Chapter 16. The heat equation

Consider the initial boundary value problem:
(

uw—Au=0, inQcCR?(orR,d=1,2,3) (DE)

(1) 9 u =0, on I' := 09, (BC)

u(0,x) = uo, for x € Q, (IC)

\

where 1 = %. Here is an illustration in 1 — D case:

Energy estimates:

To derive stability and energy estimates we multiply (1) by u and integrate over
Q viz

(2) /Q i dz — /Q (Au)uds = 0.

Note that uu = %uZ and using Green’s formula:

1
2

—/(Au)udxz—/(Vu-n)uds—l—/Vu-Vud:r (and with v = 0 on T),
Q r Q

—/(Au)udmz/Vu-Vudx:/\Vu|2dx.
Q " "
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Thus equation (2) can be written in the following, equivalent, form:

(3) s Lo dx+/Q|Vu| dr=0 < =l +|[Vul? =0
where || - || denotes the Ly(€2) norm.

Integrate equation (3) over s € (0,t) we get

1 [t d ¢ 1 1 ¢
1 / Ll (s)ds + / IValP(s)ds = SlulP(6) = Lilull?(©) + / |VulPds = 0,
2/, ds 0 2 2 0

thus with ©(0) = uy we have

t
Jlull*(t) + 2/0 IVull*(s) ds = [Juoll*

In particular, we have the stability estimates

(30) Jul(8) < lol,
and
(3b) [ 1P ds < Gl

Exercise 1: Show that ||Vu(t)|| < ||Vue| (the stability estimate for the gradient).
(Hint: Multiply (1) by —Aw and integrate over ).
Is this inequality valid for uy = constant?

s — )

Exercise 2: Derive the corresponding estimate with (BC): §& =

Now we multiply (1): @ — Au =0, by —t - Au and integrate over €) to obtain

(4) —t/Qd-Aud:E—i-t/Q(Au)dez().

Using Green’s formula (u = 0 on I') we have

1d
/ tAudr = —/ Vi - Vudr = —=—||Vul|?,
so that (4) can be written as
1d
t=— 2 4 t)|Au|® =
Ll + d Al = o



and by using the obvious relation t&||Vu||> = £ (¢||Vu||?) — || Vul|* we get
d
2 UIVull®) + 26| Aul = [[VulP,
Integration in ¢ gives:
t d t t 1
| GV +2 [ siaul s = [ [9u(s)ds < 3 luo],
o ds 0 0 2

where in the last inequality we use (3b), consequently

t
1
(5) | Vull*() +2/ sl Aull(s) ds < 5luoll*.
0

In particular, we have:

(5a) IVul[(t) < —=|luoll

- §-

t
(5b) ([ shaur)as) ™ < Sl

Analogously we can show that

1
(6) [Au][(2) < EH“O”

Exercise 3: Prove (6).

Hint: Multiply (1) by #* (A%u) and note that Au =4 = 0 on T', or alternatively:
differentiate @ — Au = 0 with respect to ¢ and multiply the resulting equation by
1.

Now using (1): (¢ = Au) and (6) we obtain

/ e d5<—||uo|| / dS——ln—“UoH

or more carefully

™)
/ i (s)ds = / |Aul|(s)ds = / - | Aull(s)ds = / %-ﬁnmn(s)ds

t 1/2 t 1/2
< {Cauchy Schwartz} < (/ st ds) : (/ s||Aul?(s) ds)

&

1 t
<{(50)} < 51/l < ol



Summing up: For the initial boundary value problem

e

—Au=0, inQC R? (or R, d=1,2,3)
§ u=0, onI':= 00

u(0,z) = ug, forz €

\

we have the stability estimates:

) lull ) < lJuol
(3b) [y IVul2(s) ds < §luq|?
) IVl () < <= lluol

) (Jo sllAul*(s) ds) /2 < §luo|
6)  Aull(t) < 5 luoll

(1) [ 1all(s) ds < 4/l E[fuol.

Error analysis

Consider the one-dimensional heat equation with Dirichlet boundary condition:

e

i@—u"=f inQ=(0,1) t>0

y u=0, on 052 t>0, ie u(0,t)=u(l,t)=0

U = Uy, in Q t=0, ie wu(z,0)=u(x).
\

For an illustration se Fig. on page 1.

Variational formulation: For every time interval I, find u(z,t), ¢t € I,,, such that

1 1
VF ) "W dzdt = dzdt, Vv: v(0,t) =wv(1,t) =0.
(VF) /In/o(uv-f-uv)act /In/o fvdzdt, Yv: v(0,t) =v(l,t)



A piecewise linear Galerkin approximation: For each time interval I, = (t,_1, t,],
with ¢, —t,_1 = k, let

Uz, t) = Up1(2)¥p_1(t) + Un(z) ¥, (1),

where

t—tn—
a(t) = — "=,
and
Un(z) = Un101(2) + Upopa(x) + ... + Up mpm (),
with ¢(z;) = 0;; being the usual finite element basis corresponding to a partition
OfQZ(O,l),WithOZ.’Bl < LT < Ty < - < Ty = 1.

?Un+1(x)
lJJn+1(t,),x"'S"
o g
7 Un9)
1= t e .//./", ‘\.\\ ?
N N LG
th.
- - X
Xi-1 Xi Xi+1

i.e., U is piecewise linear in both space and time variables. Now the unknowns
are the coefficients U, ; satisfying the discrete variational formulation:

1 1
(8) //(U¢j+U'¢;)dmt=//fcpjdxdt, =12 . .m
I, J0 I, J0

Note I, = (t,_1,t,] and on I,, we have

U(x,8) = Up_1 (2)Wn_1 (8)+Up(2) W (t) = Un_ () (—E)JFU“(:E) (E



and
U'(z,t) = Up_1(2)¥p-1(t) + Uy (2)¥n(t).

Inserting in (8) we get using [; dt =k and [, W,dt = [} ¥, dt = k that

1 1 1
/ Unpjdx — / Up—1p; dz -I-/ U, dt/ U, ¢ d
0 0 In Jo )

MU, M-Un s e §-Un-1
1 1
—I—/ \Ilndt/ U,'lgag-dxz/ / fojdzdt
I, o~ Imdo )
k S-Un F

which can be written in a compact form as the Crank- Nicolson system (CNS)
k k

(CNS) (M + 55) U, = (M - 55) Up_1 + F,

with the solution U, given by

U, = (M+§ )_1 (M— gs) U, 1 + (M+ gs)_lp,

B! A B-1
where i i
Un,l
Un,2
U, =
Un,m

Thus with a given source term f we can determine the source vector F' and then,
foreach n =1,2,... N, given the vector U, ; we seek the vector U,, (nodal values
of n at time level ¢,,), using the CNS above.

Exercise 4: Derive a corresponding equation system, as above, for the dG(0).

For general space domain €2 (8) can be written as

(9) / /(UU—l—U’U')dxdt:/ /fvdxdt for all v € V,
I, J Q2 Iy J Q2

where V}, = {v(z) : v is continuous, piecewise linear, and v(0) = v(1) = 0}.
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Note that this variational formulation is valid for the exact solution « and for all
v(x,t) such that v(0,t) = v(1,¢) = 0:

(10) //uv+uv Ydzdt = //fvdxdt, Yv € Vp,
I, Ja

This implies that for the error e = u — U, we have subtracting (9) from (10), the
following Galerkin orthogonality relation:

(11) / / év+ e'v')dxdt =0, for all v € V.
In

To derive error estimates we let o(z,t) be the solution of the following dual

problem:
)

—p—¢"=0, inQ t<T

§ ©=0, on 02 t<T 5

© =e, inQQ fort=T
where e = e(t) = e(-,T) =u(-,T) - U(-,T), T = ty.

Note that for w(z,t) = ¢(z,T —t), (t > 0), we can write the backward dual
problem as a forward problem:

.
w—w"=0, inQ t>0

y w=0, ondQ) t>0

w = e, in Q) fort=0.

For this problem we have shown that, see (7)

T 1/ T
(12) [l < 5y el

and consequently (let s =7 —t thene 5 T < T —¢ 5 0, and ds = —dt) we
have for ¢:

T—¢
1 T
13 ol < =4/In — :
(13) | 1el= 5y lel
Now since —¢" = ¢ we get also
T—e
1 T
14 "Il < =4/In=
(14) | 1= Gy/m el
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To continue we assume that ug € V}, then, since (—¢ — ¢") = 0, we can write

le(D)||* = /Qe(T) -e(T) dx +/O /Qe(—<p — ¢") dzdt = [P1 in {]

_ / o(T) - o(T) dz — /Q e(T) - e(T) dz + /Q e(0) - e(0) da

/ / ép + €'¢') dedt = {Galerkin Orthogonality (11)}

/ / —v)+é(p—v) dedt = {Plin z, in 2ed term}

:/0 /Q(é—e")(go—v) dxdt—i—/ e'(gp—v)‘aﬂ dt
:/()T/Q(f_UJrU")( ) dzdt = / / ) dzdt,

where we wseé=u—Uande =u"—U" towriteé —e¢’ =u—u"—U—-U" =
f—=U—=U":=r(U) which is the residual. Now with mesh variables h = h(z,t)
and k = k(t) in x and ¢, respectively we can derive an interpolation estimate of

the form:

(p—v) <kp+ Q" < (k+h*)p+ (k+ h?)y"




Summing up we have basically:
T
le(D)|I* < /0 1%+ B:)r @)l + 1"l

T-¢

< max||(k + h*)r(U / ol + [|¢"]l) + 2 max

0 < max |G+ W)@ | [ (lgll+ 1) + 2 gmax Nl
< {maximum principle , (13) — (14)}

T
2 J—
< max||(k +h )T(U)II( In = ||€||+2||€||>-

This gives our final estimate:

(17) le(o)l < (2-+/ln ) max (6 + B)r ()]

Adaptivity:

Starting from the a posteriori estimate of the error e = u — U for example for

—Au=f, in
u =0, on 052

1.e.
[Vell < cllhr(U)l,

where r(U) = | f| + maxsk |[Vu]], and [ | denotes the jump, we have the following

Algorithm:

(1) Choose an arbitrary h = h(x) and a tolerance Tol > 0.

(2) Given h, compute the corresponding U.

(3) If C||hr(U)|| < Tol, accept U. Otherwise choose a new (refined) h = h(z)
and return to step (2) above. O



Higher order elements:

Ex. ¢G(2) : Piecewise polynomials of degree 2

is determined by the values of the approximate solution at the end-points of the
subintervals. The constructing is through the bases functions of the form:

Error estimates. (A simple case): For —u” = f, 0 < x < 1 associated with
Dirichlet (or Neumann) boundary condition we have

(1) l(w = UY'|l < Cl|h*Dul|
(2) |lu — U|| £ Cmax h||h?D3ul|

(3) [lu —U|| < C||h?r(U)|l, where |r(U)| < Ch.
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These estimates can be extended to, for example, the space-time discretization
of the heat equation.

The equation of an elastic beam

/

(@) =f,  Q2=(0,1)

u(0) =0, u'(0) =0 (Dirichlet)

u”(1) =0, (au")'(1) =0, (Neumann)

where a

a/U”

u = u(x)

Variational form:

is the bending stiffness
is the moment
is the function load

is the vertical deflection

1 1
/ au"v"dr = / fvdz, for all v(z) such that v(0) = v'(0) = 0.
0 0

FEM: Piecewise linear functions won’t work (inadequate).

Exercise 5: Work out the details with piecewise cubic polynomials having contin-
uous first derivatives: i.e., two degrees of freedom on each node.
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A cubic polynomial in (a, b) is uniquely determined by ¢(a), ¢'(a), ¢(b) and ¢'(b),
where the basic functions would have the following form:

Some basic estimates:

Exercise 6: Let z, 7 € I = [a,b] and w(Z) = 0. Show that
(E1)  Jw(@)| < [; |w'|da.

Exercise 7: Assume that v interpolates ¢, at a, b.
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Show, using (E1) that
W) lo-v)@) < / (o — 0| de,
() |(p—v)(@) < / (o — )| dz = / " d,

II|
7

(i)  (E2) max lp—v| < max |h%¢

(iv) / o —vld < / " d,
I I

V) lle—vllz <lIF*"ll;  and A7 (¢ —v)lls < [l¢"|I1;
1/2
where |lwl||r = (/w2 d:c) is the Ly(I)-norm.
I

Use

1 b
V=" = —/ o'dxr (¢ is constant on T),
h h ),

and show that
vi) o — o)) <2 / | dr,
T

i) [ e=vldo< [Igde and A - o)l <2
1 1

Exercise 8: Let now v(t) be the constant interpolant of ¢ on I.

Show that

(E3) /h_l\cp—v|dx < /\cp'\dac.
1 1
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Lemma 1. Let U be the ¢G(1) approximation of u satisfying
v+u=f t>0, u(0)=mu.
Then we have that

((u— U)(T)| < max|k(f — U - U)|,

[0,7]

where k is the time step.

Proof. The error e = u — U satisfies Galerkin orthogonality:

T
/ (é+e)vdt =0, for all piecewise constants v(?).
0
Let ¢ satisfy the dual equation
—p+9=0, t<T, ¢T)=e)

Then  ¢(t) = e(T) - 1. We show this in the following lines:

Note that integrating —¢p + ¢ = 0 gives

/fdt:/ydt.
©

Thus Inp =t + C. Let now C =InC, then Inp —InC; =1n C% =t, and hence
o(t) = Cy - €. Since ¢(T) = e(T) we have then ¢(T) = C - e&' = e(T), i.e.

C,=¢(T)-e" T, and therefore

To continue we have

Note that

/0 et = [P1) = [e - ]y — / édt = e(T)p(T) — e(0)(0) — / it

Using ¢(T) = e(T), and e(0) = 0, we thus have
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|e(T)|2:e(T)-e(T)—e(T)-e(T)—i—/OTécpdt—i-/OTegodt:/OT(é-i-e)(pdt
:/OT(é-i—e)(go—v)dt:/OT(W—U—U)(gp—v)dt.

We have that U + U — f := r(U), is the residual and

T T
1
|e(T)|2:—/ r(U)-(go—v)dtgma,x|k-r(U)|/ Lo~ ldt.
0 0,7 o k

Recall that

(E3) /h_1|g0—v|da: < /|g0’|dx.
I I

Further —¢ + ¢ = 0 implies ¢ = ¢, and (t) = e(T) - e~7. Thus we can write

|e(T)|2<max\k r( |/ |p|dt = max|k r( |/ t)| dt

<I[18ax\k7“ \/ =Tat,

T
and since / e Tdt =[]l =’ —eT=1-eT <1, T>0,we finally get
0

le(T)| < max|k - r(U)| O

[0,77]

Exercise 9: Generalize the Lemma to the problem u+au = f, with a = positive constant.
Is the statement of Lemma 1 valid for &« — u = f7

Exercise 10: Study the dG(0)-case for @ + au = f,a > 0
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Lemma 2: Let u +u = f,t > 0. Show for the ¢cG(1)-approximation U(t) that

—U)(T)| < 24|T.
(u—U)(T)| < max K

Proof. “Sketchy”, via dual equation ¢+ =0, t < T, ¢(T) =¢e(T)

le(T) |2 = |0(T) > = 0(T)p(T) + /OT@(—cb + ®) dt = /OT(G) + ©)ddt

-~
=0

T _ T _ T _
:—/ (,[)+,0)<I>dt:—/ p-@dtgmaxm?a\/ |®| dt
0 0 [0,T] 0

ax Wil - T [e(T)]. O

<m
0,7

Here p=u — 4,0 =4 — U and ® is ¢G(1)-approximation of ¢ such that

fOT v(—® + @) dt = 0 for all piecewise constant v(t).

4 is the piecewise linear interpolant of u,

W = piecewise constant mean value.
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