Chapter 18. Stationary convection - diffusion problems

The convection problem:

Example: Consider the traffic flow in a highway.
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Let p = p(x,t) be the density of cars (0 < p < 1) and v = u(z,t) the velocity
(speed vector) of the cars.

For a highway path (a,b) the difference between the traffic inflow u(a)p(a) at
the point z = a and outflow u(b)p(b) at z = b gives the density variation on the
interval (a, b):
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dt |,

pz,t)dz = / pla,t)dz = p(a)u(a) — p(b)u(b) = — / (up)'dx

or equivalently

/b <,b + (up)') dz = 0.
Now since a and b can be chosaen arbitrary, thus we have
(1) p+ (up) =0
Let now u = 1 — p, (motivate this choice), then p+ ((1—p)p)' = p+ (p—p*) =0,

ie.,
p+(1—2p)p =0 (A non-linear convection equation).

Alternatively, we may assume that u = c—¢-(p'/p), ¢ > 0, € > 0, (motivate).
Then we get from (1) that

/

!
p+ ((c—s%)p) =0, <= p+cp'—ep” =0. (A convection - diffusion equation).
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Which is convection dominated if ¢ > €.

For € = 0 the solution is given by the exact transport p(z,t) = po(z —ct), because
then p = constant on the (¢, 1)-direction.
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Note that differentiating p(x,t) = p(z + ct,t) with respect to t we get
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We rewrite our last convection-diffusion equation for p, by changing the notation
from p to u, and replacing ¢ by 8 and get

0, < c¢o+p=0.

u+B-u —e-u" =0.

We compare this equation with the Navier-Stokes equation for incompressible
flow:
u+ (B-Vu—eAu+VP =0, A divu=0,

where 8 = u, u = (uy,us,u3) is the velocity vector, with u; representing the

mass, us momentum, and uz = energy. Further P is the pressure and ¢ = Te
e

with Re denoting the Reynold’s number.

These equations are not easily solvable, for € > 0 and small, because of difficulties
related to boundary layer and turbulence. A typical range for the Reynold’s
number Re is between 10° and 107.

Example: Consider the

u —eu" =0, 0<z<l1
(BVP)



The exact solution is given by
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Note an outflow boundary layer of width ~ ¢.

FEM. The finite element discretization would be then

U(z) = ¢o(z) + Urpi(z) + . .. + Upion().

The variational formulation:
1
/0 (U'gojdx—i-sU'go;-) de=0, j=1,2,...n
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gives the equations
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where Uy = 1 and U,;; = 0.

(2Uj—Uj,1—Uj+1) -0, j=12,....n

Note that we can also write using “Central -differencing”

Ujr1 —Uj- Uj1 — 2U; + Uj— 1
% —g\ j+1 hQJ + U IJ: 0 ( = 7 X the equation(?)).
— ~

corresp. to u'(z;)  corresp. to u"(x;)

For ¢ very small this gives that U;;; ~ U;_1, giving, for even n values, alternating
0 and 1 as the solution values at the nodes:

i.e., oscillations in U are transported “upstreams” making U a “globally bad
approximation” of u.

A better method is to approximate «'(z;) by an “upwind” derivative:

U; —Uj
h b)

which, formally, gives a better stability, however, with low accuracy.

u'(x)) ~

The example itself demonstrates that a high accuracy without stability is indeed
useless.

A more systematic method of making FE - solution of the fluid problems stable
is through using the:



Streamline - diffusion method (SDM):

The idea is to choose the test functions of the form (v + %ﬁhv’), instead of just
v. Then, e.g., for our model problem we obtain the equation (8 = 1)

(3) /01 [UI(U + %hv') —e-u” (v + %hv')]d:ﬂ = /0

Here, in the discrete version of the variational formulation, we should interpret
Lrrm 1
the term [ U"v'dz as

1

f(v + %hv') dz.

E / U"v'dz = 0 (in the case of approximation with piecewise linears).
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Note that v = ¢; implies:

L R 1 1
A U éhgojd:v = Uj — 5Uj+1 - in,l,

which combined with (adding the two)

1
Ujt1 —Uja
/0 Upjde = 2—— 5 I

gives (U; — Uj_1), which is approximating the first integral in (3) corresponding
to the “upwind” scheme.

The SDM can also be interpreted as a sort of least-square method:
Let A= -4 and A" = —L; then u minimizes |w’ — f]| if
W=Au=f <= A'Au=A'f <<= —u"=—f, the continuous form.

While multiplying ' = Au = f by v and integrating over (0,1) we have

1 1
/ U'v'de = / fv'de (Weak form),
0 0
where we replaced u' by U'.

For the time-dependent convection problem, the oriented time-space element are
used:
u+ pu —eu = f.
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Set U(x,t) such that U is piecewise linear in = and piecewise constant in the (3, 1)-
direction. Combine with SDM and add up some artificial viscosity, €, depending
on the residual term to get for each time interval I,:

/In/Q[(UJrﬂU)(tho)Jré Uy dxdt:/ln/ng(v+§hvl) dedt. O




