TMAZ371 Partial Differential Equations TM, 2004-04-13. Solutions

1. Formulate the interpolation error estimates in the L,-norm, p = 1,2, 00, in an
interval (a,b). Prove the Lo, error estimate for the linear interpolant:

71 f = fllwiap) < Cilb— a)?(|f" 1o (a0)-
Solution: See proof of theorem 5.3 in CDE or lecture note chapter 5.

2. Determine the stiffness matrix and load vector if the ¢G(1) finite element method
with piecewise linear approximation is applied to the following Poisson’s equation
with mixed boundary conditions:

—Au =1, on Q=(0,1) x(0,1),
g—z =0, for z; =1,
u=0, for z €00\ {z; =1},

on a triangulation with triangles of side length 1/4 in the z;-direction and 1/2 in
the z5-direction.

Solution: Let T'; := 0Q \ T's where I's := {(1,23) : 0 < 22 < 1}. Define
V={v:ve H(Q), v=0 on T,}.

Multiply the equation by v € V and integrate over (2; using Green’s formula

/VU'VU—/%UZ/VU'VUZ/U,
Q r on Q Q

where we have used I' =T'; UT's and the fact that v =0 0on I'; and g—z =0onTs.
Variational formulation:
Find v € V such that

/Vu-Vv:/v, Yv e V.
Q Q

FEM: cG(1):
Find U € V}, such that
1) /VU-Vv:/U, YveV, CV,
Q Q
where

Vi, = {v : v is piecewise linear and continuous in Q, v =0 on I';, on above mesh }.

A set of bases functions for the finite dimensional space V;, can be written as
{#i}i1, where
{ i € Vp, i=1,2,3,4
Sol(NJ) = 5ij5 27.7 = 1725374-

Then the equation (2) is equivalent to: Find U € V), such that

Q Q
1



2

Set U = 2;21 &ip;. Invoking in the relation (3) above we get

4
Z@-/Vw-wi:/% i=1,234.
- Je Q

Now let a;; = [, Vg - Vi and b; = [, ¢;, then we have that
A€ =b, A is the stiffness matrix b is the load vector.

Below we compute a;; and b;

b-_/ e A2 a=18  i=1,2,3
7 3.1 12— 1716, i=4
and ; )
2-3+1+h=5 i=1,23

a"‘/v% VS""{%+1+§=5/2, i=
Further

az,z+1—/V90z+1'V90z—2 (-1) =-2=aj1i, =123,
and

a;j =0, |Z—]|>1

Thus we have

5 =2 0 0 2

-2 5 =2 0 1| 2

4= 0 -2 5 =2 b‘ﬁ 2
1

0 0 —2 5/2

3. Give a variational formulation for the boundary value problem (with periodic
boundary conditions).

—u" + au = f, 0<z<1,

u(0) = u(1), u'(0) = u'(1),
where «a is a constant and f € L2(0,1). Show that, with an appropriate condition
on a, the hypothesis in the Lax-Milgram theorem are fullfild.
Solution: Let V = {v € H'(0,1) : v(0) = v(1) = 0} with

lollv = [[ollar = VIvl[? + o]

Multiplication of the differential equation by v € V, integration by parts taking the
boundary conditions into account, leeads to the variational formulation

u €V, a(u,v) = L(v) Yv eV,
with  a(u,v) = (u',v") + a(u,v) ,and L(v) = (f,v).
If @ > 0 then we have
a(u,u) = |[u'|]” + af[u* > min(1, @)|ul |3,
a(u,v) < |[u'[[[[o"|| + ellullllv]] < (1 + a)l[ullm[|o]]a,
IL@)| < £l < [I£I[o]| -
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4. Prove an a priori and an a posteriori error estimate for the finite element method
for the problem

—u" +au=f, inI=(0,1), u(0) = u(1) =0,
where a = a(z) is a bounded positive coefficient on [0, 1].
Solution: We consider

—u" +aou=f, in I=(0,1), u(0) = u(1) =0,

with 0 < ax) < M, z € I. Multiply the equation by v € Hg(I) and integrate over
I, using partial integration we get

/I(u'v' + auv) = /va.

Variational formulation: Find u € H}(I) such that
I

(3) /(u'v' + auv) = /fv, Vv € Hy(I).
I
FEM; ¢G(1): Find U € V) such that
(4) /(U'v' +alv) = /fv, Vv € V.
I I

Let e = u — U be the error then (8) — (9) implies that

(5) /(e'v' + aev) =0, Yo e VX C HY(I).
I

Defining the energy scalar product and the energy norm as

)z = [0 +avw), ol = @) = [ (@) +a?)

I
we note that

(6) (e,v)g =0, Yo € V.

A posteriori error estimates:

lellZ = /I(e'e' +aee) = /(u _UYe + / a(u - U)e

1 1

={v=ein (3)} Z/Ife—/I(U'e'+aUe) ={v=mpe in (4)}
= [ tte=me)= [ (e =me) + al(e ~me)) = [P1]
= /IR(U)(e—Whe),

where R(U) := f+U" — aU = f — aU. Thus we may estimate the energy norm of
e as follows:

llellz < 1RRU)||pocn 1R~ (e — mhe) |l La(r)
< CillhRU) || Lynyll€' | Locry < CillhR(U) 1oy llell 2,

and hence
llellz < Cil|hR(U)||Ly(1)-
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A priori error estimate:
lell = (e;e)p = (e,u —U)g ={v=U —mu in (6)}
= (e,u —mpu)p < {C = S} < |lel|ellu — mhull s,

so that
lelle < llu — mhull 5.
Recall that a(x) < M and the definition of the energy norm implies that
llu = mrullE = |(w — mhw) |2,y + IVe(e — mhu)ll7,
< CY b L) + CZ MR |12, 1),
which gives
lell < Ci (11" lLzary + VAW |0 )

5. Consider the heat equation

uw—u" = f(x), O<z<l1l, t>0,
u(0,t) = u'(1,t) =0, t>0,
uw(z,0) = uo(z), 0<z<l.
a) Show, for the homogeneous case: i.e., f = 0 (with ||u|| = (fol u?(z) dx)/?),

the estimates
d -
(B1)  Zlul’+20wP =0, (B2) [lu(-)l < e fluoll.
b) Let us; = us(z) be the solution of the corresponding stationary problem:
—ull=f, 0<z<1, u(0) = /(1) =0,
show that [|[u —us|| = 0, as t — oo.

Solution: a) Multiply the equation for u by u and integrate with respect to z.
Using partial integration and boundary conditions we get

1 1 1 1 1d [ 1
0=/ fuz/ (u—u")uz/ uu—l—/ u'u'z——/ u2+/ (u')?,
0 0 0 0 2dt Jo 0

which is the desired identity (E1).
Now (E1) together with Poincare inequality ||u|| < ||u'|| gives that
d d d
Sl + 2lull”* <0, = —([[ull”e*) = (Zllull* + 2l|ul[*)e* <.
Integrating with respect to time variable from 0 to ¢ leads to
llull*e* — lluol® <0, ie., [lull* < e [luol?,

which, taking the square root, gives the estimate (E2).
b) Let w = u — us, then w satisfies the differential equation

w—w”:u—u”+u;’=f—f:0’
so that we can apply (E2) to w to get

llu = ]l < e7llug —usl =0, as t — oo

MA



