Chapter 21. The power of abstraction
In chapter 8, we proved under certain assumptions the following:

Boundary value problem (BVP)< Variational formulation (VF)< Minimization
problem (MP),

(BVP):

(VF): Find u(z), with »(0) = u(1) = 0, such that
1 1
/ u'(z)v' (x)dx = / f(z)v(x)dr, Yv € Hy, where
0 0

H, = {v : /01 (U(a:)2 + v'(x)Q) dr < oo, v(0)=wv(l)= 0}

(MP): Find u(z), with u(0) = u(1) = 0, such that u(z) minimizes the functional
F given by

1 1
Fv) = 5/ V' (z)?dx —/ f(z)v(x)dz
0 0
We can actually take instead of H, the space
1
Hy={7:00,1] > R / F'(@)dz < o0, A(0) = F(1) = 0}.
0

Let now V' be a vector space and define a bilinear form.

a(+,-): VxV =R, ie. for a,,z,y € R and u,v,w € V, we have that

alau + fv,w) = a-alu,w) + B - alv,w)

a(u,zv + yw) =z - a(u,v) + y - a(u, w)
Ex. Let V = H} and define

1
a(u,v) = (u,v) = / o' (z)v'(x)dz,
0
then (-, ) is symmetric, i.e. (u,v) = (v, u), bilinear (obvious), and positive definite
in the sense that

(u,u) >0, and (u,u) =0« u=0.
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Note that .
(u,u) = / u'(r)’de =0 < u'(z) =0,
0
thus u(z) is constant and since u(0) = u(1) = 0 we have u(z) = 0.

Definition: A linear function L : V — R is called a linear form on V: If

L(au + Bv) = aL(u) + BL(v)

Example. Let
1
L(v) = / fodz, Vv € Hy,
0
Then our (VF) can be restated as follows:

Find u € Hj such that
(u,v) = L(v),Yv € Hj.

Generalizing the abstract problem:

Find u € V, such that
a(u,v) = L(v),Yv € V.

Let now || - ||y be a norm corresponding to a scalar product (-,-)y defined on
V' x V. Then assuming that a(-,-) is coercive ( V-elliptic), and a(-,-) and L(-)
are continuous: i.e., there are constants ci, co and ¢y, such that:

(1) a(v,v) > c|[v]l},, Vv €V  (coercivity)
(2) la(u,v)| < collullv||v]lv, Yu,v €V  (ais continuous)
(3) |L(v)| < ¢s||lv]ly, YveV (L is continuous).

Note. Since L is linear, we have using the relation (3) above that
|L(u) — L(v)| = |L(u — v)| < cslju = vllv,
which shows that L(u) — L(v) as wu— v, in V. Thus L is continuous.

Similarly the assumption |a(u,v)| < ¢i||ul|y||v||y implies that a(-, -) is continuous
in each variable.

Definition: The energy norm on V is defined by |[v||, = v/a(v,v), v € V.

Recalling the relations (1) and (2) above, the energy norm satisfies

la

allvlly < a(v,v) =g < callvlly-
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Therefore the energy norm ||v||, is equivalent to the abstract ||v||y; norm.

Example For the scalar product

(u, v) = /0 @) (@)de, i ML,

and the norm
lull = v/ (u,u),

the relations (1) and (2) are valid with ¢; = ¢ =1

(1) (v,v) = ||v||* is an identity

(2) [(u,v)| < ||ul|||v]| is the Cauchy’s inequality sketched below:

Proof of (2): Using the obvious inequality 2ab < a® + b?, we have
2|(u, w)| < flull® + [l

We let w = (u,v) - v/||v||* then

2|( _ 2 v < 2 2||/U||2
u,w)| - U, (U,U) ||U||2 — ||U|| + |(U,U)| ||U||4
Thus
|(u, ) ? 2 2 [lvll?
2 <
e S [[ull* + |(u, v)] T
which multiplying by ||v||?, gives

2|(u, ) < ull® - floll* + | (u, 0) 7,

and hence
[(u, ) |* < [l - [Jo]1?,

and the proof is complete. [

Definition: A Hilbert space is a complete linear space with a scalar product.

To define complete linear space we first need to define a Cauchy sequence of real

or compler numbers.

Definition: A sequence {z;}$, is a Cauchy sequence if for every ¢ > 0, there is

an integer N > 0, such that m,n > N = |z, — z,| < €.

Theorem 1: Every Chaucy sequence in C is convergent. More precisely: If
{zt}32; C C is a Cauchy sequence, then there is a z € C, such that for every

€ > 0, there is an integer M > 0, such that m > M = |z, — 2| < e.
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Definition: A linear space V (vector space) with the norm ||-|| is called complete
if every Cauchy sequence in V' is convergent. In other words: For every {v;}32,
with the property that for every ¢ > 0 there is an integer N > 0, such that
m,n > N = ||v,—v,|| < e, (i.e. for every Cauchy sequence) there isa v € V such
that for every ¢ > 0 there is an integer M > 0 such that m > M = |v,, —v| < &.

Theorem 2: Hj = {f : [0,1] = R: [} f'(z)’dz < oo, Af(0) = f(1) = 0} is a
complete Hilbert space with the norm

1 1/2
Jull = v = ([ weyar) ",
0
Poincare’s inequality in 1D-case: If u(0) = u(L) = 0 then

L L
/ u(z)?dr < Cp, - / u' () d,
0 0

where C7, is a constant independent of u(z) but depends on L.

Proof: Using the Cauchy Schwarz inequality we have
T T L
ue) = [ Wiy < [y < [ )y
0 0 0

< ([ wwra) ([ va)" = vi( [ wwra)

uuVSLéqmw%%

1/2
Thus

and hence

/OLu(x)Qd:C < L/0L< /OL o (y)dy )de = L2 /OLu'(ac)2d:C 0
o~ 7

independent of x

Exercise: Show that Poincare’s inequality is not valid for 0 < z < oo.
Linear functionals:
e We define a functional £ as a mapping from a (linear) function space V' into

R, i.e.,
0:V =R



e A funcitonal ¢ is called linear if

L(u~+v)=L(u)+ £L(v) forallu,veV
lou)=a-l(u) forallueV and a € R

e A functional is called bounded if there is a constant C such that

[l(u)] < C-|lu|]| forallueV (C isindependnet of u)

Example 1: If f € L?(0,1), i.e. fo x)?dz is bounded, then

is a bounded linear functional.
Exercise: Show that ¢, defined in Example 1 above is linear.

Exercise: Prove using Cauchy’s and Poincare’s inequalities that ¢, defined as in
Example 1, is bounded in H,.

Recalling that (u,v) fo r)dx and (v fo z)dz, we may re-
define our variational formula‘mon (VF) and m1n1m1zat10n problem (MP), from
chapter 8 as (V) and (M), respectively:

(V)  Find u € Hj, such that (u,v) = £(v) for all v € H,.

(M)  Find u € H, such that F(u) = min F(v) with F(v) = %||u||2 — tw).

vEH]

Now we can show that there exists (existence) a unique solution for (V) and (M).

First we note that there exists a real number o such that F'(v) > o for all v € Hj,
(otherwise it is not possible to minimize F'). Namely,

1 1
F(v) = Sllvll” = () > Sllvll* = vl
2 2
where 7 is the constant bounding ¢, i.e. [£(v)| < v|[v]|.

But since 1 1
(loll = 7)? = 5101l = Aol + 577

l\DlP—‘

we have that

I”

1 1
- — > ——n2,
ol = Allel] > =5



Let now o* be the largest real number o such that
(1) F()>o forallveH,.
Take now a sequence of functions {uy}32,, such that

2)  F(ug) — 0"

1
FH o)

and

To show that there exists (existence) a unique solution for (V) and (M) we need
first to prove

(1) It is always possible to find such a sequence {g;}72,, such that F'(u;) — o°
(because R is complete.)

(ii) The parallelogram law (elementary linear algebra).

la + bl + fla — blI* = 2[|al|* + 2{b]>

Using (ii) and the linearity of ¢ we write
llug = ujl” = 2flugll* + 2[lwi|* = [Jup + uyl” — 4€(ur) — 4€(u;) + 46(u +v)
= 92 — 40(ug) + 21| — 46(u5) — [l + 512 + 46y + ;)

= 4F (uy) + AF (u)) — 8F(“’“T+“J)
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where we have used the definition of F(v) = L|jv||* — £(v) with v = ug, u;, and
v = (uk, + u;)/2, respectivey. In particular by linearity of ¢:

Uk + U, Uk + Usj
() = ()
+8 2 8 2

U + U
—ug + gl + 4 uy, + uy) ——4H T

Now since F'(ug) — o* and F(u;) — o*, then
llur — u;l|* < 4F (ug) +4F (u;) —80* =0, as k,j — oo.

Thus we have shown that {u;}32, is a Cauchy sequence. Now since {uy} C Hj
and Hj is complete thus {u}?°, is convergent. Hence

Ju, such that u = lim wuy.
k—o0

By the continuity of F' we get that
(3) limy_, o F(ug) = F(u).
By (2) and (3) F(u) = ¢* and by (1) and the definition of o* we have
F(u) < F(v), Vv € Hj.
This in our minimization problem (M). And since (M) < (V) we conclude that:

there is a unique u € H, , such that £(v) = (u,v) Yv € Hy. O

Summing up we have proved that:
Every bounded linear functional can be represented as a scalar product with
a given function u. This u is the unique solution for both (V) and (M).

Theorem. [Riesz representation theorem.]
If V is a Hilbert space with the scalar product (u,v) and norm ||u|| = \/(u, u),
and /(v) is a bounded linear functional on V', then there is a unique u € V,
such that ¢(V) = (u,v), YveV.

Lax-Milgram theorem. [A general version of Riesz theorem]
Assume that £(v) is bounded linear and a(u, v) is bilinear bounded and elliptic
in V, then there is a unique v € V, such that

a(u,v) =L(v), YveV.
Recall that:

Bilinear means that a(u,v) satisfies the same properties as a scalar product,
however it need NOT! to be symmetric.



Bounded means that:

la(u,v) < B||lull|||v]|l, for some constant 3 > 0.

Elliptic means that:
a(v,v) > al[v]|?>, for some a > 0.

Note
If a(u,v) = (u,v), then . = f = 1.



