Chapter 21. The power of abstraction

In chapter 8, we proved under certain assumptions the following:

Boundary value problem (BVP) \Leftrightarrow Variational formulation (VF) \Leftrightarrow Minimization problem (MP),

(BVP):
$$\begin{cases} -(a(x)u'(x))' = f(x) & 0 < x < 1 \\ u(0) = u(1) = 0 \end{cases}$$

(VF): Find u(x), with u(0) = u(1) = 0, such that

$$\int_0^1 u'(x)v'(x)dx = \int_0^1 f(x)v(x)dx, \quad \forall v \in H_0^1, \quad \text{where}$$

$$H_0^1 = \left\{ v : \int_0^1 \left(v(x)^2 + v'(x)^2 \right) dx < \infty, \quad v(0) = v(1) = 0 \right\}$$

(MP): Find u(x), with u(0) = u(1) = 0, such that u(x) minimizes the functional F given by

$$F(v) = \frac{1}{2} \int_0^1 v'(x)^2 dx - \int_0^1 f(x)v(x) dx$$

We can actually take instead of H_0^1 , the space

$$\mathcal{H}_0^1 = \left\{ f : [0, 1] \to \mathbb{R} : \int_0^1 f'(x)^2 dx < \infty, \land f(0) = f(1) = 0 \right\}.$$

Let now V be a vector space and define a bilinear form.

 $a(\cdot,\cdot):V\times V\to\mathbb{R}$, i.e. for $\alpha,\beta,x,y\in\mathbb{R}$ and $u,v,w\in V$, we have that

$$a(\alpha u + \beta v, w) = \alpha \cdot a(u, w) + \beta \cdot a(v, w)$$

$$a(u, xv + yw) = x \cdot a(u, v) + y \cdot a(u, w)$$

Ex. Let $V = \mathcal{H}_0^1$ and define

$$a(u,v) \equiv (u,v) \equiv \int_0^1 u'(x)v'(x)dx,$$

then (\cdot, \cdot) is symmetric, i.e. (u, v) = (v, u), bilinear (obvious), and positive definite in the sense that

$$(u, u) \ge 0$$
, and $(u, u) = 0 \Leftrightarrow u \equiv 0$.

Note that

$$(u, u) = \int_0^1 u'(x)^2 dx = 0 \Leftrightarrow u'(x) = 0,$$

thus u(x) is constant and since u(0) = u(1) = 0 we have $u(x) \equiv 0$.

Definition: A linear function $L:V\to\mathbb{R}$ is called a linear form on V: If

$$L(\alpha u + \beta v) = \alpha L(u) + \beta L(v)$$

Example. Let

$$L(v) = \int_0^1 fv dx, \forall v \in \mathcal{H}_0^1,$$

Then our (VF) can be restated as follows:

Find $u \in \mathcal{H}_0^1$ such that

$$(u, v) = L(v), \forall v \in \mathcal{H}_0^1$$

Generalizing the abstract problem:

Find $u \in V$, such that

$$a(u, v) = L(v), \forall v \in V.$$

Let now $\|\cdot\|_V$ be a norm corresponding to a scalar product $(\cdot, \cdot)_V$ defined on $V \times V$. Then assuming that $a(\cdot, \cdot)$ is *coercive* (*V-elliptic*), and $a(\cdot, \cdot)$ and $L(\cdot)$ are continuous: i.e., there are constants c_1, c_2 and c_2 such that:

- (1) $a(v,v) \ge c_1 ||v||_V^2, \quad \forall v \in V \quad \text{(coercivity)}$
- (2) $|a(u,v)| \le c_2 ||u||_V ||v||_V, \quad \forall u,v \in V \quad (a \text{ is continuous})$
- (3) $|L(v)| \le c_3 ||v||_V, \quad \forall v \in V \quad (L \text{ is continuous}).$

Note. Since L is linear, we have using the relation (3) above that

$$|L(u) - L(v)| = |L(u - v)| < c_3 ||u - v||_V$$

which shows that $L(u) \to L(v)$ as $u \to v$, in V. Thus L is continuous.

Similarly the assumption $|a(u, v)| \le c_1 ||u||_V ||v||_V$ implies that $a(\cdot, \cdot)$ is continuous in each variable.

Definition: The energy norm on V is defined by $||v||_a = \sqrt{a(v,v)}, v \in V$.

Recalling the relations (1) and (2) above, the energy norm satisfies

$$c_1 ||v||_V^2 \le a(v, v) = ||v||_a^2 \le c_2 ||v||_V^2.$$

Therefore the energy norm $||v||_a$ is equivalent to the abstract $||v||_V$ norm.

Example For the scalar product

$$u(u,v) = \int_0^1 u'(x)v'(x)dx$$
, in \mathcal{H}_0^1 ,

and the norm

$$||u|| = \sqrt{(u, u)},$$

the relations (1) and (2) are valid with $c_1=c_2\equiv 1$

- (1) $(v, v) = ||v||^2$ is an identity
- (2) $|(u,v)| \leq ||u|| ||v||$ is the Cauchy's inequality sketched below:

Proof of (2): Using the obvious inequality $2ab \le a^2 + b^2$, we have

$$2|(u, w)| \le ||u||^2 + ||w||^2.$$

We let $w = (u, v) \cdot v / ||v||^2$ then

$$2|(u,w)| = 2\left|\left(u,(u,v)\frac{v}{\|v\|^2}\right)\right| \le \|u\|^2 + |(u,v)|^2 \frac{\|v\|^2}{\|v\|^4}$$

Thus

$$2\frac{|(u,v)|^2}{\|v\|^2} \le \|u\|^2 + |(u,v)|^2 \frac{\|v\|^2}{\|v\|^4},$$

which multiplying by $||v||^2$, gives

$$2|(u,v)|^2 \le ||u||^2 \cdot ||v||^2 + |(u,v)|^2,$$

and hence

$$|(u,v)|^2 \le ||u||^2 \cdot ||v||^2$$

and the proof is complete. \Box

Definition: A *Hilbert space* is a *complete* linear space with a scalar product.

To define complete linear space we first need to define a *Cauchy sequence* of *real* or *complex* numbers.

Definition: A sequence $\{z_k\}_{k=1}^{\infty}$ is a Cauchy sequence if for every $\varepsilon > 0$, there is an integer N > 0, such that $m, n > N \Rightarrow |z_m - z_n| < \varepsilon$.

Theorem 1: Every Chaucy sequence in \mathbb{C} is convergent. More precisely: If $\{z_k\}_{k=1}^{\infty} \subset \mathbb{C}$ is a Cauchy sequence, then there is a $z \in \mathbb{C}$, such that for every $\epsilon > 0$, there is an integer M > 0, such that $m \geq M \Rightarrow |z_m - z| < \varepsilon$.

Definition: A linear space V (vector space) with the norm $\|\cdot\|$ is called *complete* if every Cauchy sequence in V is convergent. In other words: For every $\{v_k\}_{k=1}^{\infty}$ with the property that for every $\varepsilon > 0$ there is an integer N > 0, such that $m, n > N \Rightarrow \|v_m - v_n\| < \varepsilon$, (i.e. for every Cauchy sequence) there is a $v \in V$ such that for every $\varepsilon > 0$ there is an integer M > 0 such that $m \geq M \Rightarrow |v_m - v| < \varepsilon$.

Theorem 2: $\mathcal{H}_0^1 = \{f: [0,1] \to \mathbb{R}: \int_0^1 f'(x)^2 dx < \infty, \land f(0) = f(1) = 0\}$ is a complete Hilbert space with the norm

$$||u|| = \sqrt{(u,u)} = \left(\int_0^1 u'(x)^2 dx\right)^{1/2}.$$

Poincare's inequality in 1D-case: If u(0) = u(L) = 0 then

$$\int_0^L u(x)^2 dx \le C_L \cdot \int_0^L u'(x)^2 dx,$$

where C_L is a constant independent of u(x) but depends on L.

Proof: Using the Cauchy Schwarz inequality we have

$$u(x) = \int_0^x u'(y)dy \le \int_0^x |u'(y)|dy \le \int_0^L |u'(y)| \cdot 1dy$$

$$\le \left(\int_0^L u'(y)^2 dy\right)^{1/2} \left(\int_0^L 1^2 dy\right)^{1/2} = \sqrt{L} \left(\int_0^L u'(y)^2 dy\right)^{1/2}.$$

Thus

$$u(x)^2 \le L \int_0^L u'(y)^2 dy,$$

and hence

$$\int_0^L u(x)^2 dx \le L \int_0^L \left(\underbrace{\int_0^L u'(y)^2 dy}_{\text{independent of } x} \right) dx = L^2 \int_0^L u'(x)^2 dx \qquad \Box$$

Exercise: Show that Poincare's inequality is not valid for $0 < x < \infty$.

Linear functionals:

• We define a functional ℓ as a mapping from a (linear) function space V into \mathbb{R} , i.e.,

$$\ell: V \to \mathbb{R}$$
.

• A functional ℓ is called <u>linear</u> if

$$\ell(u+v) = \ell(u) + \ell(v)$$
 for all $u, v \in V$
 $\ell(\alpha u) = \alpha \cdot \ell(u)$ for all $u \in V$ and $\alpha \in \mathbb{R}$

• A functional is called <u>bounded</u> if there is a constant C such that

$$|\ell(u)| \le C \cdot ||u||$$
 for all $u \in V$ (C is independent of u)

Example 1: If $f \in L^2(0,1)$, i.e. $\int_0^1 f(x)^2 dx$ is bounded, then

$$\ell(v) = \int_0^1 u(x)v(x)dx$$

is a bounded linear functional.

Exercise: Show that ℓ , defined in Example 1 above is linear.

Exercise: Prove using Cauchy's and Poincare's inequalities that ℓ , defined as in Example 1, is bounded in \mathcal{H}_0^1 .

Recalling that $(u, v) = \int_0^1 u'(x)v'(x)dx$ and $\ell(v) = \int_0^1 u(x)v(x)dx$, we may redefine our variational formulation (VF) and minimization problem (MP), from chapter 8 as (V) and (M), respectively:

(V) Find $u \in \mathcal{H}_0^1$, such that $(u, v) = \ell(v)$ for all $v \in \mathcal{H}_0^1$

(M) Find
$$u \in \mathcal{H}_0^1$$
, such that $F(u) = \min_{v \in \mathcal{H}_0^1} F(v)$ with $F(v) = \frac{1}{2} ||v||^2 - \ell(v)$.

Now we can show that there exists (existence) a unique solution for (V) and (M).

First we note that there exists a real number σ such that $F(v) > \sigma$ for all $v \in \mathcal{H}_0^1$, (otherwise it is not possible to minimize F). Namely,

$$F(v) = \frac{1}{2} ||v||^2 - \ell(v) \ge \frac{1}{2} ||v||^2 - \gamma ||v||,$$

where γ is the constant bounding ℓ , i.e. $|\ell(v)| \leq \gamma ||v||$.

But since

$$0 \le \frac{1}{2}(\|v\| - \gamma)^2 = \frac{1}{2}\|v\|^2 - \gamma\|v\| + \frac{1}{2}\gamma^2,$$

we have that

$$\frac{1}{2} \|v\|^2 - \gamma \|v\| \ge -\frac{1}{2} \gamma^2.$$

Let now σ^* be the largest real number σ such that

(1) $F(v) > \sigma$ for all $v \in \mathcal{H}_0^1$.

Take now a sequence of functions $\{u_k\}_{k=0}^{\infty}$, such that

(2)
$$F(u_k) \to \sigma^*$$
.

and

To show that there <u>exists</u> (existence) a <u>unique solution</u> for (V) and (M) we need first to prove

- (i) It is always possible to find such a sequence $\{q_k\}_{k=0}^{\infty}$, such that $F(u_k) \to \sigma^{\bullet}$ (because \mathbb{R} is complete.)
- (ii) The parallelogram law (elementary linear algebra).

$$||a + b||^2 + ||a - b||^2 = 2||a||^2 + 2||b||^2.$$

Using (ii) and the linearity of ℓ we write

$$||u_k - u_j||^2 = 2||u_k||^2 + 2||u_j||^2 - ||u_k + u_j||^2 - 4\ell(u_k) - 4\ell(u_j) + 4\ell(u + v)$$

$$= 2||u_k||^2 - 4\ell(u_k) + 2||u_j||^2 - 4\ell(u_j) - ||u_k + u_j||^2 + 4\ell(u_k + u_j)$$

$$= 4F(u_k) + 4F(u_j) - 8F\left(\frac{u_k + u_j}{2}\right),$$

where we have used the definition of $F(v) = \frac{1}{2}||v||^2 - \ell(v)$ with $v = u_k$, u_j , and $v = (u_k + u_j)/2$, respectivey. In particular by linearity of ℓ :

$$-\|u_k + u_j\|^2 + 4\ell(u_k + u_j) = -4\left\|\frac{u_k + u_j}{2}\right\|^2 + 8\ell\left(\frac{u_k + u_j}{2}\right) = -8F\left(\frac{u_k + u_j}{2}\right).$$

Now since $F(u_k) \to \sigma^*$ and $F(u_i) \to \sigma^*$, then

$$||u_k - u_j||^2 \le 4F(u_k) + 4F(u_j) - 8\sigma^* \to 0$$
, as $k, j \to \infty$.

Thus we have shown that $\{u_k\}_{k=0}^{\infty}$ is a Cauchy sequence. Now since $\{u_k\} \subset \mathcal{H}_0^1$ and \mathcal{H}_0^1 is complete thus $\{u_k\}_{k=1}^{\infty}$ is convergent. Hence

$$\exists u, \text{ such that } u = \lim_{k \to \infty} u_k.$$

By the continuity of F we get that

(3)
$$\lim_{k \to \infty} F(u_k) = F(u).$$

By (2) and (3) $F(u) = \sigma^*$ and by (1) and the definition of σ^* we have

$$F(u) < F(v), \quad \forall v \in \mathcal{H}_0^1.$$

This in our minimization problem (M). And since (M) \Leftrightarrow (V) we conclude that:

there is a unique
$$u \in \mathcal{H}_0^1$$
, such that $\ell(v) = (u, v) \quad \forall v \in \mathcal{H}_0^1$.

Summing up we have proved that:

Every bounded linear functional can be represented as a scalar product with a given function \mathbf{u} . This \mathbf{u} is the unique solution for both (V) and (M).

Theorem. [Riesz representation theorem.]

If V is a Hilbert space with the scalar product (u, v) and norm $||u|| = \sqrt{\langle u, u \rangle}$, and $\ell(v)$ is a bounded linear functional on V, then there is a unique $u \in V$, such that $\ell(V) = (u, v)$, $\forall v \in V$.

Lax-Milgram theorem. [A general version of Riesz theorem]

Assume that $\ell(v)$ is bounded linear and a(u, v) is bilinear bounded and elliptic in V, then there is a unique $u \in V$, such that

$$a(u, v) = \ell(v), \quad \forall v \in V.$$

Recall that:

Bilinear means that a(u, v) satisfies the same properties as a scalar product, however it need NOT! to be symmetric.

Bounded means that:

$$|a(u, v) \le \beta ||u|| ||v||$$
, for some constant $\beta > 0$.

Elliptic means that:

$$a(v, v) \ge \alpha ||v||^2$$
, for some $\alpha > 0$.

Note

If
$$a(u, v) = (u, v)$$
, then $\alpha = \beta = 1$.