Chapter 17. The wave equation

Consider the wave equation:
(

i—Au=0, inQ (DE)

. 0%
9 u=0, on 9N =T (BC) (U = @)

(u=wup) AN(t=1v) inQ, fort=0, (IC)

\

Conservation of energy:

We multiply the equation by % and integrate over €2,

/u-udx—/Au-udac:O.
Q Q

—/(Au)ud:v:—/(Vu-n)dds—i—/Vu-Vadx,
Q r

Q

Using Green’s formula:

and the boundary condition u = 0 on I, (which implies & = 0 on I'), we get

/ii-'dd:v—i-/Vu-Vadx:O.
Q Q

Consequently we have that

1d,. 1d 1d,.
[ 5@+ [ 35(VuPyde =0 = ZE (P + IVul) o

1 1
and hence §||u||2 + §||Vu||2 = constant, independent of ¢.

Therefore the total energy is conserved. O

Here ||u|/? is the kinetic energy, and 3||Vul|? is the potential (elastic) energy.

Exercise 1: Show that |V4||? + ||Vul|? = constant, independent of ¢.
Hint: Multiply (DE): ii — Au = 0 by —A% and integrate over € or
Alternatively: differentiate the equation with respect to z and multiply by , . . ..

Exercise 2: Derive a total conservation of energy relation using the Robin type

0
boundary condition: 8—” +u =0.
n



FEM for the wave equation.

We seek the solution u(z,t) for the problem:

e

i —u" =0, 0<z<l t>0 (DE)

$ u(0,4) =0, W(1,t) = g(t,) t>0 (BC)

u(z,0) = ug(x), u(z,0)=wv9(z), 0<z<1 (IC).

\

We let 4 = v, and reformulate the problem as a system of PDEs:

@ —v=0 (Convection)

v —u" =0 (Diffusion)

u
Remark. We rewrite the above system as w + Aw = 0 with w =
v
) U a b u 0 au+bv = —u
W+ aw = + = , thus
) c d v 0 cu+dv=—v
A
au+bv = —v
@ =wv and © = u” gives that
cu~+dv = —u"
Consequently we have a = 0,b= —1 and ¢ = _aa_;’ d=0, i.e.
U 0 -1 U 0
+ = O
v 3‘9—;2 0 v 0

Let now for each n, the piecewise linear approximations to be defined as

Uz, t) = Up_1(2)Vp1(t) + Upn(x)W,(2),
O<z<l, tel,,

V(1) = Vo1 ()1 (£) + Vi (2) T (1),

2

, then

but



where

Un(z) = Upi(z)pr(x) + ... + Up () om(2),

Vie1(z) = Vo 1(z)er(x) + ..o 4 Vacim(2) om(2),

n(t) ¢' *)

Note that since © — v =0, t € I,, we have

1 1
(1) //Ucpdacdt—/ / vpdrdt =0, forall ¢(z,t).
I J0 I, Jo

Similarly, integrating © — u"” = 0, we have

1 1
(2) / / v dzdt — / / v dzdt =0,
I, Jo 1, Jo

where, in the second term we use partial integration in x and the boundary
condition u'(1,t) = ¢(t) to obtain

1 1 1
/ u"pdr = [u'p|; — / u'o' dx = g(t)p(1,t) — u'(0,1)p(0,t) — / v dx.
0 0 0

Inserting in (2) we get

(3) /,/ Wdf”d“r/fn/ ¢ ddt = /[ng(t)so(l,t) dt,

for all ¢ such that ¢(0,t) = 0.
We therefore seek U(x,t) and V (z,t) as above such that

/1/ : =~ Un- 1(3”)1 (@) dzdt—

-/ / Wy (1) + Vo) W (t) ) 5 () ot = 0,

for j=1,2,...,m,

Q{w

[y



and

UI

:/ g(t)p,(1) dt, forj=1,2,...,m.

In,

This is reduced to the iterative forms:

/OUn(x)goj(x)d:r—g/O Va(z)p,(z)dx
(6) MU, MV,

1 k 1
=/ Up—1(z)p;(z)dx +§/ Voo1(z)p;(z) dz, for j =1,2,...,m,
0 2 Jo B

~~ ~~
MUn_l MVn—l

N

and

Ve +E [ V@)@ da
ﬂ 3

v

MVs SUn
(7) 1 k 1
= / anl(‘r)@](x) dm_i/ 'rlz—l(x)(pg(x) dz +0n, fOI‘j =12,...,m,
0 0
M“/f,:,l SU?nr—l

respectively, where

2 -1 0 2 3 0
1| -1 2 -1 T
S:E  M=h 6 3 6 ’
0 -1 2 :
0 0 -1 0 % %




and we use the vector functions:

[ U, [ o

Un,2 e
U, = , and ¢, = where  gn . = / g(t) dt.
0 In

\ Unim / \ nm |

Exercise 3: Verify the entries of the matrices S and M.

In the compact form, the vectors U,, and V,, are determined through solving the
linear system of equations:

MU, — EMV,, = MU,_1 + £MV,_,

kSU. + MV, = —45U, 1 + MV,_1 + g,

This is a system of 2m equations with 2m unknowns:

M k5 || U, M EM || Uy 0
= -+ ,
kS M Va 55 M Vo Gn
[ -~ V) S— A -~
A w b

with W =A\b, U, =W({1:m), V,=W((m+1:2m).

Exercise 4: Derive the corresponding linear system of equations in the case of
time discretization with dG(0).

Exercise 5: (Conservation of energy)
Show that ¢G(1)-cG(1) for the wave equation in system form with g(¢) = 0,
conserves energy: i.e.

UL+ IVall? = 0l + Vel

Hint: Multiply the first equation by (U,_; + U, )!SM ! and the second equation



by (Vu_1+ V,)" and add up. Use then, e.g., the fact that U!SU,, = ||U}||?, where

( U )

Un,2
U, = ,and U, = Up(z) = Up1(z)pr(x) + ... + Up () om(2).

\ Unn /

Exercise 6: Apply c¢G(1) time discretization directly to the wave equation by

letting
U(z,t) = Up_19Y,_1(t) + Uy (2) ¥, (1), tel,.

Note that U is piecewise constant in time and comment on:

1
\In 0 ., \In

Exercise 7: Show that the FEM with the mesh size h for the problem:

v

1
[ wiamii= [ gwe,a, j=12..m
In

0
ES(Un-1+Un) gn

—u"'=1 0<z<1

with
U(x) = Tpo(x) + Urp1(2) + - . + U ().

leads to the linear system of equations: A-U = b, where

—1 2 -1 0 7 h
0 -1 2 —1. U;
~ 1 ’ ~ ) ~
A:— = =
Y U b h
| 0 0 | | Un | BN
m x (m+ 1) (m+1)x1 m x 1



which is reduced to AU = b, with

- - - h +
-1 0 U,
1l -1 2 -1 U,
A = E s U = . b =
0 -1 2
h
0o 0 -1 Un
- - - - h
| 2
Exercise 8: Construct a FEM for the problem
(
i+u—u"=f 0<zxz<l t>0,

$ u(0,4) =0, W(1,t) =0, t>0,

u(z,0) =0, u(z,0) =0, 0<z<1.

\
Exercise 9: Assume that v = u(z) satisfies
/1 u'v'dr = /1 fvdz, for all v(z) such that v(0) = 0.
0 0
Show that —u” = f for 0 <z < 1 and /(1) = 0.

Hint: See Lecture notes, previous chapters.

Exercise 10: Consider the following two dimensional problem:

.
—Au=1, in

§ u=0, on I'p
ou __

\%—0, ODFN

See figure below

Triangulate ) as in the figure and let
U(.T) = Ul(pl(.T) + ...+ Uls(plﬁ(fb),

7




X2 X2

N,
1 1
r
D Q FN
Xl Xl
M 1 1

where = (z1,22) and ¢;, j = 1,...16 are the basis functions, see Fig. below,
and determine Uy, ...U;g so that

/VU-Vgajda::/(pjdx,j:1,2,...,16
Q Q

NS LT

By

AT 77
7

Exercise 12: Generalize the whole procedure above to

( (

—V(aVu) = f, inQ a=1 forz <3
§ u=0, onI'p » where ¢ =2 forz; >1 , mesh-size=h.
ag—z =17, on I'y f =z

\ \
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