Chapter 15. The Poisson Equation
Solve the Poisson equation
—Au=f in ()
u=20 on 0f),
where ) is a bounded domain in R?, with polygonal boundary I' = 0.

To derive stability estimates we multiply the equation by v and integrate over €2
to obtain

(9] Q

Using Green’s formula and the boundary condition: v = 0 on I', we get that

(1) IVulf? = / Fu < 11 lull,

where || - || denotes the usual Lo(g)-norm.

Poincaré inequality (2D-version):

(2) [ull < CalVul|

Proof. Let ¢ be a function such that Ap =1 in Q, and 2|Vp| < Cq in Q, (such
a function exists), then again by the use of Green’s formula and the boundary
condition we get

ull? = / PAp = — / 2u(Vu- V) < Callull [Vl

Thus
lul] < Col|Vull.

Now combining with formula (1) we get that the following weak stability estimate:

(3) [Vul| < Collfll. DO

Exercise: Derive corresponding estimates for following problem:
—Au+u=f, in Q

%:0, on I' =00



Error estimates for FEM for the Poisson equation:

—Au=f, in
u=0, on I' =00

where Q C R, d =1, 2,3, with following variational formulation:

Find U(z) such that u(z) =0 on I' = 90 and
(V) : /Vu-Vvdx:/fvdx for all v such that v =0 on I'.
o Q
FEM: Let 7 = {K : UK = Q} be a triangulation of Q and ¢;,j =1,2,...,n be

the corresponding basis functions, such that ¢;(z) is continuous, linear in = on
each K and

1 fori=y
@i (N;) =
0 fori#j
where Ny, Ny, ..., N, are the inner nodes in the triangulation.

Now we set the approximate solution:
U(z) = Urp1(z) + Uaipa(x) + ... + Unipn (),

and seek the coefficients U; = U(V;), i.e., the nodal values of U(z), at the nodes
N;, 1 <1< n, so that

(FEM) /VU-Vgpjdxz/f-gpjdac, j=1,2,...n
Q Q
or equivalently
(VD) /VU-Vvdxz/f-vda:, Vv € V.
Q Q

Recall that
V) = {v(z) : v is continuous, piecewise linear inx (on7), andv = OQonT = 90}.
Note that for v € V}) we have

v(z) = v(N)p1(z) + v(No)po(z) + ... + v(Ny)pn(x).

For the error e = u — U we have Ve = Vu — VU = V(u — U). We observe that
subtracting the formula (V) from the (V'); we obtain the Galerkin Orthogonality:

(4) /(Vu—VU)Vvdmz/Ve-Vvdsz, Vv e V.
Q Q
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On the other hand we may write
||Ve||2:/Ve-Vedxz/Ve-V(u—U)dx:/Ve-Vudx—/Ve-VUda:,
Q Q 0 0

where using the Galerkin orthogonality (4), since U(z) € V}® we have the last
integral above: [, Ve:VUdz = 0. Thus inserting [, Ve Vvde =0, Vo € V}
we have that

|Vel? :/Ve-Vud:L"—/ Ve-Vvd:vz/Ve-V(u—v)dx < |IVe|l- |V (u—=2)||.
Q Q Q

Hence

(5) V(=0 < [Vu-v)ll, VeV,

that is, U is closer to u than any other v in V0.

In other words the error u — U is orthogonal to V2.

It is possible to show that there is a v € V}? (an interpolant), such that

(6) IV (u—v)|| < C|lh D*ull,

where h = h(z) = diam(K) for z € K and C' is a constant, independent, of A.

This is the case, for example, if v interpolates u at the nodes N;



h larger h smaller

T N
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Combining (5) and (6) we get
(7) IVe|| = [|V(u—U) < Cl|h D*ul],

which is indicating that the error is small if h(z) is sufficiently small depending
on D?u:

Estimate of the error e = u — U:

Let ¢ be the solution of the dual problem

—Ap =e, in(

p =0, on 02



Then
Jelf = [ el-Ap)ds = {Green's formula) = [ Ve Vi
Q Q

(8) = {Galerkin orthogonality} = / Ve-V(p—v)dz
Q
< Vel - V(g —)ll, VveVy.

We now choose v such that

(9) IV( = v)ll < Cllh- D*|| < C'maxh - [|D*p.

Lemma: Assume that § has no re-intrents. We have for u € H*(Q)); with u = 0
or (2¢ =0) on 9. that
ID*ul| < eq - [|Aull,

where
D*u = (u2, + 2uiy + uzy)lﬂ.

We postpone the proof of this lemma and first derive the error estimate:
Applying the lemma to ¢, we get
(10) ID*¢l| < Ca - [ Ap]l = Callel]
Now (7)-(10) implies that
el < (8) < [[Vell - V(¢ = v) ]| < (9) < [[Ve]| - Cmaxh || D*¢||
< (10) < || Vel -CmgxhC’QHeH < (7) < C?Cq mgxh||e||||hD2u||.
Thus we have obtained the following a priori error estimate:

llell = [lu— Ul < C* Cq (maxh) - || D*u,

which using the Lemma, for a uniform (constant &), can be written as an stability
estimate viz,

= U|| < € C2 (maxh)? | £



A posteriori error estimate. For simplicity we consider a one dimensional case
with = (0,1) and study the problem:

(11)

Using (11) the L2-norm of the error can be written as:

||e||2:/e-edm:/e(—go”)dx:/e'wp'dx.
0 0 Q

Thus, using the one-dimensional version of the Galerkin orthogonality: fQ e -
v'dz = 0, and the boundary data: ¢(0) = ¢(1) = 0 (in a partial integration) we
can write

lell* = / e - pdr — / e v'dr = / e (p—v)dz = /(—e")(gp —v)dr =
Q Q Q Q
< [[R*rl - 1R =)l < C - IR*r|l - "l < C - [|B*r]| - le]l,

where we use the fact that the —e”” = —u"+U" = f+U" is the residual r and v is
an interpolant of ¢. Thus, for this problem, the final a posteriori error estimate
is:

(12) lu—Ull < C[R*r]l.

Observe that for piecewise linear approximations U” = 0 on each element K and
hence r = f and our a posteriori error estimate above can be viewed as a stability
estimate viz,

lell < C[R*f]l.

Exercise 1: Show that |[(u — U)'|| < C||hr||

Exercise 2: Verify that for v being the interpolant of ¢, we have

1A~ (e =)l <Cll¢"ll, and
1A (e —v)ll <Ol

Exercise 3: Derive the corresponding estimate to (12) in the 2-dimensional case
(d=2).

Note that now is Ve(p — v) # 0 on the enter-element boundaries.



Now we return to the proof of Lemma 1:

First note that for convex €2, the constant Cqy < 1 in lemma 1, otherwise the
constant Cp > 1 and increases from left to right for the (2:s below.

O D<o

C(@Q<1 c(Q)>1 C(Q) larger C(Q=w

Proof. Let 2 be a rectangular domain and set v = 0 on 02. We have then
|Aul|? = /Q(um + Uy ) 2 dzdy = /Q(uim + Qggliyy + us,) dzdy.

Further applying Green’s formula: [, (Au)vdz = [.(Vu-n)vds — [, Vu- Vodz
to our rectangular domain €2 we have

(13) / UggUyydrdy = / Uz (Uyy - Ny )ds — / Uy Uyyy drdy
Q N Q
=Uzyy

M

using Green’s formula once again ( with “v = u,”, “Au = ug,”) we have

/uxuxyydxdy :/ Uz (Uyg - Ty)ds — / Ugy Ugy dzdy,
Q a0 Q
which inserting in (13) gives that

/ UgglUyy drdy = / (UgUyyNg — UgUygny)ds + / UgyUgy dxdy.
Q a0 Q



(0.1)

u,=0

Uyy=0
(-1,0) = = (1,0) =(n,.ny)

Uyy: 0

Now, as we can see from the figure that (uyuy,n, — uztyn,) = 0, on 0 and
hence we have

/ UggUyydrdy = / UgyUgydrdy = / uiydxdy.
Q Q Q

Thus, in this case,

| Au|)? = /Q(um + Uy ) dxdy = /Q(ufm + Quiy + uzy)d:vdy = || D?u|?,

and the proof is complete. [



