Chapter 5. Polynomial Interpolation
(CDE pp. 43 - 58, 73 - 84)

Consider P%(a, b); the vector space of all polynomials of degree < ¢ on the interval
(a,b), and the basis functions 1, z,z?%, ..., z%.

Lagrange basis (Cardinal functions): This is the set of polynomials {);}{_, C
Pi(a,b) associated to the (¢ + 1) distinct points, ¢ = 2o < 21 < ... <z, =0, in
(a,b) and determined by the requirement that A;(z;) = 1if i = j and 0 otherwise,
i.e,

(x —zo)(z—z1) ... (x —@im1) (@ — Tig1) - . - (T — 24)

Ailz) = , x € (a,b).
( ) (,’,Ez—l‘o)(.’l,'z—.’ﬂl)(.’Ez—l‘z_l)(l‘z—xz_i_l)(xz_xq) ( )
Note that Ai(z) = H (a: B ) does not contain the singular factor i ,
J#
and
ngfe
)\z(x ) — (.TJ - 370)(37j - -Tl) (.’L‘] — .Ti_l)(.TJ — .1314_1) . (3;] — g;q) _ 52
’ (.’L‘Z N .To)(iL‘z o xl) ':EZ T ‘ri—l)(xz - xz—l—ll- . (xz - .’L‘q) J

Thus fori = 1,2,...,q, the \;(z) are polynomials of degree ¢, on (a, b), satisfying

1 1=y
0 else

Ai(zj) = bij = {

Ex. Let ¢ =2, then we have a =y < 1 < x9 = b, and for instance

(z9 — m0) (w2 — T9)

(z1 — m0) (71 — T2) =0

i=1,=2= 613 =Ai(x2) =

(z1 — 20) (71 — T9)

(z1 — 20) (71 — T2) =t

i:j:1:>511:)\1($1):

A polynomial p € P%(a,b) that has the values p; = p(z;) at the nodes xi; for
1=20,1,...,q, can be expressed in terms of the corresponding Lagrange basis as

p(x) = podo(z) + prAi(z) + ... + peAg ().
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Note that p(x;) = poAo(z;) + 1A (@) + ... pidi(xi) + ... + pgAg(2;), and since

1 i=j

0 else ° thus p(z;) = pi

Ai(z;) = {
We may construct Lagrange basis for arbitrary subintervals (&, &) C (a,b), as

well:

Ex. )/ (& — &)

a g g, b

Linear Lagrange basis functions, ¢ =1

Let us also recall the Taylor polynomial of degree ¢ for the function u(z) about
Zg-

f(@) =Ty f(z0) + Ryf(20),

where
T, (@) = £(a0) + £/20)(@ = a0) + 3£ (a0)(w = a0 + ..+ /Do)l = o),

is the Taylor interpolation polynomial of degree ¢, approximating the function
f(z) about z = xy and

ﬁf@ &) (z - xo)QH,

where £ is a point between xy and z, is the remainder term.

qu(x) =

Correspondingly, we may define the Lagrange interpolation polynomial 7, f with
7f € P(a,b), where f(zx) is continuous on [a, b]. Choose distinct interpolation
nodes

a<& <& <...<E<b,



then 7, f € P%(a,b) interpolates f(x) at the nodes &, i =0,...,q, if
mof (&) = f(&)

Now the Lagrange’s formula p(x) = poAo(z) + p1A1(z) + ... + pe Ay () for 7, f(x)
reads as follows:

mof (@) = f(&)Xo(2) + fF(EDM (D) + ...+ f(E) N (), a <z <b

Ex. For ¢ =1, and considering the whole interval we have only the nodes ¢ and b.

and \y(z) = %, thus

We recall that A\, (z) = Z —

T f(z) = f(a)Xa(z) + f(b)As().

TUF(X) = f(a) Aa () + F(b) A

The linear interpolant m f(z) of a function f(x)
Note that A\,(x) + Xp(z) = 1,Vz € [a, b].
Theorem 5.1; Interpolation errors

Taylor: |f(x) = Ty f (z0)| = Re(f) < ﬁ(x — x0)"* - | max FO ()|

The Taylor interplation error is of degree ¢ + 1 near x = xq

q
Lagrange: |f(z) — mf(z)] < e i D] Zll(ac — ;) - argggb |f(q+1)(x)|

The Lagrange interpolation error is of degree 1 at each of the
points xg, T1, ..., T4



Proof. (CDE pp.79 - 81)
The Taylor part is well known.

For the Lagrange interpolation error we note that at the nodes z; we have
f(z;) —mgf(z;)) =0, fori=0,1,...,q, thus
flz) —mgf(z) = (x — 2o)(x — 1) ... (x — 24)g(x) for some g(z),z € [a, b]
To determine g(z), we define a function ¢ and use the generalized Rolle’s theorem:
o(t) = () = mof(t) = (t = 20)(t = @) . (t — 2,)g(2)
Note that g(z) is independent of ¢! But ¢(¢) = 0 in the nodes, z;, i =0,...q as

well as on t = z, i.e. p(zg) = @(x1) = ... = ¢(xy) = ¢(z) = 0. Thus ¢(t) has
(g + 2) roots in the interval [a, b].

Using linear interpolation, we can derive the following interpolation error approx-
imating the derivative of f:

Theorem 5.2: Let § < x < &; then

PRY) PRy
@) = (mpypl < ST S e 1)

The proof is straightforward, and therefore omited.

Rolle’s theorem: If f(x) is a continuous function on the closed, finite interval
[a,b] and differentiable on the open interval (a,b), f(a) = f(b) = 0, then there
exists a point ¢ in the open interval (a, b) such that

=f(c)=0

f(b) = f(a)
b—a




Generalized Rolle’s theorem:

If a continuous function ¢(z) has (¢+2) roots, zg, 1, . .., Z4, , in a closed interval
[a,b], then there is a point £ in the interval generated by zg, 1, ..., %4, x, such
that @@ (£) = 0.

Differentiating p(t) = f(t) =7 f(t) — (t—z0)(t—21) ... (t—24)9(x), (¢+1) times
with respect to t gives

Pt = FUI() — 0~ (g +1Dlg(2)

because deg(m,f(z)) = q and (t — x)(t — x1) ... (t —zy) = 4T + at? + ..., (for
some constant «), and g(z) is independent, of ¢.

fa(g)

Thus 0 = @@+ (€) = flet)(€) — (¢ + 1)!g(x) and we have g(z) = Q1)

Hence the error in Lagrange interpolation is

q+1 4
E(x) = f(z) = mf(2) = q+1 () Hw—w

Definitions: We assume that f is a real valued function such that integrals as
well as the max on the left hand sides below are well-defined.

b 1
Lynorm [f@)ln = ( [ 17@lds)” 1<p<o0

Lo-norm || f(2)||zeo(ap) = wnel[%?g] |f ()]

Vector norm: Let x = (1,-.-,Zn), ¥ = (Y1,---,Yn) € R* be two column,
vectors we define their scalar product by
<z,Yy>= XTy =21Y1 + -+ Tn¥Yn,

and the vector norm ||x|| as
el = Vim ol = ot 4122

Theorem 5.3. For ¢ = 1, i.e. only 2 interpolation nodes (the end-points of the
interval), there are interpolation constants, ¢;, independent of the function f(x)
and the interval (a, b) such that (CDE pp.79 - 84)
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(1) Nlmof = fllsecap) < ¢i(b— a)?||f"||Loc(ap)
(2) ||7Tlf - f||L°°(a,b) < Ci(b - a)“fI“L‘x’(a,b)
(3) 1(mf) = fllzeoqap) < ci(b = a)|[f" || zoo(a,p)

Proof:

g=1= m1f(x) is a linear function. Consider a single interval a < z < b. Every linear

function on [a, b] can be written as a linear combination of

Ao(2) and Ap(z), where A (z) = Z:Z and \y(z) = z: Z.
We have that A\,(z) + Ap(z) = 1.
y
L @D A=l by
A 4X) A ()
. . X
a b

Now 71 f(x) = f(a)Xa(z) + f(b)Xo(z).
By the Taylor’s expansion for f(a) and f(b) about = we can write
fla) = f(@) + (a —2)f'(z) + 3(a — 2)*f" (), N € la, 2]
F®) = f(z) + (b= 2)f'(z) + 5(b = 2)* f"(m),m € [, 0],
thus
mf (@) =[f(2) + (0 = 2)1'(@) + (0 = 2" () al2) +

HF@) + () (@) + 56— 2" ()Mo (2)



Rearranging the terms and using the fact that (a — x) A, (z) + (b — z)X\p(z) = 0
we get

m1f(@) = F@)a(z) + (@) + F@)](a — 2)ha(z) + 6~ ()}
+ 5@ = 2P P Aal@) + 5 (6~ 07 () of) =
= (@) + 5(a— 2" () hala) + 1, (b~ 27 ()Mo (x)
we conclude that
maf(@) — £(@)] = |5 (0~ 2 () ha(w) + 5 (6~ 22" (m)(2)],

but

iLa<z<b= (a—2)*<(a—0b)?
ii. A\g(z) <1 and M\p(z) <1 (according to the definition)

il f"(na) < [If"(@)l|zoo(@p) and £ (me) < || f" (@) oo (ap)
Thus

mf () = f(@)] < 5(a=0)" 1+ [f"(@)|e(apy + 3(@—0)* - L[| f"(2)]| oo (art)
and hence

mif(2) = f(@)] < (@ = 0)?If" (@)l zw(apy with ¢ =1. O

The other two are proved similary!

We generalize theorem 5.3 to an arbitrary number of interpolation internals 9sub-
divisions):

Theorem 5.4.

Let 0 = 29 < 21 < 23 < ... < z, < Ty = 1 be a partition of [0,1] and
h:‘$j+1_$j‘; j:O,l,...,n.

Let mpv(z) be the piecewise linear interpolation of v(x). Then there are interpo-
lation constants ¢; such that

(1) Imn = vllz, < cillh*"l,  p=1,2,...,00
(2) ()" = v'lle, < cill "L,
(3) lmnw = vlle, < cilli|l,

For p = oo this is just theorem 5.3, applied to each subinterval.
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Remark. For a uniform mesh we have h constant and therefore in this case h
can be written outside the norms above.

The proof is also a generalization of the proof of theorem 5.3.

Numerical integration methods
(CDE pp. 95 - 100)

We want to approximate the integral I = ff f(z)dz where, on each subinter-
val, we approximate f using piecewise polynomials of degree d. We denote the
approximate value by 1.

(1) Midpoint rule: (approximating f by constants on each subinterval)

Let a = 29 < 1,29 < ... < Ty < ZTpy1 = b be a uniform partition of [a, b] and
h=|zj41 —z;],7 =0,1,...,n. Then in the first interval and using the value of
f at the MIDPOINT we get

h

a+h=x1

(2) Trapezoidal rule: (approximating f by linear functions on each subinterval)

Analogously, this time using the values of f at the two end-points we are approx-
imating the integral by the area of the TRAPEZOIDAL domain in figur below
(for simplicity we have assumed f > 0).

fla)+ fla+h)

Mf@t+h) - @) _, |

I~I,=h-
1 fla) + 9 9




a ath
(3) Simpson’s rule: (approximating f by quadratic functions on each subinterval)

This corresponds to a quadrature rule based on piecewise quadratic interpolation
using the endpoints and midpoin of each sub-interval.

Let g(z) = Az + Bz + C, then I ~ I, = faa+h g(z)dz.

Since g interpolates f and the interpolation points are: (a, f(a)), (a+2%, f(a+2%))
and (a + h, f(a + h)), i.e. the graph of g passes through these 3 points and thus
their coordinates must satisfy in the equation for g(x). Hence we have

( f(a) = Aa®> + Ba +C

o

f(a-i-g) :A(a—i-g)Q-l-B(a-i-g)—i-C

\ f(a+h)=A(a+h)?+ Bla+h)+C.



To solve this equation system, we can use the matrix form

a? a 1 f(a)

h\ 2 h g h
(a+3) a+g e fa+3)
(a+h)? a+h 1 fla+h)

Remark. The rules (1), (2) and (3) use values of the function at equally spaced
points.

(4) Gauss quadrature rule. This is to choose the points of evolution in an optimal
manner, not at equally spaced points. We demonstrate this rule through an
example viz:

Problem: Choose the nodes z; € [a,b], and coefficients ¢;, 1 < ¢ < n mini-
mizing the error

b n
/ flz)dz — Z ¢; f(x;) for an arbitrary function f(z).
a i=1

Solution. There are 2n parameters consisting of n nodes z; and n coefficients c;.
Optimal choice of these parameters produces the quadrature rule which, exactly,
determines 2n parameters. Thus is ezact for polynomials of degree < 2n — 1.

Ex. Letn=2and [a,b] =[-1,1]
Then the coefficients are ¢; and ¢, and the nodes are x; and zs.

Thus 1
/ f(x)dr = c1f(x1) + cof (72),
—1

is exact for polynomials of degree < 3. The basis for polynomials of degree 3 are
1, z,2? and 3. Hence for all functions f of the form f(z) = Az®+ Bx*+ Cz+ D

the approximation above is indeed an equality. Thus to determine the coefficients
c1, ¢o and the nodes 1, x4, it suffices to use the above approximation as equality
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when f is replaced by the basis functions 1, z, 2% and z*:

1

/ ldz = c; + ¢ and we get [z]', =2 =c; + ¢

1
2

1 1
/xda::cl-acl—i-cQ-acQand [%} =0=c-T1+c-x
-1

1

x

/ 2?dz = ¢; - 23 + ¢o - 73 and [3] ———cl-xf%—cQ-x%

-1
4

1
T
/x3dx:cl-x?+02-xgand [Z] =0=c - :U?{-I—cQ-xg
1

Summing up:

Cc1+cCy = 2 cl = 1
01$1 —+ CQ.’EQ =0 . . . Co = 1
this 4 x 4 system of equations gives
clxl + czacQ % Y 4 & 1= _§
123 + cex3 =0 Ty = g

Thus the approximation

' V3 V3
fe)dr=cif(xy)+caf(ze)=fl —— )+ fl—
[ r@as e+ et = (- 2) + 1(%)
is exact for polynomials of degree < 3.
Ex. Let f(z) =32+ 2z +1

Then f_11(3x2 +2x + 1)dzr = [z + 2? + 2], = 4 and

(-5) 1) -sg-rferenden

| S

which is the exact solution of the integral.

Generalized Gauss quadrature. To generalize Gauss quadrature rule Legen-
dre polynomials are used:

Choose {P,}2°, such that

(1) For each n, P, is a polynomial of degree n.

(2) P, LPyiftm<ne [1 Py(z)Py(z)ds =0
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The Legendre polynomial formula:

dk
(L 1\k k(1 _ ok _ 2 _1\n
Py(z) = (-1) s (z"(1 — 2)*) or P,(z) 72"n!dx"(x 1)
ie. Po(x) =1 Pi(x)=1x Pyz)=32>—-45 Ps(z)=232"-3z

The roots of these polynomials are distinct, symmetric and correct choices as
quadrature points, i.e. they are giving the points z;,1 < 7 < n, as the roots of
the n-th Legendre polynomial. (py = 1 is an exception).

Ex. Roots to the Legendre polynoms is quadrature points:
Pi(x)=2=0
V3

Py(z) = §x2 5= 0 gives x19 = £—
(compare with the result above)

5, 3 3
P3(33) = 5,’1;3 — ix =0 gives r; = 0,293 = £ 5

n

1
Recall / f(z)dx ~ E ¢;f(z;) is exact for polynomials of degree < 2n — 1.
-1

=1

Theorem 5.5. (Not in CDE)

Suppose that z;,7 = 1,2,...,n, are roots of n-th Legendre polynomial P, and
that

1 n n
. r—; ) (l‘ —Zj ) . X
c; = — )dz, where ——= | is the Lagrange basis.
' /_ H <.Tz — T v H T; — T grang

n

1
If f(x) is a polynomial of degree < 2n, then / flx)dx = E cif(x;).
-1

=1

Proof: Consider a polynomial R(z) of degree < n. Rewrite R(z) as (n — 1)
Lagrange polynomials with nodes at the roots of the n-th Legendre polynomial
P,. This representation of R(z) is exact, since the error is

1

E(z) = E(x —21)(z — 23) ... (x — ,)R™(E), where R™(£) = 0.
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n

Further we have R(x Z H ( i ) x;), so that

-
[ o= [ [STT (=) mealur= [ [ T (5=5) ] e
JFi J#i

Moreover

(i) /1 R(z)dx = Z c;iR(x;)

Now consider a polynomial, P(z), of degree < 2n. Divide P(z) by the n-th
Legendre polynomial P,(z).

P(z) = Q(z) x Py(z) + R(z)
we have that

degP(z) < 2n, degQ(z) <n, degP,(xz)=mn, degr(z)<n.

/ d:r_/Q dx+/R

Since Q(z) L P,(z),VQ(x) with degree < n, then f Q(z)P,(z)dz = 0, and we

get ) )
/_1 P(z)dz :/_1 R(z)dx

Then z;’s are roots of P,(z) and thus P,(z;) = 0 and we can use (ii) to write

and

P(z;) = Q(z;) Py (x;) + R(x;) and we get P(x;) = R(z;)

Now we have / P(z)dzr = /_ R(z)dz = (i) = ZczR(xz) = ZciP x

-1 1

1 n
Summing up: / P(z)dz = ZCzP(%)
-1 i=1
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From Chapter 5 you at least need to know:

Lagrange interpolation

Taylor interpolation error
Lagrange interpolation error

Definitions: Lebesgue p-norms
Lebesgue max-norm

Theorem 5.3. Estimate of errors in lebesgue-norms w.r.t. Lagrange interpolation
Theorem 5.4. Estimate of errors in Lebesgue-norms w.r.t. piecewise linear Inter-
polation

Gauss quadrature rule
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