next up previous
Next: Computer Assignment Up: Time Dependent Problems Previous: Space Discretization

Time Discretization

By applying finite elements to (1) we have derived the semi-discrete problem $ \mathchoice{\hbox{\boldmath $\displaystyle M$}}
{\hbox{\boldmath $\textstyle M...
...}
{\hbox{\boldmath $\scriptstyle 0$}}
{\hbox{\boldmath $\scriptscriptstyle 0$}}$, which we now must solve. To do so we introduce a partition $ 0 = t_0 < t_1 < t_2 < \ldots t_M = T$ of the time interval $ 0 \leq t \leq T$ into $ M$ subintervals of equal length $ k$ and replace the time derivative $ \mathchoice{\hbox{\boldmath $\displaystyle \dot \xi$}}
{\hbox{\boldmath $\text...
...h $\scriptstyle \dot \xi$}}
{\hbox{\boldmath $\scriptscriptstyle \dot \xi$}}(t)$ by a difference quotient viz.,

$\displaystyle {\mathchoice{\hbox{\boldmath$\displaystyle M$}} {\hbox{\boldmath$...
...} {\hbox{\boldmath$\scriptstyle 0$}} {\hbox{\boldmath$\scriptscriptstyle 0$}}},$ (13)

where $ \mathchoice{\hbox{\boldmath $\displaystyle \xi$}}
{\hbox{\boldmath $\textstyle...
...\boldmath $\scriptstyle \xi$}}
{\hbox{\boldmath $\scriptscriptstyle \xi$}}(t_n)$. Rearranging terms we then have the iteration scheme

$\displaystyle (\mathchoice{\hbox{\boldmath$\displaystyle M$}} {\hbox{\boldmath$...
...oldmath$\scriptstyle \xi$}} {\hbox{\boldmath$\scriptscriptstyle \xi$}}^{(n-1)},$ (14)

which is also known as the Backward Euler Method. There are different choises of initial data $ \mathchoice{\hbox{\boldmath $\displaystyle \xi$}}
{\hbox{\boldmath $\textstyle...
...{\boldmath $\scriptstyle \xi$}}
{\hbox{\boldmath $\scriptscriptstyle \xi$}}^{0}$ but the simplest is to let $ \xi_j^0 = \pi_h u_0(x)$ that is to use the linear interpolant of $ u_0(x)$. Thus one starts from the initial data and successivly compute solution approximations $ \mathchoice{\hbox{\boldmath $\displaystyle \xi$}}
{\hbox{\boldmath $\textstyle...
...boldmath $\scriptstyle \xi$}}
{\hbox{\boldmath $\scriptscriptstyle \xi$}}^{(1)}$, $ \mathchoice{\hbox{\boldmath $\displaystyle \xi$}}
{\hbox{\boldmath $\textstyle...
...boldmath $\scriptstyle \xi$}}
{\hbox{\boldmath $\scriptscriptstyle \xi$}}^{(2)}$, $ \ldots$ at times $ t_1$, $ t_2$, $ \ldots$ using the algorithm (14).



Mohammad Asadzadeh 2004-08-27