Chapter 14. Piecewise polynomials in several dimensions
Variational formulation in R?

All the previous studies (1 - dimensional) can be extended to R™, then the “math-
ematics of computation” becomes much more cumbersome. On the other hand,
two or three dimensional cases are of both physical relevance and practical inter-
est.

A typical problem to study is e.g.
—Au+tau=f x:=(z,y) € QC R?

u(z,y) =0 (z,y) € 0N

The only difference with the 1-dimensional case is in the performance of the
partial integrations.

Green’s formula: Let u € C’Z( ) and v € C*(Q), then
Oou 0
// @ + — vdxdy :/ (%, 8_u> -n(z, y)vds
// 8u 8u 51} av)d dy.
o’ 8y 8ac oy
where n(z,y) is the outward unit normal at the boundary point x = (z,y) € 0
and ds is a curve element on the boundary 0f2.

In the figures below 02 = 01).
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In concise form [, (Au)vdz = [,(Vu-n)vds — [, Vu - Vudz
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Proof: (In the case that ) is a rectangular domain)

n(x,b) =(0,1)
o =T
b 1 2
oQ 4= I3
h(O,y) = ('1!0) Q h(a,b) = (1,0)
5Q,=T,
X
3Q,= r 4 a
n(x,0) = (0, -1)

then we have

// vdxdy—//GQxy) o(z, y)dady = [P.I] =

:/o ([g—Z(Ji,y)-v(x,y)]Zzo— i Z—Z(x,y).g_j;(x,y)dx)dy:

/(6U(a y) -v(a,y) — gz(o’y)'“(o’@/))dy—

ou Ov
//81’ 9 (z,y)dzdy.

Now we have on I'y : n(a,y) = (1,0)
on 'y :n(z,b) = (0,1)
on I's : n(0,y) = (—1,0)
on I'y : n(z,0) = (0,—1)

This implies that the first integral on the right hand side can be written as

Ou Ou 8u au
/{m (%, 8_y> n(z,y)vds = /r /r e 6y -n(z,y)v(z,y)ds



1.e.

ou Ou // 8u 81}
dacd = —,— ) -n(z (x,y)ds — d d
// V= /1“1UF3 (ax ay) ( y y Y

Similarly in y-direction we get

ou Ou
// vdxdy = /F2UF4 (a_x’8_y> n(z,y)v(z,y)ds — // o ayda:dy

Now (1) + (2) gives the desired result.

For the general domain €2, see (CDE).

Basis functions for the piecewise linear case
We just consider an example:

In the 1-dimensional case a function which is linear on a subinterval is uniquely
determined by its values at the endpoints. (There is only one straight line con-
necting two points)
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Similarly a plane in R? is uniquely determined by three points. Therefore it is
natural to make partitions of 2-dimensional domains using triangular elements
and letting the sides of the triangles to correspond to the endpoints of the intervals
in the 1-dimensional case.



z=1(x,y) (c,d,h)

y i (ef,0)

This figure illustrates how piecewise linear function on a triangle is determined
by its values at the vertices of the triangle.

Obseve that this “partitioning”: triangulation works only for the domains with
polygonal boundary.

Here we have 6 internal nodes N;, 1 <14 < 6. €, is the polygonal domain inside
2, which is triangulated.

Now for every linear function U on €2, we have

U(x) = Urp1(x) + Urpa(x) + . .. + Usps(x),
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where U; = U(N;) i=1,2,...,6 are numbers and ¢;(N;) = 1, while ¢;(N;) =0
for j # i. Further ¢;(x) is linear in x in every triangle/element. In other words

@i(IN;) = = d;; (affin)

Therefore, e.g., given a differential equation to determine the approximate solu-
tion U is now reduced to find the values (numbers) Uy, Us, .. ., Us, satisfying the
corresponding variational formulation. For instance if we chosse x = Nj, then
U(N5) = U1Q01(N5) + UQ(‘OQ(N5) + ...+ U5(,05(N5) + U6<p6(N5), where (,01(N5) =
’wl(Ng,) = QOQ(N5) = (‘03(N5) = g04(N5) = (PG(NS) =0 and §05(N5) = ]., and hence

U(Ns) = Usps(Ns) = Us

Example, let Q = {(z,y) : 0 <z < 4,0 < y < 3} and make a FEM discretization
of the following boundary value problem:

—Au=f inQ
u=20 on 012

The variational formulation will be: Find a function u vanishing at the boundary
[ =00 of Q (i.e. w =0, on I'), such that

// (Vu - Vv)dzdy = // fvdzdy for all test functions v with v = 0 on 99.
Q Q
We shall make a test function space of piecewise linear functions.

5



We triangulate €) as in the figure above and let

VY =“Space of all continuous functions, which are

linear on each sub-triangle and are 0 on the boundary”.

Since such a function is uniquely determined by its values at the vertices of the
triangles and 0 on the boundary, so indeed in our example we have only 6 inner
vertices of interest. Now precisely as in the “1 — D” case we construct basis
functions. (6 of them in this particular case), with values 1 at one of the nodes
and zero at the others. Then we get the two-dimensional telt functions as above.




