Chapter 18. Stationary convection - diffusion problems

The convection problem:

Example: Consider the traffic flow in a highway.

Let $\rho = \rho(x,t)$ be the density of cars $(0 \le \rho \le 1)$ and u = u(x,t) the velocity (speed vector) of the cars.

For a highway path (a, b) the difference between the traffic inflow $u(a)\rho(a)$ at the point x = a and outflow $u(b)\rho(b)$ at x = b gives the density variation on the interval (a, b):

$$\frac{d}{dt} \int_a^b \rho(x,t) dx = \int_a^b \dot{\rho}(x,t) dx = \rho(a)u(a) - \rho(b)u(b) = -\int_a^b (u\rho)' dx$$

or equivalently

$$\int_{a}^{b} \left(\dot{\rho} + (u\rho)' \right) dx = 0.$$

Now since a and b can be chosen arbitrary, thus we have

$$\dot{\rho} + (u\rho)' = 0$$

Let now $u = 1 - \rho$, (motivate this choice), then $\dot{\rho} + ((1 - \rho)\rho)' = \dot{\rho} + (\rho - \rho^2)' = 0$, i.e.,

$$\dot{\rho} + (1 - 2\rho)\rho' = 0$$
 (A non-linear convection equation).

Alternatively, we may assume that $u=c-\varepsilon\cdot(\rho'/\rho),\ c>0,\ \varepsilon>0,$ (motivate). Then we get from (1) that

$$\dot{\rho} + \left((c - \varepsilon \frac{\rho'}{\rho}) \rho \right)' = 0, \iff \dot{\rho} + c\rho' - \varepsilon \rho'' = 0.$$
 (A convection - diffusion equation).

Which is convection dominated if $c > \varepsilon$.

For $\varepsilon = 0$ the solution is given by the exact transport $\rho(x, t) = \rho_0(x - ct)$, because then $\rho = \text{constant}$ on the (c, 1)-direction.

Note that differentiating $\rho(x,t) = \rho(\bar{x} + ct, t)$ with respect to t we get

$$\frac{\partial \rho}{\partial x} \cdot \frac{\partial x}{\partial t} + \frac{\partial \rho}{\partial t} = 0, \quad \Longleftrightarrow \quad c\rho' + \dot{\rho} = 0.$$

We rewrite our last convection-diffusion equation for ρ , by changing the notation from ρ to u, and replacing c by β and get

$$\underline{\dot{u} + \beta \cdot u' - \varepsilon \cdot u'' = 0}.$$

We compare this equation with the Navier-Stokes equation for incompressible flow:

$$\dot{u} + (\beta \cdot \nabla)u - \varepsilon \Delta u + \nabla P = 0, \quad \wedge \quad \text{div } u = 0,$$

where $\beta=u,\ u=(u_1,u_2,u_3)$ is the velocity vector, with u_1 representing the mass, u_2 momentum, and $u_3=$ energy. Further P is the pressure and $\varepsilon=\frac{1}{Re}$ with Re denoting the Reynold's number.

These equations are not easily solvable, for $\varepsilon > 0$ and *small*, because of difficulties related to boundary layer and turbulence. A typical range for the Reynold's number Re is between 10^5 and 10^7 .

Example: Consider the

(BVP)
$$\begin{cases} u' - \varepsilon u'' = 0, & 0 < x < 1 \\ u(0) = 1 & u(1) = 0. \end{cases}$$

The exact solution is given by

$$u(x) = C\left(e^{1/\varepsilon} - e^{x/\varepsilon}\right), \quad \text{with} \quad C = \frac{1}{e^{1/\varepsilon} - 1}.$$

Note an outflow boundary layer of width $\sim \varepsilon$.

<u>FEM.</u> The finite element discretization would be then

$$U(x) = \varphi_0(x) + U_1 \varphi_1(x) + \ldots + U_n \varphi_n(x).$$

The variational formulation:

$$\int_0^1 \left(U' \varphi_j dx + \varepsilon U' \varphi_j' \right) dx = 0, \quad j = 1, 2, \dots n$$

gives the equations

(2)
$$\frac{1}{2} \left(U_{j+1} - U_{j-1} \right) + \frac{\varepsilon}{h} \left(2U_j - U_{j-1} - U_{j+1} \right) = 0, \quad j = 1, 2, \dots, n,$$

where $U_0 = 1$ and $U_{n+1} = 0$.

Note that we can also write using "Central -differencing"

$$\underbrace{\frac{U_{j+1}-U_{j-1}}{2h}}_{\text{corresp. to }u'(x_j)} - \varepsilon \underbrace{\frac{U_{j+1}-2U_j+U_{j-1}}{h^2}}_{\text{corresp. to }u''(x_j)} = 0 \quad \Big(\Longleftrightarrow \frac{1}{h} \times \text{the equation}(2) \Big).$$

For ε very small this gives that $U_{j+1} \approx U_{j-1}$, giving, for even n values, alternating 0 and 1 as the solution values at the nodes:

i.e., oscillations in U are transported "upstreams" making U a "globally bad approximation" of u.

A better method is to approximate $u'(x_i)$ by an "upwind" derivative:

$$u'(x_j) \approx \frac{U_j - U_{j-1}}{h},$$

which, formally, gives a better stability, however, with low accuracy.

The example itself demonstrates that a high accuracy without stability is indeed useless.

A more systematic method of making FE - solution of the fluid problems stable is through using the:

Streamline - diffusion method (SDM):

The idea is to choose the test functions of the form $(v + \frac{1}{2}\beta hv')$, instead of just v. Then, e.g., for our model problem we obtain the equation $(\beta \equiv 1)$

(3)
$$\int_0^1 \left[u'(v + \frac{1}{2}hv') - \varepsilon \cdot u''\left(v + \frac{1}{2}hv'\right) \right] dx = \int_0^1 f\left(v + \frac{1}{2}hv'\right) dx.$$

Here, in the discrete version of the variational formulation, we should interpret the term $\int_0^1 U''v'dx$ as

$$\sum_{j} \int_{I_{j}} U''v'dx = 0 \text{ (in the case of approximation with piecewise linears)}.$$

Note that $v = \varphi_j$ implies:

$$\int_0^1 U' \frac{1}{2} h \varphi_j' dx = U_j - \frac{1}{2} U_{j+1} - \frac{1}{2} U_{j-1},$$

which combined with (adding the two)

$$\int_{0}^{1} U' \varphi_{j} dx = \frac{U_{j+1} - U_{j-1}}{2},$$

gives $(U_j - U_{j-1})$, which is approximating the first integral in (3) corresponding to the "upwind" scheme.

The SDM can also be interpreted as a sort of least-square method:

Let
$$A = \frac{d}{dx}$$
 and $A^t = -\frac{d}{dx}$; then u minimizes $||w' - f||$ if

$$u' = Au = f \iff A^t Au = A^t f \iff -u'' = -f$$
, the continuous form.

While multiplying u' = Au = f by v and integrating over (0,1) we have

$$\int_0^1 U'v'dx = \int_0^1 fv'dx \quad \text{(Weak form)},$$

where we replaced u' by U'.

For the time-dependent convection problem, the oriented time-space element are used:

$$\dot{u} + \beta u' - \varepsilon u'' = f.$$

Set U(x,t) such that U is piecewise linear in x and piecewise constant in the $(\beta,1)$ -direction. Combine with SDM and add up some artificial viscosity, $\hat{\varepsilon}$, depending on the residual term to get for each time interval I_n :

$$\int_{I_n} \int_{\Omega} \left[(\dot{U} + \beta U) \left(v + \frac{\beta}{2} h \dot{v} \right) + \hat{\varepsilon} \ U' v' \right] dx dt = \int_{I_n} \int_{\Omega} f \left(v + \frac{\beta}{2} h v' \right) dx dt. \quad \Box$$