Chapter 5. Polynomial Interpolation

(CDE pp. 43 - 58, 73 - 84)

Consider $P^q(a, b)$; the vector space of all polynomials of degree $\leq q$ on the interval (a, b), and the basis functions $1, x, x^2, \ldots, x^q$.

Lagrange basis (Cardinal functions): This is the set of polynomials $\{\lambda_i\}_{i=0}^q \subset P^q(a,b)$ associated to the (q+1) distinct points, $a=x_0 < x_1 < \ldots < x_q = b$, in (a,b) and determined by the requirement that $\lambda_i(x_j)=1$ if i=j and 0 otherwise, i.e,

$$\lambda_i(x) = \frac{(x - x_0)(x - x_1) \dots (x - x_{i-1})(x - x_{i+1}) \dots (x - x_q)}{(x_i - x_0)(x_i - x_1) \dots (x_i - x_{i-1})(x_i - x_{i+1}) \dots (x_i - x_q)}, \quad x \in (a, b).$$

Note that $\lambda_i(x) = \prod_{j \neq i} \left(\frac{x - x_j}{x_i - x_j} \right)$ does not contain the singular factor $\frac{x - x_i}{x_i - x_i}$, and

$$\lambda_i(x_j) = \underbrace{\frac{(x_j - x_0)(x_j - x_1) \dots (x_j - x_{i-1})(x_j - x_{i+1}) \dots (x_j - x_q)}{(x_i - x_0)(x_i - x_1) \dots (x_i - x_{i-1})(x_i - x_{i+1}) \dots (x_i - x_q)}}_{\text{note}} = \delta_{ij}.$$

Thus for i = 1, 2, ..., q, the $\lambda_i(x)$ are polynomials of degree q, on (a, b), satisfying

$$\lambda_i(x_j) = \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & \text{else} \end{cases}$$

Ex. Let q = 2, then we have $a = x_0 < x_1 < x_2 = b$, and for instance

$$i = 1, j = 2 \Rightarrow \delta_{12} = \lambda_1(x_2) = \frac{(x_2 - x_0)(x_2 - x_2)}{(x_1 - x_0)(x_1 - x_2)} = 0$$

$$i = j = 1 \Rightarrow \delta_{11} = \lambda_1(x_1) = \frac{(x_1 - x_0)(x_1 - x_2)}{(x_1 - x_0)(x_1 - x_2)} = 1.$$

A polynomial $p \in P^q(a, b)$ that has the values $p_i = p(x_i)$ at the nodes xi_i for $i = 0, 1, \ldots, q$, can be expressed in terms of the corresponding Lagrange basis as

$$p(x) = p_0 \lambda_0(x) + p_1 \lambda_1(x) + \ldots + p_q \lambda_q(x).$$

Note that $p(x_i) = p_0 \lambda_0(x_i) + p_1 \lambda_1(x_i) + \dots + p_i \lambda_i(x_i) + \dots + p_q \lambda_q(x_i)$, and since

$$\lambda_i(x_j) = \begin{cases} 1 & i = j \\ 0 & \text{else} \end{cases}$$
, thus $p(x_i) = p_i$

We may construct Lagrange basis for arbitrary subintervals $(\xi_0, \xi_1) \subset (a, b)$, as well:

Ex. If q = 1, we have $\lambda_0(x) = (x - \xi_1)/(\xi_0 - \xi_1)$ and $\lambda_1(x) = (x - \xi_0)/(\xi_1 - \xi_0)$ $\lambda_0(x)$ $\lambda_1(x)$ $\lambda_1(x)$ $\lambda_1(x)$

Linear Lagrange basis functions, q = 1

Let us also recall the Taylor polynomial of degree q for the function u(x) about x_0 .

$$f(x) = T_q f(x_0) + R_q f(x_0),$$

where

$$T_q f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2} f''(x_0)(x - x_0)^2 + \ldots + \frac{1}{q!} f^{(q)}(x_0)(x - x_0)^q,$$

is the Taylor interpolation polynomial of degree q, approximating the function f(x) about $x = x_0$ and

$$R_q f(x) = \frac{1}{(q+1)!} f^{(q)}(\xi) (x - x_0)^{q+1},$$

where ξ is a point between x_0 and x, is the remainder term.

Correspondingly, we may define the Lagrange interpolation polynomial $\pi_q f$ with $\pi_q f \in P^q(a,b)$, where f(x) is continuous on [a,b]. Choose distinct interpolation nodes

$$a \leq \xi_0 < \xi_1 < \ldots < \xi_q \leq b,$$

then $\pi_q f \in P^q(a, b)$ interpolates f(x) at the nodes ξ_i , $i = 0, \ldots, q$, if $\pi_q f(\xi_i) = f(\xi_i)$.

Now the Lagrange's formula $p(x) = p_0 \lambda_0(x) + p_1 \lambda_1(x) + \ldots + p_q \lambda_q(x)$ for $\pi_q f(x)$ reads as follows:

$$\pi_q f(x) = f(\xi_0) \lambda_0(x) + f(\xi_1) \lambda_1(x) + \ldots + f(\xi_q) \lambda_q(x), \quad a \le x \le b.$$

Ex. For q = 1, and considering the whole interval we have only the nodes a and b. We recall that $\lambda_a(x) = \frac{x-b}{a-b}$ and $\lambda_b(x) = \frac{x-a}{b-a}$, thus

$$\pi_1 f(x) = f(a)\lambda_a(x) + f(b)\lambda_b(x).$$

The linear interpolant $\pi_1 f(x)$ of a function f(x)

Note that $\lambda_a(x) + \lambda_b(x) = 1, \forall x \in [a, b].$

Theorem 5.1; Interpolation errors

Taylor:
$$|f(x) - T_q f(x_0)| = R_q(f) \le \frac{1}{(q+1)!} (x - x_0)^{q+1} \cdot |\max_{x \in [a,b]} f^{(q+1)}(x)|$$

The Taylor interplation error is of degree q+1 near $x=x_0$

Lagrange:
$$|f(x) - \pi_q f(x)| \le \frac{1}{(q+1)!} \prod_{i=0}^q (x - x_i) \cdot \max_{a \le x \le b} |f^{(q+1)}(x)|$$

The Lagrange interpolation error is of degree 1 at each of the points x_0, x_1, \ldots, x_q .

Proof. (CDE pp.79 - 81)

The Taylor part is well known.

For the Lagrange interpolation error we note that at the nodes x_i we have

$$f(x_i) - \pi_q f(x_i) = 0$$
, for $i = 0, 1, ..., q$, thus

$$f(x) - \pi_q f(x) = (x - x_0)(x - x_1) \dots (x - x_q)g(x)$$
 for some $g(x), x \in [a, b]$

To determine g(x), we define a function φ and use the generalized Rolle's theorem:

$$\varphi(t) := f(t) - \pi_q f(t) - (t - x_0)(t - x_1) \dots (t - x_q)g(x)$$

Note that g(x) is independent of t! But $\varphi(t) = 0$ in the nodes, x_i , $i = 0, \ldots q$ as well as on t = x, i.e. $\varphi(x_0) = \varphi(x_1) = \ldots = \varphi(x_q) = \varphi(x) = 0$. Thus $\varphi(t)$ has (q+2) roots in the interval [a,b].

Using linear interpolation, we can derive the following interpolation error approximating the derivative of f:

Theorem 5.2: Let $\xi_0 \leq x \leq \xi_1$ then

$$|f'(x) - (\pi_1 f)'f| \le \frac{(x - \xi_0)^2 + (x - \xi_1)^2}{2(\xi_1 - \xi_0)} \max_{[a,b]} |f''|.$$

The proof is straightforward, and therefore omited.

Rolle's theorem: If f(x) is a continuous function on the closed, finite interval [a, b] and differentiable on the open interval (a, b), f(a) = f(b) = 0, then there exists a point c in the open interval (a, b) such that

$$\frac{f(b) - f(a)}{b - a} = f'(c) = 0$$

Generalized Rolle's theorem:

If a continuous function $\varphi(x)$ has (q+2) roots, x_0, x_1, \ldots, x_q, x , in a closed interval [a, b], then there is a point ξ in the interval generated by x_0, x_1, \ldots, x_q, x , such that $\varphi^{(q+1)}(\xi) = 0$.

Differentiating $\varphi(t) = f(t) - \pi_q f(t) - (t - x_0)(t - x_1) \dots (t - x_q)g(x)$, (q+1) times with respect to t gives

$$\varphi^{(q+1)}(t) = f^{(q+1)}(t) - 0 - (q+1)!g(x)$$

because $deg(\pi_q f(x)) = q$ and $(t - x_0)(t - x_1) \dots (t - x_q) = t^{q+1} + \alpha t^q + \dots$, (for some constant α), and g(x) is independent of t.

Thus
$$0 = \varphi^{(q+1)}(\xi) = f^{(q+1)}(\xi) - (q+1)!g(x)$$
 and we have $g(x) = \frac{f^{(q+1)}(\xi)}{(q+1)!}$.

Hence the error in Lagrange interpolation is

$$E(x) = f(x) - \pi_q f(x) = \frac{f^{(q+1)}(\xi)}{(q+1)!} \prod_{i=0}^{q} (x - x_i)$$

Definitions: We assume that f is a real valued function such that integrals as well as the max on the left hand sides below are well-defined.

$$L_{p}$$
-norm $||f(x)||_{L^{p}(a,b)} = \left(\int_{a}^{b} |f(x)|^{p} dx\right)^{\frac{1}{p}} \quad 1 \le p < \infty$

$$L_{\infty}$$
-norm $||f(x)||_{L^{\infty}(a,b)} = \max_{x \in [a,b]} |f(x)|$

Vector norm: Let $\mathbf{x} = (x_1, \dots, x_n)$, $\mathbf{y} = (y_1, \dots, y_n) \in \mathbb{R}^n$ be two column, vectors we define their scalar product by

$$\langle x, y \rangle = \mathbf{x}^T \mathbf{y} = x_1 y_1 + \dots + x_n y_n,$$

and the vector norm $\|\mathbf{x}\|$ as

$$||x|| = \sqrt{\langle x, x \rangle} = \sqrt{x_1^2 + \dots + x_n^2}.$$

Theorem 5.3. For q = 1, i.e. only 2 interpolation nodes (the end-points of the interval), there are interpolation constants, c_i , independent of the function f(x) and the interval (a, b) such that (CDE pp.79 - 84)

(1)
$$\|\pi_1 f - f\|_{L^{\infty}(a,b)} \le c_i (b-a)^2 \|f''\|_{L^{\infty}(a,b)}$$

(2)
$$\|\pi_1 f - f\|_{L^{\infty}(a,b)} \le c_i (b-a) \|f'\|_{L^{\infty}(a,b)}$$

(3)
$$\|(\pi_1 f)' - f'\|_{L^{\infty}(a,b)} \le c_i(b-a)\|f''\|_{L^{\infty}(a,b)}$$

Proof:

 $\underline{q=1} \Rightarrow \pi_1 f(x)$ is a linear function. Consider a single interval $a \leq x \leq b$. Every linear function on [a,b] can be written as a linear combination of

$$\lambda_a(x)$$
 and $\lambda_b(x)$, where $\lambda_a(x) = \frac{x-b}{a-b}$ and $\lambda_b(x) = \frac{x-a}{b-a}$.

We have that $\lambda_a(x) + \lambda_b(x) = 1$.

Now $\pi_1 f(x) = f(a)\lambda_a(x) + f(b)\lambda_b(x)$.

By the Taylor's expansion for f(a) and f(b) about x we can write

$$f(a) = f(x) + (a-x)f'(x) + \frac{1}{2}(a-x)^2 f''(\eta_a), \eta_a \in [a, x]$$

$$f(b) = f(x) + (b-x)f'(x) + \frac{1}{2}(b-x)^2 f''(\eta_b), \eta_b \in [x, b],$$

thus

$$\pi_1 f(x) = [f(x) + (a - x)f'(x) + \frac{1}{2}(a - x)^2 f''(\eta_a)] \lambda_a(x) +$$

$$+ [f(x) + (b - x)f'(x) + \frac{1}{2}(b - x)^2 f''(\eta_b)] \lambda_b(x)$$

Rearranging the terms and using the fact that $(a-x)\lambda_a(x) + (b-x)\lambda_b(x) = 0$ we get

$$\pi_1 f(x) = f(x) [\lambda_a(x) + \lambda_b(x)] + f'(x) [(a-x)\lambda_a(x) + (b-x)\lambda_b(x)] + \frac{1}{2} (a-x)^2 f''(\eta_a) \lambda_a(x) + \frac{1}{2} (b-x)^2 f''(\eta_b) \lambda_b(x) =$$

$$= f(x) + \frac{1}{2} (a-x)^2 f''(\eta_a) \lambda_a(x) + \frac{1}{2} (b-x)^2 f''(\eta_b) \lambda_b(x)$$

we conclude that

$$|\pi_1 f(x) - f(x)| = |\frac{1}{2} (a - x)^2 f''(\eta_a) \lambda_a(x) + \frac{1}{2} (b - x)^2 f''(\eta_b) \lambda_b(x)|,$$

but

i.
$$a \le x \le b \Rightarrow (a - x)^2 \le (a - b)^2$$

ii.
$$\lambda_a(x) \leq 1$$
 and $\lambda_b(x) \leq 1$ (according to the definition)

iii.
$$f''(\eta_a) \leq ||f''(x)||_{L^{\infty}(a,b)}$$
 and $f''(\eta_b) \leq ||f''(x)||_{L^{\infty}(a,b)}$

Thus

$$|\pi_1 f(x) - f(x)| \le \frac{1}{2} (a - b)^2 \cdot 1 \cdot |f''(x)||_{L^{\infty}(a,b)} + \frac{1}{2} (a - b)^2 \cdot 1 \cdot ||f''(x)||_{L^{\infty}(a,b)}$$

and hence

$$|\pi_1 f(x) - f(x)| \le (a-b)^2 ||f''(x)||_{L^{\infty}(a,b)}$$
 with $c_i = 1$.

The other two are proved similary!

We generalize theorem 5.3 to an arbitrary number of interpolation internals 9subdivisions):

Theorem 5.4.

Let
$$0 = x_0 < x_1 < x_2 < \ldots < x_n < x_{n+1} = 1$$
 be a partition of $[0,1]$ and $h = |x_{i+1} - x_i|, j = 0, 1, \ldots, n$.

Let $\pi_h v(x)$ be the piecewise linear interpolation of v(x). Then there are interpolation constants c_i such that

(1)
$$\|\pi_h v - v\|_{L_p} \le c_i \|h^2 v''\|_{L_p} \qquad p = 1, 2, \dots, \infty$$

(2)
$$\|(\pi_h v)' - v'\|_{L_p} \le c_i \|hv''\|_{L_p}$$

(3)
$$\|\pi_h v - v\|_{L_p} \le c_i \|hv'\|_{L_p}$$

For $p = \infty$ this is just theorem 5.3, applied to each subinterval.

Remark. For a uniform mesh we have h constant and therefore in this case h can be written outside the norms above.

The proof is also a generalization of the proof of theorem 5.3.

Numerical integration methods

(CDE pp. 95 - 100)

We want to approximate the integral $I = \int_a^b f(x)dx$ where, on each subinterval, we approximate f using piecewise polynomials of degree d. We denote the approximate value by I_d .

(1) Midpoint rule: (approximating f by constants on each subinterval)

Let $a = x_0 < x_1, x_2 < \ldots < x_n < x_{n+1} = b$ be a uniform partition of [a, b] and $h = |x_{j+1} - x_j|, j = 0, 1, \ldots, n$. Then in the first interval and using the value of f at the MIDPOINT we get

$$I \sim I_0 = h \cdot f(a + \frac{h}{2}).$$

(2) Trapezoidal rule: (approximating f by linear functions on each subinterval)

Analogously, this time using the values of f at the two end-points we are approximating the integral by the area of the TRAPEZOIDAL domain in figur below (for simplicity we have assumed $f \geq 0$).

$$I \sim I_1 = h \cdot f(a) + \frac{h[f(a+h) - f(a)]}{2} = h \frac{f(a) + f(a+h)}{2}.$$

(3) Simpson's rule: (approximating f by quadratic functions on each subinterval)

This corresponds to a quadrature rule based on piecewise quadratic interpolation using the endpoints and midpoin of each sub-interval.

Let
$$g(x) = Ax^2 + Bx + C$$
, then $I \sim I_2 = \int_a^{a+h} g(x) dx$.

Since g interpolates f and the interpolation points are: $(a, f(a)), (a + \frac{h}{2}, f(a + \frac{h}{2}))$ and (a + h, f(a + h)), i.e. the graph of g passes through these 3 points and thus their coordinates must satisfy in the equation for g(x). Hence we have

$$\begin{cases} f(a) = Aa^2 + Ba + C \\ f\left(a + \frac{h}{2}\right) = A\left(a + \frac{h}{2}\right)^2 + B\left(a + \frac{h}{2}\right) + C \\ f(a+h) = A(a+h)^2 + B(a+h) + C. \end{cases}$$

To solve this equation system, we can use the matrix form

$$\begin{pmatrix} a^2 & a & 1 \\ \left(a + \frac{h}{2}\right)^2 & a + \frac{h}{2} & 1 \\ (a+h)^2 & a+h & 1 \end{pmatrix} \begin{pmatrix} A \\ B \\ C \end{pmatrix} = \begin{pmatrix} f(a) \\ f\left(a + \frac{h}{2}\right) \\ f(a+h) \end{pmatrix}.$$

Remark. The rules (1), (2) and (3) use values of the function at *equally spaced* points.

(4) Gauss quadrature rule. This is to choose the points of evolution in an optimal manner, not at equally spaced points. We demonstrate this rule through an example viz:

Problem: Choose the nodes $x_i \in [a, b]$, and coefficients c_i , $1 \le i \le n$ minimizing the error

$$\int_{a}^{b} f(x)dx - \sum_{i=1}^{n} c_{i}f(x_{i}) \text{ for an } arbitrary \text{ function } f(x).$$

Solution. There are 2n parameters consisting of n nodes x_i and n coefficients c_i . Optimal choice of these parameters produces the quadrature rule which, exactly, determines 2n parameters. Thus is exact for polynomials of degree $\leq 2n-1$.

Ex. Let n = 2 and [a, b] = [-1, 1]Then the coefficients are c_1 and c_2 and the nodes are x_1 and x_2 .

Thus

$$\int_{-1}^{1} f(x)dx \approx c_1 f(x_1) + c_2 f(x_2),$$

is exact for polynomials of degree ≤ 3 . The basis for polynomials of degree 3 are $1, x, x^2$ and x^3 . Hence for all functions f of the form $f(x) = Ax^3 + Bx^2 + Cx + D$ the approximation above is indeed an equality. Thus to determine the coefficients c_1 , c_2 and the nodes x_1 , x_2 , it suffices to use the above approximation as equality

when f is replaced by the basis functions $1, x, x^2$ and x^3 :

$$\int_{-1}^{1} 1 dx = c_1 + c_2 \text{ and we get } [x]_{-1}^{1} = 2 = c_1 + c_2$$

$$\int_{-1}^{1} x dx = c_1 \cdot x_1 + c_2 \cdot x_2 \text{ and } \left[\frac{x^2}{2}\right]_{-1}^{1} = 0 = c_1 \cdot x_1 + c_2 \cdot x_2$$

$$\int_{-1}^{1} x^2 dx = c_1 \cdot x_1^2 + c_2 \cdot x_2^2 \text{ and } \left[\frac{x^3}{3}\right]_{-1}^{1} = \frac{2}{3} = c_1 \cdot x_1^2 + c_2 \cdot x_2^2$$

$$\int_{-1}^{1} x^3 dx = c_1 \cdot x_1^3 + c_2 \cdot x_2^3 \text{ and } \left[\frac{x^4}{4}\right]_{-1}^{1} = 0 = c_1 \cdot x_1^3 + c_2 \cdot x_2^3$$

Summing up:

$$\begin{cases} c_1 + c_2 = 2 \\ c_1 x_1 + c_2 x_2 = 0 \\ c_1 x_1^2 + c_2 x_2^2 = \frac{2}{3} \\ c_1 x_1^3 + c_2 x_2^3 = 0 \end{cases}$$
 this 4×4 system of equations gives
$$\begin{cases} c_1 = 1 \\ c_2 = 1 \\ x_1 = -\frac{\sqrt{3}}{3} \\ x_2 = \frac{\sqrt{3}}{3} \end{cases}$$

Thus the approximation

$$\int_{-1}^{1} f(x)dx \approx c_1 f(x_1) + c_2 f(x_2) = f\left(-\frac{\sqrt{3}}{3}\right) + f\left(\frac{\sqrt{3}}{3}\right)$$

is exact for polynomials of degree ≤ 3 .

Ex. Let
$$f(x) = 3x^2 + 2x + 1$$

Then
$$\int_{-1}^{1} (3x^2 + 2x + 1) dx = [x^3 + x^2 + x]_{-1}^{1} = 4$$
 and

$$f\left(-\frac{\sqrt{3}}{3}\right) + f\left(\frac{\sqrt{3}}{3}\right) = 3 \cdot \frac{3}{9} - 2 \cdot \frac{\sqrt{3}}{3} + 1 + 3 \cdot \frac{3}{9} + 2 \cdot \frac{\sqrt{3}}{3} + 1 = 4,$$

which is the exact solution of the integral.

Generalized Gauss quadrature. To generalize Gauss quadrature rule Legendre polynomials are used:

Choose $\{P_n\}_{n=0}^{\infty}$ such that

- (1) For each n, P_n is a polynomial of degree n.
- (2) $P_n \perp P_m$ if $m < n \Leftrightarrow \int_{-1}^1 P_n(x) P_m(x) dx = 0$

The Legendre polynomial formula:

$$P_k(x) = (-1)^k \frac{d^k}{dx^k} (x^k (1-x)^k) \text{ or } P_n(x) = \frac{2}{2^n n! dx^n} (x^2 - 1)^n$$

i.e.
$$P_0(x) = 1$$
 $P_1(x) = x$ $P_2(x) = \frac{3}{2}x^2 - \frac{1}{2}$ $P_3(x) = \frac{5}{2}x^3 - \frac{3}{2}x$

The roots of these polynomials are distinct, symmetric and correct choices as quadrature points, i.e. they are giving the points $x_i, 1 \leq i \leq n$, as the roots of the n-th Legendre polynomial. $(p_0 = 1 \text{ is an exception})$.

Ex. Roots to the Legendre polynoms is quadrature points:

$$P_1(x) = x = 0$$

$$P_2(x) = \frac{3}{2}x^2 - \frac{1}{2} = 0 \text{ gives } x_{1,2} = \pm \frac{\sqrt{3}}{3}$$
(compare with the result above)

$$P_3(x) = \frac{5}{2}x^3 - \frac{3}{2}x = 0$$
 gives $x_1 = 0, x_{2,3} = \pm \sqrt{\frac{3}{5}}$

Recall $\int_{-1}^{1} f(x)dx \approx \sum_{i=1}^{n} c_i f(x_i)$ is exact for polynomials of degree $\leq 2n-1$.

Theorem 5.5. (Not in CDE)

Suppose that x_i , i = 1, 2, ..., n, are roots of n-th Legendre polynomial P_n and that

$$c_i = \int_{-1}^1 \prod_{\substack{j=1 \ j \neq i}}^n \left(\frac{x-x_j}{x_i-x_j}\right) dx$$
, where $\prod_{\substack{j=1 \ j \neq i}}^n \left(\frac{x-x_j}{x_i-x_j}\right)$ is the Lagrange basis.

If
$$f(x)$$
 is a polynomial of degree $< 2n$, then $\int_{-1}^{1} f(x) dx \equiv \sum_{i=1}^{n} c_i f(x_i)$.

Proof: Consider a polynomial R(x) of degree < n. Rewrite R(x) as (n-1) Lagrange polynomials with nodes at the roots of the n-th Legendre polynomial P_n . This representation of R(x) is exact, since the error is

$$E(x) = \frac{1}{n!}(x - x_1)(x - x_2)\dots(x - x_n)R^{(n)}(\xi), \quad \text{where } R^{(n)}(\xi) \equiv 0.$$

Further we have
$$R(x) = \sum_{i=1}^{n} \prod_{\substack{j=1 \ j \neq i}}^{n} \left(\frac{x - x_j}{x_i - x_j}\right) R(x_i)$$
, so that

$$\int_{-1}^{1} R(x)dx = \int_{-1}^{1} \left[\sum_{i=1}^{n} \prod_{\substack{j=1 \ j \neq i}}^{n} \left(\frac{x - x_{j}}{x_{i} - x_{j}} \right) R(x_{i}) \right] dx = \sum_{i=1}^{n} \left[\int_{-1}^{1} \prod_{\substack{j=1 \ j \neq i}}^{n} \left(\frac{x - x_{j}}{x_{i} - x_{j}} \right) dx \right] R(x_{i}).$$

Moreover

(i)
$$\int_{-1}^{1} R(x)dx = \sum_{i=1}^{n} c_i R(x_i)$$

Now consider a polynomial, P(x), of degree < 2n. Divide P(x) by the *n*-th Legendre polynomial $P_n(x)$.

$$P(x) = Q(x) \times P_n(x) + R(x)$$

we have that

$$\deg P(x) < 2n, \quad \deg Q(x) < n, \quad \deg P_n(x) = n, \quad \deg r(x) < n.$$

and

$$\int_{-1}^{1} P(x)dx = \int_{-1}^{1} Q(x)P_n(x)dx + \int_{-1}^{1} R(x)dx$$

Since $Q(x) \perp P_n(x), \forall Q(x)$ with degree < n, then $\int_{-1}^1 Q(x) P_n(x) dx = 0$, and we get

$$\int_{-1}^{1} P(x)dx = \int_{-1}^{1} R(x)dx$$

Then x_i 's are roots of $P_n(x)$ and thus $P_n(x_i) = 0$ and we can use (ii) to write

$$P(x_i) = Q(x_i)P_n(x_i) + R(x_i)$$
 and we get $P(x_i) = R(x_i)$

Now we have
$$\int_{-1}^{1} P(x)dx = \int_{-1}^{1} R(x)dx = (i) = \sum_{i=1}^{n} c_i R(x_i) = \sum_{i=1}^{n} c_i P(x_i).$$

Summing up:
$$\int_{-1}^{1} P(x)dx = \sum_{i=1}^{n} c_i P(x_i). \quad \Box$$

From Chapter 5 you at least need to know:

Lagrange interpolation

Taylor interpolation error Lagrange interpolation error

Definitions: Lebesgue p-norms

Lebesgue max-norm

Theorem 5.3. Estimate of errors in lebesgue-norms w.r.t. Lagrange interpolation

Theorem 5.4. Estimate of errors in Lebesgue-norms w.r.t. piecewise linear Inter-

polation

Gauss quadrature rule