next up previous
Next: Time Discretization Up: Time Dependent Problems Previous: Variational Formulation

Space Discretization

We next use the variational statement derived previously to make a discretization of the space dimension. Therefore we introduce a partition $ \mathcal{T}_h : jh$, $ j = 0,1,\ldots, N$ of the interval $ 0
\leq x \leq 1$ into $ N$ subintervals of equal length $ h = 1/N$ and let $ V_h$ be the corresponding space of continuous piecewise linear functions vanishing at $ x=0$. We now seek a solution approximation $ U(x,t) \in V_h$ such that for every fixed time $ t$

$\displaystyle \int_0^1 \dot U v   dx + \int_0^1 U' v'   dx = 0,$ (8)

for all $ v \in V_h$.

Further, if $ \{ \varphi_j \}_1^N$ denotes a set of nodal basis functions of $ V_h$ we can expand $ U(x)$ as

$\displaystyle U(x) = \xi_1(t) \varphi_1(x) + \xi_2(t) \varphi_2(x) + \ldots + \xi_N(t) \varphi_N(x) = \sum_{j=1}^N \xi_j(t) \varphi_j(x).$ (9)

Notice that the coefficients $ \xi_j(t)$ are time dependent but not space dependent functions.

Substituting $ U(x,t)$ into (7) and choosing test functions $ v = \varphi_j$, $ j = 1,2,\ldots, N$ we obtain

$\displaystyle \left \{ \begin{array}{c} \displaystyle \int_0^1 (\dot \xi_1(t) \...
...'_2 + \ldots \xi_N(t)\varphi'_N) \varphi'_N   dx = 0  \end{array} \right . ,$ (10)

which is a $ (N \times N)$ system of ordinary differential equations (ODE)

$\displaystyle \mathchoice{\hbox{\boldmath$\displaystyle M$}} {\hbox{\boldmath$\...
...}} {\hbox{\boldmath$\scriptstyle 0$}} {\hbox{\boldmath$\scriptscriptstyle 0$}},$ (11)

where the entries of the matrices $ \mathchoice{\hbox{\boldmath $\displaystyle M$}}
{\hbox{\boldmath $\textstyle M$}}
{\hbox{\boldmath $\scriptstyle M$}}
{\hbox{\boldmath $\scriptscriptstyle M$}}$ and $ \mathchoice{\hbox{\boldmath $\displaystyle A$}}
{\hbox{\boldmath $\textstyle A$}}
{\hbox{\boldmath $\scriptstyle A$}}
{\hbox{\boldmath $\scriptscriptstyle A$}}$ are given by

$\displaystyle M_{ij} = \int^1_0 \varphi_i(x)   \varphi_j(x)   dx, \qquad A_{ij} = \int^1_0 \varphi'_i(x)   \varphi'_j(x)   dx, \qquad i,j = 1,2,\ldots, N.$ (12)

Here $ \mathchoice{\hbox{\boldmath $\displaystyle \xi$}}
{\hbox{\boldmath $\textstyle...
...x{\boldmath $\scriptstyle \xi$}}
{\hbox{\boldmath $\scriptscriptstyle \xi$}}(t)$ denotes a vector holding the nodal values $ \xi_i(t)$ of $ U(x,t)$.
next up previous
Next: Time Discretization Up: Time Dependent Problems Previous: Variational Formulation
Mohammad Asadzadeh 2004-08-27