In figures studies on two of the initial data (Dirac and Maxwellian) are presented in some detail, while

the remaining cases (because of space limitations) are shown rather briefly. More specifically in Figs. 3–6 we
consider Dirac and Maxwellian data and look at slices of the domain X and the differences between the
‘‘exact’’ and approximate solutions over all three cases of time discretization schemes, thus providing us a
‘‘local’’ picture of the variation depicted in the tables. Further we provide an overall view of this variation,
for all considered initial data cases, over the whole domain in Figs. 7–10. For each initial data in these
figures we explore the effects of the SG and SSD solutions ONLY under the case of backward Euler time
discretization where particular emphasis is given on plotting the cumulative L1 error of the schemes. The
computational parameters that are used depend on the theoretical results presented in Sections 2 and 3. For
instance e must be chosen to be small and given such a choice we take h2 � e, also d � h. Specifically Figs.
7–10 were produced for values of e ¼ 0:05 and h ¼ 0:1. In these examples the value of d is taken as d ¼ h=2,
and the time increment was chosen as k ¼ h2.
In Fig. 7 we see the improvement due to SSD over SG for a Dirac type of initial condition. In particular

we see that the error of using SSD is reduced by approximately 1=5 (20%) over the error of SG. This
behaviour is maintained for a Maxwellian type of initial condition as can be seen in Fig. 8. Here the error
for using SSD is reduced by approximately 1=6 (17%) over using SG. Similar such results are displayed in

Fig. 9. L1 cumulative error vs nodes for SG and SSD for hyperbolic. The solutions at x ¼ 1 are found for h ¼ 0:2.
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Figs. 9 and 10. For instance for a cone type of initial condition and a value of e ¼ 0:04 (for variety pur-
poses), we observe a 1=6 (17%) improvement of the error due to SSD over SG.

6. Conclusions

We have shown stability and convergence estimates for two finite element methods: the SG and a
Petrov–Galerkin method here referred as SSD. We have proved strong stability of these methods and
derived detailed convergence analysis of the SG method. The corresponding convergence study for the SSD
method is similar, but lengthy, and therefore is omitted. Subsequent simple numerical examples were
carried out to further illustrate the results under different cases of initial conditions. In theory, in the triple
norm, the SSD converges by a factor of hr	1=2 (compared with SG which converges with a factor of hr	1) for
functions in HrðXÞ. Our numerical examples correspond to use of linear basis functions. For such simple
examples it is virtually impossible to calculate the exact estimates as required for instance in Proposition
2.1, since the jjj � jjj~bb norm is not easily computable. Therefore, tables are constructed for the usual Lp,
p ¼ 1, 2,1 and ~LL2-norms, whereas in the figures we display a simpler cumulative L1-norm of the errors for
the SSD and SG schemes. Although we do not directly evaluate the jjj � jjj~bb norm but only an L1-norm, the
speed up of SSD over SG is evident, and as we have shown it depends on the type of initial data used, as
expected.

Fig. 10. L1 cumulative error vs nodes for SG and SSD for cone data. The solutions at x ¼ 1 are found for h ¼ 0:2.
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In general the theoretical estimates (Sections 2 and 3) are much harder to detect numerically since, as we
previously remarked, we have no exact solution of the Fermi equation available but rather only an ap-
proximation of it in the finest mesh that we can produce and subsequently calculate the errors from it.
In summary we have considered a simple forward–backward degenerate type equation. Our objective is

to extend the approximation techniques of the non-degenerate equations to a degenerate case. In a
forthcoming paper we shall extend further our studies to a more realistic, three-dimensional, model
problem.
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