TMA372 Partial Differential Equations TM, 2005-12-13. Solutions

1. Let w1 f be the linear interpolant of a twice continuously differentiable function
f on the interval I = (a,b). Prove that

If =7 fllLay < 0= a1y

Solution: Let Ao(z) = él__fo and A\ (z) = E”i__‘g)o be two linear base functions.

Then by the integral form of the Taylor formula we may write

{f(Eo) = f(@) + F'(2) (6 — &) + [ (&0 —y) f"(y) dy,
&) = f(@)+ fl(@)(& —2) +f§1 & —y)f"(y) dy,

Therefore
I f(2) = F(E) (@) + F(E)M ()
&o &1
= F(@) + Do(2) / (6 — )" (W) dy + M () / & — ) ") dy

and by the triangle inequality we get

§o
F@) - f@)] = Ma(@) [~ @ -0 v+ 2o [

T T

31
(&~ 9)f"(y) dy|

o &1
<o@l| [ @ -ns"w a +n@l| [T @-nrwa)
o &1
<@ [ oo —ull" @y + @) [ 16—l W)l dy
< ho(a |/ @)l ()l dy + P (o |/ b—a)lf"(v)|dy
< (- a)(ho(@)| + N (@ / 17" ()l dy
= (0~ a)(doe) + M (e /|f" )y = ( —a/|f” )l dy.

Consequently

[ 150 -l < ["o-a [ 1@l d) dr.= 6 7w

a
2. (a) Derive the stiffness matrix and load vector in the global polynomial approx-
imation U(z) = Y1, &t® for the following ODE,

w(t) = Au(t), 0<t<1, u(0) = wp.

(b) Let up = 1 and A = 2 and determine the approximate solution U(t), for ¢ = 1
and ¢ = 2.

Solution: (a) We insert U in the equation (note U(t) = -1 3&t"""), multiplying
the reult by ¢!, i = 1,...,q and integrating over (0,1) we get

1) Zgj/ (t’ﬂ 1 At"ﬂ') dt = A&, /1 i dt,
0
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where the contribution for j = 0 which corresponds to § = «(0) is on the right
hand side. After integration we get

q .
j A X
2 ( - )'Z— , ,j=1,...,q. <= A§ =0, h
() Jz;: [y U Ay LY q 3 where
az]:%—ﬁ’ l,J:].,,q
bi = 1o, i=1,...,q

(b) Thus with ug =1 and X\ = 2 we get

o= 2 .
A{ =b, where { Gij = TE T R Z_aJ—la---,tI-

i:i—‘,-_l’ Z:].,...,q.

1
g=1: = —651:1 = &L =-6. = U(t)=1-6t.

e = [T ][]

Hence
Ut) =1+t+ 5%
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3. Consider the Laplace equation with the Dirichlet boundary condition

—Au = f, in Q={(z,y):0<z<1,0<y<1},
{ u=0, on 01,

a) Show that [|D?u|| = [|Aul|, where (D*u)? = u, + 2ul, +u>,.

b) Show the same result for the Neumann boundary condition g—z = 0 on 90

(instead of u =0 on 99 ).

¢) Show in the Dirichlet case (when u = 0 on 9 ) that ||u|| < Cql||Vu|| (Poincare’s

inequality). What is the numerical value of the constant Cq?

Solution: (a) A general approach Let I' = 9 be the boundary of 2. We have
that

|Au||? = /Quiz Ul + gty

Now an application of the Green’s formula (partial integration first in y and then
in z) gives

/umuyy=/umuyny—/umyuy=/umuyny—/uzyuynz+/ UgyUzy,
Q r Q r r Q

where n = (ny,ny) is the outward unit normal at the boundary. Now, on the part
of the boundary I, where n, # 0, we have u,, = 0, since u = 0. Likewise, uy, =0
on the part of the boundary, where n, # 0. Thus [, uzatiyy = [, UsyUey, Which
gives the desired identity.

Alternatively, let Q = [0,1] x [0,1]. Then

||Au|| = ‘/Q(Au)z = /Q(uww + uyy)2 = /Q (uiz + U;y + 2uwwuyy)'

/umuyy :/uzuyynl —/uzuyyz :/uzuyym —/uzuzynz-i—/ UgyUzy,
Q r Q r r Q
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where we have used partial integration and the identities uyyz = Uyzy = Uzyy-
Further we have that

—/uzuzynz = —/uz(uym)z = —/uz(—u|n2|)z z/ui|n2| >0,
r r r r

where we have used the boundary condition n - Vu = —u. Note that ny = 0 on the
vertical boundary lines. Similarly we get

/uacuzynl :/uyy(—u)|n1|,
r r

which after integration by parts over the vertical boundary lines (where n; # 0)
gives that

/ UyUy|n1| — uy (1, 1)w(1, 1) + uy(1,0)u(l,0) — uy (0, 1)u(0, 1) + u, (0, 0)u(0,0)
r

= / uyuy|ng| +u(1, 1)u(l,1) +u(1,0)u(1,0) + (0, 1)u(0, 1) + u(0,0)u(0,0) > 0,
r

where we have agauin used the boundary condition n - Vu = —u. In other words
we have proved that

[1Au]| > [|D%ul.

The reversed inequality is trivial.
(b) In the case of Neumann boundary condition: g—z = 0 on the boundary, we have
that u, = 0 on the part of I' where ny # 0, similarly u, = 0 on the part of I where
ng # 0 (because, then u; = 0 in y-direction). Thus we obtain the same identity as
in (a).

(c) See proof of Poincare inequality in Chapter 15.

4. Let p be a positive constant. Prove an a priori and an a posteriori error estimate
(in the H'-norm: [le||3,, = ||e'|| + ||e]|) for a finite element method for problem

—u" + pzu' + (1 + g)u =f, in(0,1), u(0) = u(1) = 0.
Solution: We multiply the differential equation by a test function v € HJ(I), I =

(0,1) and integrate over I. Using partial integration and the boundary conditions
we get the following variational problem: Find u € H}(I) such that

(3) / <u'v' + pru'v + (1 + E)uv) = /fv, Yo € Hy(I).
I 2 I
A Finite Element Method with ¢G(1) reads as followa: Find U € V}? such that
1 / D _ 0 1
(4) /(Uv +pva+(1+§)Uv) —/fv, Yv eV, C Hy(I),
I 1
where

V? = {v : v is piecewise linear and continuous in a partition of I, v(0) = v(1) = 0}.

Now let e = uw — U, then (1)-(2) gives that

(5) / (e'v' + pre'v+ (1 + g)ev) =0, WYweV
I



A posteriori error estimate: We note that using e(0) = e(1) = 0, we get

P i 2y _ P, a2n P 2__ b 2
©) [poee=% [z =Reh-F [e=-F [

so that

(7)

llell3: = /(e'e' +ee) = / (e’e' + pze'e + (1 + E)ee)
I I 2

:/I((u—U)'e'+p:c(u—U)'e+(1+g)(u—U)e) — {v=ein(1)}

= | Je- /1 (U’e’ +paU'e + (1 + g)Ue) = {v = mpe in(2)}

:/If(e—ﬂhe)—/I(U'(e—ﬂhe)'+pa:U'(e—7rhe)+(1+§)U(e—7rhe))

= {P.I. on each subinterval} = /R(U)(e — The),
I
where R(U) := f+U" —pa2U'—(1+5)U = f—paU'—(1+5)U, (for approximation
with picewise linears, U = 0, on each subinterval). Thus (5) implies that
llellz < IRR@)IIR" (e = mhe)l
< Gil[RRO)IIle'] < CillhRU) lllell e
where Cj is an interpolation constant, and hence we have with || -|| = || - ||z,(r) that
lellir < GRR@)I.

A priori error estimate: We use (4) and write

llel|3: = /I(e'e' +ee) = /I(e'e' +pze'e+ (1+ ‘g)ee)

= / (e'(u - U) +pre'(u-U)+(1+ g)e(u - U)) ={v=U—-muuin(3)}
I

= / (e'(u — mpu)’ + pre'(u — mpu) + (1 + g)e(u - whu))
I

< (w = mnw)llle'll + pllu — mrulllle’]] + (1 + g)llu — mpull[le]]
< A{ll(u — mnw)'| + (1 + p)llu — wnul|}Hlel
< Ci{llhu"[| + (1 + p)IB*u" I }Hlell a2,
this gives that
leller < Cifllba"|| + (1 + p) IA*a" ||},

which is the a priori error estimate.
5. Consider the initial boundary value problem for the heat equation

u(z,t) =0 1o, 0<t<T,

u—Au=0, z €N CR, 0<t<T,
u(z,0) = uo(z), = €.



Prove the following stability estimates

T
® lP@)+2 [Vl (e de = ol
0
’ 2 1 2
Q | tau@ < i,
1
(10) IVull(7) < ——luoll.

Solution See Lecture Notes or text book Chapter 16.
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