Applied Mathematics/ Partial Differential Equations,
part A

Solutions to Problems III

September 11, 2003



Problem 1. Let u be the solution to

—(av') +cu=f in (0,1), (1)
u(0) = u(1) =0, (2)

where a, c, and f are given functions.
(a) Show that u satisfies the variational equation

1 1
/ (auv' + cuv) dx = / fvdz, (3)
0 0

for all sufficiently smooth v with v(0) = v(1) = 0.
(b) Introduce a partition of (0,1) and the corresponding space of continuous piecewise
linear functions Vo which are zero for x = 0 and x = 1. Formulate a finite element
method based on the variational equation in (a).

1/2
(c) Let |||lu]|] = <f01(au’u’+cuu) da:) . Verify that ||| - ||| is a norm if a(z) > 0 and

c(z) >0 for all z € (0,1).
(d) Prove the a priori error estimate

[lu = Ul < [lu = lll, (4)

for all v € Vjy.

(e) Assume that there are constants C, and C. such that ||a||z_(0,1) < Ca and ||c||z0,1) <
C., and that ||u"||12(0,1) is bounded. Show that ||| — U[|| converges to zero as the meshsize
tends to zero.

Solution:

(a) Multiply both sides of the differential equation by v(z), such that v(0) = v(1) = 0, and
integrate from x = 0 to x = 1 to get the following equality:

1 1
/ (—(au)'v+ cuv) dz = / fudz.
0 0

Integrate by parts in the first term on the left-hand side, and use the fact that v(0) =
v(1) = 0 to see that the boundary terms vanish:

1 1
—[au'v])*=} + / (au'v' + cuv) dzx :/ fvdz;
0 0

1 1
/ (au'v' + cuv) dx :/ fvdz.
0 0

(b) Let 0 = 29 < @1 < +-- < &y < Tny41 = 1 be a partition of (0, 1) and let {¢;}Y, be
the “hat-functions” on this partition that are equal to one in an internal node. Define
Vio = span{e1, 2, ..., on}, i-e., Vi is the vector space of continuous, piece-wise linear



functions v(z) that are zero at = 0 and = 1. The Finite Element Method now reads:
Find U € Vj such that

1 1
/ (aU' + cUv) dx = / fvdx for all v € Vi
0 0

(c) To prove that ||| - ||| is a norm we must verify that:
(1) [flu+ ol < [[ufll +lllvlll  for all v and v € V4,
(ii) [lleull] = |ed [[lulll if uw e Vo and « € R,

(iii) [||ul|| =0 for u € V; implies u =0,

where Vj denotes the vector space of functions that are zero at the boundary, and that are
smooth enough for the integrals in the definition of |||ul|| to exist.
Since

1/2
lalll = (u, w3,

where

(u, V) = /0 (a(z)u'(2)v'(z) + c(z)u(z)v(z)) de,

is a scalar product between functions in V;, property (i) follows from the Cauchy-Schwarz
inequality:

llu+ol]*=(w+v,u+v)p= (v, w)g +2(u, v)g + (v, V)
< Ml + 21wl - Mol + Holl? = (lull + [llll)?.

Property (ii) follows since

/0 (a(@) (0w (2))? + c(x)(au(z))?) dz = o2 /0 (a(@)e (2)? + c(z)u(z)? ) dz.

To prove property (iii) we notice that a(z)u'(z)? > 0 and c(x)u(z)? > 0. This means
that fo Yu'(z)*dz > 0 and fo u(z)?dr > 0. If 0 = ||[uf||* = fo V2 dz +
fo )2 dx, both these mtegrals must therefore be equal to zero. Slnce a(ac) >0

this 1mp11es u (a:) = 0, which means that u(z) = K where K is a constant. But since
u(0) = u(1) = 0 we must have K = 0.

Remark. If ¢(x) > 0 is (also) strictly positive then fol c(z)u(z)? dz = 0 immediately implies
that u(z) = 0 and we don’t need to use the boundary conditions.



(d) Observe that, by using the definition of (u, v)g in (c), the variational equation in (a)
can be written

1
(u,v)E:/ fvdz for all v € Vg,
0

and the Finite Element Method in (b) can be written

1
(U, v)g = / fvdx for all v € Vjy.
0

Since Vj,g C Vi we get by subtracting:
(u—U,v)g=0 forallve V.

The last equation expresses the Galerkin orthogonality. This shows that the Finite Element
approximation U(z) of u(z) is the orthogonal projection of u onto Vjo with respect to the
scalar product (-, -)g. This orthogonality, and the Cauchy-Schwarz inequality, implies that
for an arbitrary function v(z) € Vio:

N-=UlP=uw-Uu-U)g=u-Uu—-U+U—-v)g

= (u—=U,u—v)g <|lu—Ull-[l|lu—woll

since U — v € Vjo. Dividing both sides by |||u — U||| now completes the proof.

Remark. Observe the complete analogy between this proof and the corresponding proof
for the L2-projection.

(e) Assume for simplicity that the partition is uniform, i.e., that the mesh function h(z) = h
is a constant function. Choosing v in (d) to be the nodal interpolant m,u(z) € Vi of u,
we get:

llw = UI|[* < [llw = maul|®

- [ (a@)u = ma @) + clo)u = mad @) do

<, /0 (- m) (@) ds 4 G, /0 (= ) ()2 d

= Cull(u — 7Thu)I”%?(o,l) + Cellu — 7ThUH%2(0,1)

< CaCiQHhu”H%?(o,l) + CCCz?”hZu”H%?(O,I)
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212 2 274 2
= C,Cih ||UHHL2(0,1) + C.Cih HUHHLz(o,l)a

which tends to zero as h tends to zero. (C; denotes interpolation constants.) O

Problem 2. Let u be the solution to

—u" (.7}) —

u(0)

1 in (0,1), (5)
u(1) = 0. (6)

(a) Solve the problem analytically.

(b) Let I = (0, 1) be divided into a uniform mesh with h = 1/N. Calculate (by hand) the
finite element approximation U for N = 2, 3.

(c) Plot your solutions in a figure. Compare your results.

Solution:

(a) Integrating the differential equation twice gives:

W'(z)=-1 = J@)=—-z2+C = ulx)=-2*/2+Ciz+C,.

The boundary condition 4(0) = 0 then gives Co = 0, and u(1) = 0 gives —1/2+C;1+C5 = 0,
ie, Cy =1/2; Cy=0. Therefore:

x(l—x).

22z
u(x):—7+§= 5

(b) The finite element approximation U(z) = Z;Vil &;¢;(z) can be computed by solving
the linear system of equations (see Applied Mathematics: BéS, Part D, equation 54.4, with
a=1):

M 1 1
ij/ ¢}¢§d$=/ foide i=1,..., M,
j=1 70 0

which determines the unknown coefficients &;,...,&y. Here M is the number of internal
nodes, since we have homogeneous Dirichlet boundary conditions.

If the number of subintervals is N = 2, then there is only one internal node, M =1,
and the equation above simplifies to:

1 1
g/%%mz/fww-
0 0

Since f(z) =1, ¢} =2 on [0, 3] and ¢} = —2 on [3, 1], we get

0.5 1 1
51(/0 22dx+/0 (—Q)de)=4§1=/0 gpldxzé,

.5

which gives that & = . That is: U(z) = 5 ¢1(2).
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Remark. The integral fol o1 dx is geometrically the area under ¢4, i.e., the area of a triangle.

If the number of subintervals is N = 3, then there are two internal nodes, M = 2, and
we get the following linear system of equations:

1 1 1
& / Ao de+ & / ol di = / fou de,
0 0 0

1 1 1
51/ ao’lso'zdﬂﬁ+€z/ soéwédx=/ feadz.
0 0 0

Since f(z) =1 and

0, z¢]l0, 2], 0, z¢[3 1],
pr() =< 3, z€(0,5], ¢hlz)=4 3, €3 3
-3, zels, 3], -3, zel3, 1],

we get:

& (/0 Fdo+ [ (—3)2da:>+§2[ 3(—3)dx=6§1—3§2:/0 prir =1,

2

3 3 1 1
6 [ o+ (/ St [ (—3)2dx> :—3€1+6£2=/0 podz =1,

3 3 3

¥

with solution & = & = §. That is: U(z) = 5 ¢1(x) + § p2(2).
(c) See Figure 1. O

Problem 3*.

(a) Show that the finite element approximations U that you have computed in Problem 2
(Week 3) actually are exactly equal to u at the nodes, by simply evaluating u and U at the
nodes.

(b) Prove this result. Hint: Show that the error e = u — U can be written

e(z) = /0 g (x)e(z)dz, 0<2<1,

where
(2) (1—-2)z, 0<z<z,
A=\ 21 -2), 2<2<1,
and then use the fact the g,; € V.
(c) Does the result in (b) extend to variable a = a(z)?

Solution:
(a) From Problem 2 (Week 3) with N = 2 we get

u(1/2) = 501

1— =
2 2

)/2=1/8,
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Figure 1: Problem 2 (Week 3). Plots of u(z) and U(z) for N = 2, 3.

and
U(/2) = S ei(1/2) = 1/8

Hence, u(1/2) = U(1/2).
Using N = 3 we have for the first inner node

1 1
1/3)= (1 —-)/2=1/9
u(1/3) = S - D=1y
and
U(1/3) = - ou(1/3) + = 0a(1/3) = = - 140 = ~
9901 9S02 9 9
For the second inner node:
2 2
2/3) = Z(1-2)/2=1
uC/3) = 20— D)2 =1/9
and
U2/3) = £ ou(2/3) + S 0a(2/3) = 0+ = 1=
9€01 9§02 9 9

Hence, u(1/3) = U(1/3) and u(2/3) = U(2/3).
(b) To check the given formula for e(z) we must compute the integral. Before we can do



that, we must calculate the derivative of g,(x):

dg,(z) {1—2, 0<z <z,

I — —_—
g:(a) == — = —z, z<z<l

Thus, we have:

/Olg;(a:)e'(x) dr — /02(1 — 2)€ (z) dz + /zl 2 (x) da

= e(2),

since the error e = u — U is equal to zero at the boundary points x = 0 and z = 1. This
follows from the boundary conditions, u(0) = U(0) = 0 and u(1) = U(1) = 0.

To show that the error is zero also at all internal nodal points z;, we only need to show
that g,; € Vho- The result then follows from the Galerkin orthogonality (cf. Problem 1(d)

(Week 8) with a = 1 and ¢ = 0), fol e'v'dz = (e, v)p = 0 for all v € Vj, by taking v = g,;.
But from Figure 2 we see that g,; can be written as

Go; (@) = cipi(z

with weights ¢; = g,; (7). Hence, g,; € V. Also note that g,(x) ¢ Vio if 2z # z;, which
can be seen from Figure 3.
(c) No. As a counter-example, consider the case a(x) =1+ a:

((1+:v) = 0<z<l1,

The solution is u(z) = % — z. Computing the Finite Element approximation U(x)

for N = 2 in the same way as in Problem 2(b) (Week 3) gives U(z) = 5 ¢1(z). We thus
have that U(1/2) = {5 # 5% — £ = u(1/2). O

log(2

Problem 4. Consider the system of ODE:

ME(t) + AE(t) =b in (0, T), (7)
£(0) = ¢&°. (8)

Assume that
T A N A A A



Figure 2: Problem 3 (Week 3). g,(z) when z = z;.

Make a uniform partition of the time interval (0, 1) into two sub-intervals and compute an
approximation of £(1) with the backward Euler method.

Solution: We divide the time interval: 0 = t5 < t; < t9 = 1, with ¢; = 0.5, i.e., into two
subintervals with length At = 0.5. The Euler backward method approximates the time
derivative with a difference quotient in the following manner:

n _ ¢n—1
MijLAf":b, n=1,2,

At
&% =¢(0).
So to compute &2 & £(t3) we have to solve, in order, the equations:

gl _ 60
At

M + ALt = b,

£-¢
At

M + AL =),

Rearrangement of the first of these equations yields:

MEr + ANt A =ME° + Atb;



Figure 3: Problem 3 (Week 3). g,(z) when z # z;.

(M + At A)et =ME° + Atb;
(o A4l 5])e = s+
s Je-[)
= :‘12] ,

where the linear system of equations is solved by Gaussian elimination. Similarly, we get
for the second equation:

ME* + Nt AE? =MEH + At b;
(M + At A)E2 =ME" + At b

(b 22 li ¥]) =L A [
B g] i i 11];

The vector &2 = [_71 7} is thus an approximation of the solution £(t) at time ¢ = 1 (and
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&= [_12} at time ¢ = 0.5). O

Problem 5. Show that, for the time dependent reaction-diffusion problem with Robin
boundary conditions,

t—(av') +cu = f(z,t), Tmin <T < Tmax, 0<t<T,

a(xmin)u,(xmina t) = 7($min) (u(xmina t) —4p (xmin)) + gN(xmin)a 0<t<T,
_a(xmax)ul(l'maxa t) = V(xmax)(u(xmaxa t) - gD(xmax)) + gN(xmax)a 0<t< T,

w(z,0) = w(Z), ZTmin < T < Tmax,

semi-discretization in space leads to the following system of ODE:

ME(t) + (A + M, + R)E(t) = b(t)+ v, 0<t<T.
Solution: Hint: To derive the variational formulation, first multiply both sides of the
differential equation by a function v = v(z). Then integrate both sides from = = zy, to
T = Tyax. Integrate by parts in “the diffusive term” f;":a"( —(au')'v) dz. Finally use the
boundary conditions to replace au’ in the boundary terms at £ = T, Tmax- Lhis gives

the variational formulation:
Find u(z,t) such that for every fixed ¢: u(z,t) € V, and

Tmax

Tmax Tmax
/ wdr + Yuv|p—g,,, + YUV|p=g.. T / au'v' dx + / cuvdxr =

Tmin ZTmin Tmin

Tmax
(Y90 = 98)V]e=tmax + (V90 = 9N)Vlo=0in + / fodz, 0<t<T, forallveV,
where V' is the vector space of functions v = v(z) that are smooth enough for the integrals
in the variational formulation to exist.

The corresponding Finite Element Method reads:
Find U(z,t) such that for every fixed ¢: U(z,t) € V}, and

N

IN | N
/ Uvdr + YUV|peuy + YUV|peu, + / aUV' dz + / cUvdx =

1 1 T1

TN
(vg9p — gN)V|z=zy + (V9D — gN)V|p=z, + / fvdr, 0<t<T, forallvelV,

where V}, is the vector space of functions v = v(z) that are continuous and piecewise linear
on a partition Ty, =1 < T2 < ... < TN = Tmax Of [Tmin, Tmax)-
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Finally, insert the Ansatz
N
Uz, t) =) &()pi(@),
7j=1

into the Finite Element formulation and choose v = ¢; for i =1,...  N.
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