Chapter 6. Galerkin's Method

Galerkin was born in 1871 in Russia. He began doing research in engineering
while he was in prison in 1906 - 1907 for his participation in the anti-tsarist
revolutionary movement. His method was introduced in a paper on elasticity
published in 1915. (CDE p. 127)

Galerkin’s method for solving a general differential equation is based on seeking

an approximate solution, which is

1. easy to differentiate and integrate

2. spanned by a set of nearly orthogonal basis functions in a finite-dimensional
space.
Approximate solution

Ex. Let u(t) be the solution to the ordinary differential equation given by u'(t) —
Au(t) = 0, and let U(t) be the approximate solution spanned by the basis func-
tions 1, ¢ and t2. Thus

Ut)y=A-1+B-t+C-t*and U'(t) = B+2C - t.
Inserting U(t) and U'(t) in the differential equation, we get

B+2C-t—XMA-14+B-t+C-t*) =0, and thus
—ACt + (2C — AB)t+ B— XA = 0.

This is a simple algebraic equation, however we need three different equations to
calculate A, B and C.

The Galerkin method using the Galerkin orthogonality property of the approxi-
mate solution U(t) avoids this complexity.

Galerkin’s method and orthogonal projection
Projection in R?:

Let u = (u1,us,u3) and assume that for some reasons we only have u; and us
available. Letting z = (1, Zo, 73) € R3,

the objective, then is to find U € {z : z3 = 0} such that (U — U) is as small as
possible.

For orthogonal projection; z-n =0, forall z € {x: z-n = 0,23 = 0}.
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Obviously in this case U = (u1, ug,0) and we have (U —U) L U.
Note! If u € R*,u = (u1, Uz, - - - , Un_1, Up), and

Uy = (U1, Uy e vy Uy U1 = 0, ..., u, = 0), then the Euclidian distance:

u—up| = /u2, +ud ,+...+u2—>0asm—n.
Nearly orthogonal basis functions

Definition: A set of functions or vectors V' build a linear space if
Yu,v € V and o € R, we have that

(i) v+aweV
(i) u+v=v+u
(iii) 3(—u) such that u + (—u) =0

Definition: W is a scalar product space if W is a linear space and

there is a real valued scalar product operator, < -,- >,
defined on W x W, such that that

(i) <wu,v>=<wv,u>, Vu,v € W (symmerty)
(i) <u+av,w>=<u,w>+a<v,w >,
Yu,v,w € W, a € R, (bilinearity)



Definition: A usual scalar product for two real valued functions u(x)
and v(z) is defined by

(u,v)y = /OTu(a:)U(x)d:r,

Definition: wu(z) and v(z) are orthogonal if (u,v) = 0.

Definition: A norm associated with this scalar product is defined by

lull = V/u,u) = (u,u)2 = (/OT \U(x)|2dx)%

and is called the Ly norm of u(x).

Note! The difference between a vector space and a function space in R?

Ex. Vector space Ex. Function space

Basis z = (1,0) and y = (0,1) f(t) =t and g(t) =3, € [0,1]
Norm |al| = (z,2)} = /aT+a3 | Jlull = (ww)? = ( / u(t) dt)”
(1), 9(t)) = [y F(£)g(t)dt

1 4
t 11 1
(@) = (1,0, (0.1) =1-0+0-1=0 | (1.8) = [ ¢-#ar =[] = #0
0 0
Then we can conclude that z L v, but ¢ and 2 are not orthogonal.

Here we recall one of the most useful inequalities, Cauchy-Schwartz inequality:

[(w, v)| < [lel] - [|o]]
Some usual spaces

a. v € C™ if v and all its partial derivatives of order < n are continuous.
Thus C? denotes the set of continuous functions

Ex. C*([0,T]) is the space of all functions having derivatives of order < k
to be continuous on [0, T].
Ex. Let x € Q C R";v(t,z) € C'(RT,C?*()), i.e.

ou 0*u

E and 8:16,8:16]

1,7 =1,...,n are continuous.



b. P?(a,b) = {The space of polynomials in x of degree < ¢,a < z < b}.
A possible basis for P/(0,1) would be {27/}_ = {1,z,2* 2%,... 27}
The dimension of P? is therefore g + 1.

Ex. The Taylor polynomial of degree g of a function u(x) at zo:

1 1
u(xg) + ' (o) (T — ) + §u"(a:0)(x — ) +...+ ED(q)u(a:O) (x — x0)?
Let V@(0,1) = { 2° ,2%2%,... 29} = {1,2,2%, ... ,27},0< 2 < 1 and

-
=1

Vi2(0,1) = {v: v € V@ (0) = v(1) = 0}, then V9 c V@ c P(0,1).
c. Legendre polynomials are given by

Y3 >

Pela) = (~)F (21— 2)") or Pyfa) = o (a? — 1)
Ex. Po(z) =1 Pi(z)=2 Py(z)= ;xQ - % Psy(z) = gx?’ - gx

d. Trigonometric polynomials.

T = {f(x) = i (ak cos (Q%Im) + P sin (Q%kx))}

k=0

e. Lagrange bases {\;}7_, € P%(a,b) associated to the distinct (¢ + 1) points
& <& <...< & in (a,b) determined by the requirement that A;(&;) =1
if i = 4, and 0 otherwise.

e
The polynomial p € P%(a,b) that has the value p; = p(&;) at the nodes
x=¢§& fori=0,1,...,q expressed in terms of the corresponding Lagrange

basis is given by
p(x) = poro(z) + prAi(z) + ... + pgAg(2).

Note! For every node z = ; we have associated a base function \;(z),i =
0,1,...,q, thus if p € P%(a,b), then we have ¢ + 1 nodes and (g + 1) basis
functions.

Ex. Linear Lagrange basis functions for ¢ = 1 are

Ao(7) = (x — &)/ (o — &) and Mi(z) = (z — &)/ (& — o)



a €o 3 b
f. Polynomial interpolant w,f € P9(a,b) of a continuous function f(z) on
a, b]:
Choose distinct interpolation nodes a =§, < & < ... <& =b.
nqf € P%(a,b) interpolates f(x) at the nodes {§;} fori=0,...,q.
Note! There are (¢ + 1) nodes for which m, f(&) = f(&).

Now Lagrange’s formula gives

Tof (@) = f(&o)Mo(2) + f(E) A (2) + ... + (f(€g) Ag(2) for a <z <b

f(x)




Ex. For ¢ = 1 there are (¢ + 1) = 2 nodes, f(a) and f(b), and 2 bases,
Xo(z), A1(z). We have & = a and & = b, then

z—0b T —a

Ai(z) = H g :2 gives A\o(z) = p— and A\ (z) = P and
J#i
we get the polynomial interpolant
x—b T —a

mf(@) = F@) ] + F(0);—

: Vh(q) = {v : v is continuous piecewise linear function on 7}, Vh(q) C P?0,1),
where Th : 0 = 29 < 71 < ... < Ty < Ty = 1,q = M + 1, with
h; = x; — x;_1, is a partition of (0,1) into (M + 1) subintervals.

y

Note! X;Lq): {v:ve OVh(q), v(0) = v(1) = 0}.
One usual basis for V}, is ¢,(z):

(
TS m <z <mip
T—Tp;—1

0 < T Tiy1 <X
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i. H°C C*(0,T)
o= {r 0+ 3|50 < oo}
k<s

Examples of IVP

(1) An initial value problem, (IVP), in population dynamics:

w(t)=X-u(t) 0<t<l1
where
u(0) = uyg
u(t) = % X is a positive constant.

This equation has the increasing, analytic solution u(t) = ug - e**, which
would blow up as t — 0o, (A > 0).

In general we have 4(t) = F(u,t), where u(t) € R" and t € R™, thus

[ w@) )

u(t) = tel?) = (u1(t),uz(t),. .. ,u,(t))" and F: R* x R* — R"

\ w(t) /

—Au(z) +ab-Vu(z)=f z€Q
(2) (PDE) , where
u(z) =0 x € 002

(., )

Ug,

ngg(u) = (bl,bg, A :bn)

\ to. )
(3) Heat equation with Neumann boundary condition:

(PDE) %:Au z e

3—220 x € 012



Numerical solutions of (IVP)

(a) A finite difference method.

Approximate with explicit forward Euler method.

u(tpy1)—u(ty) _ - u(tk)
- = 14 —ul(t
tet1—tg . where u(t) ~ u( k+1) u( k)

u(0) = uyg berr =

(1)

There are corresponding finite difference methods for PDE’s.

(b) Galerkin’s metod. A finite element method for approximating (IVP).

Let U(t) be an approximation of the real solution u(t) of the equation (1),
then

u(t) — A -u(t) =0 and

Ut)—X-U(t) #0

Definition: If U(t) is an approximation of u(t), then

RU@)=Ult)=X-U(t)
is called the residual error of U(t).
We have V(@ = {&, &t, 612, ... £t} and VO(Q) = {&t, &t2, ... 6

Multiply the equation (1) by a function v(t) € Vo(q) and integrate!
T T
/ o (B)o(t)dt = - / () -o(t)dt, Vo(t) € VO = {66,6F,... ,&,1), then
0 0
T
/ (W) = A u(®))w(B)dt = 0
0
Now we want to find an approximate solution U(t) in the trial space,
V(q) = {'SOaglta £2t2a ... 7£qtq}a£0 = U(O)agk S Ra 0 S k S q

Note! If v(t) € V@, then v(0) =& +0+...0=¢

If v(t) € V{2, then v(0)=0+0+...4+0=0



As above the residual R(U(t)) is orthogonal to the test function space,
V0 = {u(t) € V@ :0(0) = 0} = {&t,&t2, ..., &1},
Note!  V{? C V@ and R(U(t)) L v(t): Vo(t) € V.

In our case the real solution belongs to C((0,7)), or better to H® which is a
subspace of C((0,7)).

We look for a solution U(t) in a finite dimensional subspace e.g. V(9.

The approximate differential equation is now

Ut)y=X-U(t) 0<t<1

U(O) = Up

1. Multiply the differential equation by a function v(¢) from the test func-
tion space. Since R(U(t)) L v(t) and according to the definition we have
R(U(t)) =U(t) — A- U(t), thus

/0 Ut) = A-Ut)v(t)dt = /0 R(U®)v(t)dt = (R(U(t)),v(t)) =0, Vu(t) € V¥

Then the Galerkin method is formulated as follows:

Given u(t), find the approximate solution U(t) € V@, such that
1 1
2)... / R(U®))v(t)dt = / U'(t) = X-U(t))v(t)dt =0, Yo(t) € V@
0 0
2. U(t) = S F_, &tF, then Ut) = S k&Gt tandv;(t) =, =1,2,... ,q.

Since v(t) € V{7 we have v(t) = 0,v1(t) = t,va(t) = £2,... ,0,(t) = 11,
which inserting in (2) implies that

1 q q
/ (> k&t — Angtk) Hdt=0, j=1,2,...,q
0 k=1 k=0

This equation we can rewrite as

/1 (Eq:(kfkt’”“ — X &t* ) — A& -tj) dt =0
0

k=1
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Integrate! & and k are constants independent of ¢.

tk+1 tj+k+1

t=1 i+l qt= 0 b
= t
Zik k+j ]+k+1]t - 5" L:o ,en

;(k+ﬂ'_k+j+1)£’“:jﬁ'§o j=1,2,...,q

Ex.Let \=1,{=1and g =2

j=1

1 ! 2 1 1 1.5

- ' - =——-1 - 2 ==
(1+1 1+1+1)51+(2+1 2+1+1)52 111 glves6£1+1252 5
j=2

1 1 2 1 1

_ , _ 1 1,.3
(1+2 1+2+1)§1+<2+2 2+2+1)§ 2+1 gves §1+ 62 3

then we have the equation system

26, + 58, =6 o
, which gives §& =0.22... & =1.11...

Now let the approximate solution be U(t) =1+ 0,22-¢+ 1,11 -2 then
U(t) =0,22+2,22-t.
Note! The residual error, R(U(t)), of U(t) for this example is

RU@W) =U({)=A-Ut)=U(t) —U(t) = 0,22+ 2,22t — 1 — 0,22t — 1, 11#?,

R(U(t)) = —0,88+2-t—1,11-¢t—1,11-#* (We want R(U(t)) = 0).

k A

Ck+j k+j+1
because {t/ ;1-:1 does not form an orthogonal basis.

Hence aj;, = , although invertible, is ill-conditioned, mostly

Instead the use of Legendre OG-polynomials would make the problem well con-
ditoned.
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Heat equation. The finite element method
(CDE pp. 113-114)

. . . . . du
Heat equations are separated in a. stationary heat equations, u = a =0
. .. du
b. time dependent heat equation &4 = — # 0

dt
Ex. (PDE) Stationary (time independent) heat equation in 1D

Notation:

u(z) is the temperature z € (0, 1)

q(z) is the heat flux in the direction of the positive z-axis
f(z) is the heat source

)
a(x) is the heat conductivity coefficient

y

0 1
(i) Conservation of energy:
Note! In 1D case there is only one heat direction, along the z-axis!

Heat flux through end points z; and o, i.e. the heat produced in (z,z5) per
unit time:

q(z2) — q(z1) = /12 f(z)dz thus f(z) =q¢'(x) z€(0,1)...(1)

12



Fourier’s Law:

Heat flows from warm regions to cold is proportional to the temperature gradient
a(x), and is given by constitutive equation for heat flow.

q(z) = —a(z) - v'(x) then ¢'(z) = —(a(z) -v'(x))" ... (2)

(1) and (2) give (a(z) - v'(x))" = f(x), which is the stationary heat equation in
1D.

Ex. Time dependent heat equation in 1D.

. du
Energy balance 1 = €
y
-q(x,t) ------------------------------------- q(x+Ax,t)
: - X
X (X + AX)

The heat produced by the heat source along x axis and in an interial of length
Az is f(z) - Az.

The heeat flow through the end points z and (z + Az) is g(z + Az, t) — q(z,1).
Then - Az = f(z) - Az — [q(x + Az, t) — q(x, t)]

Divide by Az and let Ax — 0, then

but ¢'(z) = —(a(z) - v'(z))" and we have
w— (a(z)-u'(z)) = f(z) O0<z<1,

which is the time dependent heat eequation in the x-direction.
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The Galerkin method on the stationary heat equation in 1-D:
du

| = — — O

7

Let
i Th:0=129 <21 <...<zy < zpmy1 =1 be a partition of (0,1),h; =
Tj— Tj-1
ii. V2 = {v : v continuous, piecewise linear functions on T}, with v(0) = v(1) = 0}

iii. {¢;}}L, be bases functions for V,:

Now the Galerkin method for this equation is formulated as follows:

Find the approximate solution U(z) € V}? such that

3)... /0 (—U"(z) — f@))w(z)dz =0 Yo(z) €V}

14



Observe that if U(z) € V)2, then U(z)"” is either equal to zero or is not a well-
defined equation and the equation (3) does not make sense, unless f(z) = 0, but
then u(z) = 0 and we have the trivial case.

However, if we consider instead the equation after partial integration we get

_/o U"(x)v(x)dx = / U'(@)v'(z)dz — [U' (2)o()]s

0

and since v(0) = v(1) = 0 for v(z) € V} we get

—/01 U"(z)v(z)dx = /01 U'(z)v'(z)dz

Now for U(z),v(x) € V,,,U'(z) and v'(z) are well defined (except at the nodes)
and the equation (<)) has a meaning.

The Galerkin finite element method (FEM) is now reduced to:
(CDE pp. 115-120)

Find U(z) € V;? such that

4).. / U'(x dx—/ f(z)v(z)dz for all v(z) € V)

We shal determine &; = u(z;) the approzimate values of u(zx) at the node points,
.ZCJ'.

§1=U05.) |
§27U0) .
EJ+1:U )ﬁ+1
g =U(xj)

X3 X2 e

Then using bases functions ¢;(z), we may write

M
x):Z@--%( ) and U'(z Z@gp
j=1

15



Now we can write

(4).. /U' dx—/f o)z as

JZ:;@-/O v d:r—/ f(@)v(z)de Vo(z) e VP

Note! Since every v(z) € V) is a linear combination of the basis functions ¢;(z),
it suffices to try with v(z) = @x(z), for k =1,2,... , M.

That is to find ; (constants), 1 < j < M such that

M 1 1
(1).. Z (/ @ () - gpfc(x)dx) & = / f(@)pr(z)dz for k=1,2,... , M.
FEeIAL - g Jo -~ |
aj by,
Stiffness matrix Loud vector

The equation (V) we can rewrite as A¢ = b, where

(b ) (&)

bo &
A= {aj,k}%c:y b= and f =

\ b ) Sy

To calculate the stiffness matrix A we first determine ¢} (z):

( (
et oz <z < n T <z <
) — Tig1—% ! — 1
pilr) =\ BT mi<e <y, thenge) =1 —plo 2 <o <ap
0 else 0 else
\ \

16



X
Xj-2 |
N T ETETRETREP > TR TR RPN =
hJ ‘ hj+1
Stiffness matrix A:
For |i — j| > 1, we have aj; = fol ©5(z) - ¢ (z)dr = 0,
y

X

%-2 X-1 % Xj+1 Xj+2

since for |i — j| > 1 we have that ¢;(z) and ¢;(x) have non-overlapping supports.
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/Ii“ ( 1 ) 1 p Tit1 — X4 1
a.y. 1 — J—  —QaAr = — = —
h T; h’i—|—1 h‘i—l—l h2 h’i—|—1

i+1

1
hit1

Changing i to (i — 1), we get a;_1,; = —

To summarize, we have
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Thus by symmetry

EX 0|
“h mth T O 0
A= 0 0
: s

i 0 0 _ﬁﬁ hMl+1

With uniform mesh, i.e. h; = h we get A = + -

Here are some properties for the matrix A:

e A is a sparse, tridiagonal and symmetric matrix.

0
0

0
2 -1
-1 2

e This may be interpreted that the basis are “nearly” orthogonal.

Definition: The matrix A is positive definite if
M
Vne RM n#0,n"An >0 i.e. Zm-A-nj >0
2,7=1
Proposition: If the square matrix A is positive definite then

i. A7'3 “A is invertible”
ii. A& = b has a unique solution

Proof:
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(i) Suppose Ax = 0 then x” Ax = 0, but A is positive definite, then x = 0
and A has full Range and we can conclude that A is invertible.

(ii) Since A is invertible A¢ = b has a unique solution £ = A~'b O

However it is a bad idea to invert a matrix to solve the linear equation system.

2 -1 x
Corollary: For M =2. A = LU (2,y) = , then
-1 2 Y
2 -1 T 20 —y
UTAU = (,y) = (z,9) = 20" —wy —zy +2¢° =
-1 2 Y -z + 2y

=2’ +y’+2° 2oy +y =2 +y’ + (v —y)® >0,
then A is positive definite.
U'AU =0 onlyifz =y=01ie U=0.

Loud vector b:

1 ; o Tit1 R
0 z ) T i+1

i—1 i

Conclusion:

1. We need to approximate functions by polynomials agreeing with the func-
tional values at certain points (nodes): Interpolations. Chapter 5.

2. We need to integrate or approximate integrals over subintervals and then
sum: Gauss quadrature rules. Chapter 5.

3. We need to solve linear systems of equations.
Gauss - elimination, Gauss-Seidel, Gauss-Jacobi. Chapter 7.

From chapter 6 you at least need to know

Galerkin orthogonality
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Definition: Linear space
Scalar product space
Scalar product for functions
Ortogonal functions
Norm for functions
Residual error
Trial space
Test function space
Uniform mesh

Caucy-Schwartz inequality

Spaces C"(a, b), P¥(a,b), V@, Vo(q), Vh(q), V,S(q), W,gq_l)
Lagrange basis and polynom

Polynomial interpolant m, f

Formulation for the Galerkin method

Formulation for the Galerkin finite element method (FEM)
Basis ¢;(z) for V},

Calculate stiffness matrix and loud vector matrix
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