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Solutions to Problems V
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Problem 1. Calculate || f||.. () where = [0,1] x [0, 1] and

(a) f(x1, z2) = 23 (21 — 2/3)%. Hint: To compute max(,, z.)eq | f(21, 2)|, maximize the
absolute value of each factor of f separately.

(b) f(z1, 22) = 11/36 — 2} + z1 — 235 + 822/3. Hint: Compute both max(s, z,)eq f(21, T2)
and ming, z.)co f(21, T2).

Solution:

(a) Since || f||zo () = MaX(, z0)e0 | f (21, 22)| Wwe want to find the maximum of the absolute
value |f(x1,22)| of f(x1,22). From the hint we start by maximising the xo-dependent factor
over the interval [0, 1]: The result is trivially 1 (for o = 1). The maximum of the absolute
value of the x,-dependent factor is 8/27 for x; = 0. This means that || f||,.. ) = 8/27.
(b) We complete the squares to get:

fz1,29) =11/36 — 2% + 71 — 25 + 822/3 = 7/3 — (z1 — 1/2)* — (2 — 4/3)?

We can now determine the maximum by minimising the two negative terms over 2: Maxi-
mum of f thus occurs for z; = 1/2 and x5 = 1 which gives us that max g, g,)cq f(21,22) =
7/3—1/9 =20/9. In the same way minimum occurs when the last two terms are maximal,
ie., for 2y =0 or ; =1 and z; = 0. Hence ming, z.)cq f(21,22) = 7/3 —1/4—16/9 =
11/36. Since the minimum is positive, f(x1, x2) = |f(z1, 22)| in €2, and we conclude that
[ fllzee(e) = maX(zy,z5)en f (@1, 22) = 20/9. [

Problem 2. Calculate || f||z2(q) where = [0,1] x [0,1] and

(a) f(z1, 22) = 21 75.

(b) f(x1, x2) = sin(nmxy) sin(mmzy) with n and m arbitrary integers.
Hint: sin®u = 71_0025 (2u)

Solution: The L?(Q2)-norm of f is defined by: || f|lr2) = ([ [, f(@1, 22)? day dzo)3.
(a)

1 1 1 1
1
1 12aq) = / / 22 do doy = / 22 da, / ooy = [2/3)) - [3/3]} = —
0J0 0 0 15
1

50 [|fllz2(0) = -
(b) If n and/or m is equal to zero then f is identically equal to zero implying that || f||r2q) =
0. Otherwise we get:

11
11 Z2) = /0 /0 sin®(nmz,) sin® (mnzy) doy do,

11 — cos(2nmzy) 11 — cos(2mmas)
sin(2n7z,) ]’ sin(2mmzy) ]’
[ml/ dnm ] 0 [xQ/ dmm 0
sin(2n) sin(2mm)
=(1/2- =) (12 - 22 ) 1
( / dnm ) < / dmm /4



and thus || f||z2() = 1/2 if n # 0 and m # 0.
Problem 3. Let P(K) = {v(z) = co + 121 + cox2, ¢; € R, 1 =1,2,3; o = (1,22) € K}
be the space of linear polynomials defined on a triangle K with corners a', a?, and a3.

Derive explicit expressions (in terms of the corner coordinates a' = (a}, a}), a®> = (a2, a3),

and a°® = (aj, a or the basis functions Aj, A2, A3 € efined by
d a? i’%fhb'f')\)\)\ P(K) defined b

Aa) = {3 ) 0

with 4,5 = 1,2,3. Hint: set up the linear system of equations which relates ¢y, c¢1, and co
to the values at the corners v(a'), v(a?), and v(a®) of a function v € P(K). Solve for the
coefficients corresponding to corner values of the basis functions.

Solution: Look at the basis function A; first. Since \; is linear on K we make the Ansatz
A(z1, 3) = ¢o + 121 + cox9. According to the definition A; has the value one in a' and
zero in a® and a®. (See Figure 1.) Hence, we have in these corners respectively:

1=cy+cial + coal
0=cy+ c1a? + cya’
0=cy+ cra? + coas

Or in matrix form:

1 1 al al\ [co
0] =11 & a2 |
0 1 a3 a3) \c
b A c

We have three equations and three unknowns (cg, ¢; and cy). We can solve the linear
system of equations above by Gaussian elimination. The result is

_ dia} —ald]
N e
_ d3—ad}
T et A
a} — a}
@ = det A

where det A = adal + a?a3 — a?al — adal — alad + ajas.

For the basis function )\, we get the same matrix A as above, but here b = (0, 1, 0)”
(since ), is one in the node a? and zero in the other two nodes). Solving the system of
equations gives

aja; — a,a3

“ det A



3 1
ay — Gy

det A
a; — a?

det A
And similarly for A3 with b = (0, 0, 1)T gives the coefficients

cT =

Co =

1.2 2 1
A109 — G709

C pry

0 det A
1 2
as — @

o = & 2
det A
2 1
as —a

o = 4 1
det A

Remark. Note that det A equals 2 u(K) where p(K) is the area of K. See Problem 4 (Week
6). Note further that it might not be necessary to actually compute Ay and A3. Given the
expression for )\ it is possible to make a permutation of the node indices.

O

Problem 4. Derive an expression for the area of the triangle K in Problem 3 (Week 6)
in terms of the corner coordinates a' = (ai, a3), a® = (a?, a2) and a® = (a3, a3).

Solution:

al a a2

Figure 1: Problem 3 and Problem 4 (Week 6).

From Figure 1 we calculate the area p(K) as follows.

p(K) = 5 lalh = 3lal|b|sin 6 = ;|a x b| (2)

Now, clearly the vectors a and b are given by



2 1,2 1

1 — |01~ a1 G5 — Qg
,u(K)_2|a><b| ‘ a — al ag—a§‘| (5)
= 3107 — a1)(a3 — a) — (a3 — a3)(a} — a1)|. (6)

Note that the cross-product between vectors in two dimensions is a number.

Remark. With a and b oriented as in Figure 1 the cross-product a x b is positive and thus
uK) = 3(axb).

O
Problem 5. Consider the triangulation of Q = [0, 2] x [0, 1] into 3 triangles drawn in
Figure 2.

[
Ny ]_N2 2N3£L‘

Figure 2: Problem 5 (Week 6). The triangulation of .

(a) Compute the mass matrix M with elements m;; = [, ¢;(z, y) pi(z, y) dzdy, i,j =
1,...,5.

Hint: The easiest way is to use the quadrature formula based on the value of the
integrand, ¢,(z, y) ¢i(x, y), at the mid-points on the triangle sides, since this formula
is exact for polynomials of degree 2. It is also possible to write down explicit analytical
expressions for the “tent-functions” on each triangle (cf. Problem 3 (Week 6)) and integrate
the products analytically. This, however, is a much harder way. Observe that, using
quadrature, we don’t need to know the analytical expressions, only the values at some
given points which are much easier to compute.

(b) Compute the “lumped” mass matrix M , which is the diagonal matrix with the diagonal
element in each row being the sum of the elements in the corresponding row of M.

(c*) Prove that, using nodal quadrature, the approximate mass matrix you get is actually
the “lumped” mass matrix.



Hint: -2, (e, y) =1

Solution:
(a) We start to compute the area u(K;) of the triangles, i = 1,2, 3:
1-1 1
K = — = —
,LL( 1) 2 2’
1-1 1
K = — = —
,LL( 2) 2 2’
2-1
ps) = —==1.

Then, we compute a few elements of M: my;, mis, mi3, and mgs. Note that the integrands
01 1 and @y ¢, are non-zero only over K7, and @5 g is non-zero over K; and Ks. On the
other hand (3 ¢ is nowhere non-zero and therefore m3 = 0.

S //Q or oy ddy = (¢1(5,0))° + (£1(0,3))* + (¢1(5,3)) ()

3
1.1 ,1.1
5 5T5-531+0-0 1
_ 22733 KD = = u(K:) = —
3 (K1) (K1) 12
11,1 1
5°5+5:-0+0-3 1 1
miy = (M symmetric!) = mg = 22 23 2 (K, = D u(Ky) = o’
1.1 .11 11,1
353 t5-5+0 5°5+t5-53+0 1
Mgy = 22 ; 2 p(Ky) + 22 :2,) 2 M(Kz)—g(M(Kl)‘i‘M(Kz)):_
Continuing analogously gives:
11
5 oau 0 0 5
T T 1 g 1
24§ 24 L 12
M=10 2 1 % g
11 L1 1
24 12 8 12 3
(b) From mii:Z?zlmU, i=1,...,5, we compute:
1 1 1 1
np=—+—+04+04+—=-.
miy 12+24+ + +24 6
Analogously:
. 1 . 1 . 1 . 2
Moo = =} Mgz = =; Ny ==5; Msz = .
2 = 3i 3= 5 “ = 3j 55 = 3
Thus:
£ 0000
|0 3000
M=100 3 00
0003 0
0000 2

(@34



(c*) Hint: Adding the elements in row number i gives:

m=//Q (Z;%(x, y)) ei(z, y) cl:rdy://Q pi(z, y) dv dy.

Now use the formula for the volume of a pyramid, and compare the result to what you get
when using nodal quadrature. U



