Hjälpmedel: Inga hjälpmedel är tillåtna Telefon: Anders Logg, 0739-779268 2004–04–13 kl. 8.45-13.45

TMA372/MAN660 Partial Differential Equations TM

OBS! Skriv namn och personnummer på samtliga inlämnade papper.

1. Formulate the interpolation error estimates in the L_p -norm, $p = 1, 2, \infty$, in an interval (a, b). Prove the L_{∞} error estimate for the linear interpolant:

$$||\pi_1 f - f||_{L_{\infty}(a,b)} \le C_i (b-a)^2 ||f''||_{L_{\infty}(a,b)}$$

2. Determine the stiffness matrix and load vector if the cG(1) finite element method with piecewise linear approximation is applied to the following Poisson's equation with mixed boundary conditions:

$$\begin{cases}
-\Delta u = 1, & \text{on } \Omega = (0, 1) \times (0, 1), \\
\frac{\partial u}{\partial n} = 0, & \text{for } x_1 = 1, \\
u = 0, & \text{for } x \in \partial \Omega \setminus \{x_1 = 1\},
\end{cases}$$

on a triangulation with triangles of side length 1/4 in the x_1 -direction and 1/2 in the x_2 -direction.

3. Give a variational formulation for the boundary value problem (with periodic boundary conditions).

$$\begin{cases} -u'' + \alpha u = f, & 0 < x < 1, \\ u(0) = u(1), & u'(0) = u'(1), \end{cases}$$

where α is a constant and $f \in L_2(0,1)$. Show that, with an appropriate condition on α , the hypothesis in the Lax-Milgram theorem are fullfild.

4. Prove an a priori and an a posteriori error estimate for the finite element method for the problem

$$-u'' + \alpha u = f$$
, in $I = (0, 1)$, $u(0) = u(1) = 0$,

where $\alpha = \alpha(x)$ is a bounded positive coefficient on [0,1].

5. Consider the heat equation

$$\begin{cases} \dot{u} - u'' = f(x), & 0 < x < 1, \quad t > 0, \\ u(0, t) = u'(1, t) = 0, & t > 0, \\ u(x, 0) = u_0(x), & 0 < x < 1. \end{cases}$$

a) Show, for the homogeneous case: i.e., $f \equiv 0$ (with $||u|| = (\int_0^1 u^2(x) dx)^{1/2}$), the estimates

(E1)
$$\frac{d}{dt}||u||^2 + 2||u'||^2 = 0,$$
 (E2) $||u(.,t)|| \le e^{-t}||u_0||.$

b) Let $u_s = u_s(x)$ be the solution of the corresponding stationary problem:

$$-u_s'' = f$$
, $0 < x < 1$, $u(0) = u'(1) = 0$,

show that $||u - u_s|| \to 0$, as $t \to \infty$.