Chapter 6. Galerkin's Method

Galerkin was born in 1871 in Russia. He began doing research in engineering while he was in prison in 1906 - 1907 for his participation in the anti-tsarist revolutionary movement. His method was introduced in a paper on elasticity published in 1915. (CDE p. 127)

Galerkin's method for solving a general differential equation is based on seeking an approximate solution, which is

- 1. easy to differentiate and integrate
- 2. spanned by a set of nearly orthogonal basis functions in a finite-dimensional space.

Approximate solution

Ex. Let u(t) be the solution to the *ordinary* differential equation given by $u'(t) - \lambda u(t) = 0$, and let U(t) be the approximate solution spanned by the basis functions 1, t and t^2 . Thus

$$U(t) = A \cdot 1 + B \cdot t + C \cdot t^2$$
 and $U'(t) = B + 2C \cdot t$.

Inserting U(t) and U'(t) in the differential equation, we get

$$B + 2C \cdot t - \lambda(A \cdot 1 + B \cdot t + C \cdot t^2) = 0$$
, and thus $-\lambda C t^2 + (2C - \lambda B)t + B - \lambda A = 0$.

This is a simple algebraic equation, however we need three different equations to calculate A, B and C.

The Galerkin method using the *Galerkin orthogonality* property of the approximate solution U(t) avoids this complexity.

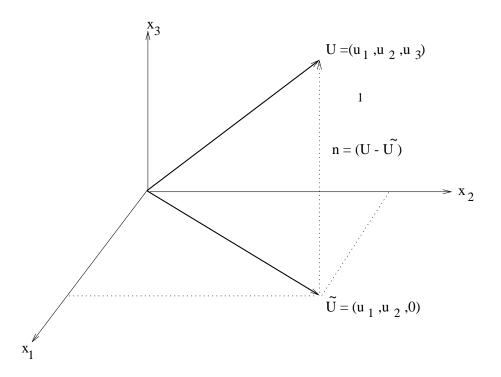
Galerkin's method and orthogonal projection

Projection in \mathbb{R}^2 :

Let $u = (u_1, u_2, u_3)$ and assume that for some reasons we only have u_1 and u_2 available. Letting $x = (x_1, x_2, x_3) \in \mathbb{R}^3$,

the objective, then is to find $\tilde{U} \in \{x : x_3 = 0\}$ such that $(U - \tilde{U})$ is as small as possible.

For orthogonal projection; $z \cdot n = 0$, for all $z \in \{x : x \cdot n = 0, x_3 = 0\}$.



Obviously in this case $\tilde{U} = (u_1, u_2, 0)$ and we have $(U - \tilde{U}) \perp \tilde{U}$.

Note! If $\mathbf{u} \in \mathbb{R}^n$, $\mathbf{u} = (u_1, u_2, \dots, u_{n-1}, u_n)$, and

 $\mathbf{u}_m = (u_1, u_2, \dots, u_m, u_{m+1} = 0, \dots, u_n = 0)$, then the Euclidian distance:

$$|\mathbf{u} - \mathbf{u}_m| = \sqrt{u_{m+1}^2 + u_{m+2}^2 + \dots + u_n^2} \to 0 \text{ as } m \to n.$$

Nearly orthogonal basis functions

<u>Definition:</u> A set of functions or vectors V build a *linear space* if $\forall u, v \in V$ and $\alpha \in \mathbb{R}$, we have that

- (i) $u + \alpha v \in V$
- (ii) u + v = v + u
- (iii) $\exists (-u)$ such that u + (-u) = 0

<u>Definition:</u> W is a scalar product space if W is a linear space and there is a real valued scalar product operator, $\langle \cdot, \cdot \rangle$, defined on $W \times W$, such that that

(i)
$$\langle u, v \rangle = \langle v, u \rangle$$
, $\forall u, v \in W$ (symmetry)

(ii)
$$\langle u + \alpha v, w \rangle = \langle u, w \rangle + \alpha \langle v, w \rangle,$$

 $\forall u, v, w \in W, \qquad \alpha \in \mathbb{R}, \quad \text{(bilinearity)}$

<u>Definition:</u> A usual scalar product for two real valued functions u(x) and v(x) is defined by

$$\langle u, v \rangle = \int_0^T u(x)v(x)dx,$$

<u>Definition:</u> u(x) and v(x) are orthogonal if $\langle u, v \rangle = 0$.

<u>Definition:</u> A norm associated with this scalar product is defined by

$$||u|| = \sqrt{\langle u, u \rangle} = \langle u, u \rangle^{\frac{1}{2}} = \left(\int_0^T |u(x)|^2 dx\right)^{\frac{1}{2}}$$

and is called the L_2 norm of u(x).

Note! The difference between a vector space and a function space in \mathbb{R}^2

Ex.	Vector space	Ex. Function space
Basis	x = (1,0) and $y = (0,1)$	$f(t) = t \text{ and } g(t) = t^2, t \in [0, 1]$
Norm	$ x = \langle x, x \rangle^{\frac{1}{2}} = \sqrt{x_1^2 + x_2^2}$	$ u = \langle u, u \rangle^{\frac{1}{2}} = \Big(\int_0^1 u(t) ^2 dt \Big)^{\frac{1}{2}}$
		$\langle f(t), g(t) \rangle = \int_0^1 f(t)g(t)dt$
$\langle x, y \rangle =$	$\langle (1,0), (0,1) \rangle = 1 \cdot 0 + 0 \cdot 1 = 0$	$\langle f(t), g(t) \rangle = \int_0^1 f(t)g(t)dt$ $\langle t, t^2 \rangle = \int_0^1 t \cdot t^2 dt = \left[\frac{t^4}{4}\right]_0^1 = \frac{1}{4} \neq 0$
Then	we can conclude that $x \perp y$,	but t and t^2 are not orthogonal.

Here we recall one of the most useful inequalities, Cauchy-Schwartz inequality:

$$|\langle u,v\rangle| \leq \|u\|\cdot\|v\|$$

Some usual spaces

a. $v \in \mathbb{C}^n$ if v and all its partial derivatives of order $\leq n$ are continuous.

Thus C^0 denotes the set of continuous functions

Ex. $C^k([0,T])$ is the space of all functions having derivatives of order $\leq k$ to be continuous on [0,T].

Ex. Let
$$x \in \Omega \subseteq \mathbb{R}^n$$
; $v(t,x) \in C^1(\mathbb{R}^+,C^2(\Omega))$, i.e.

$$\frac{\partial u}{\partial t}$$
 and $\frac{\partial^2 u}{\partial x_i \partial x_j}$ $i, j = 1, \dots, n$ are continuous.

b. $P^q(a, b) = \{ \text{The space of polynomials in } x \text{ of degree } \leq q, a \leq x \leq b \}.$ A possible basis for $P^q(0, 1)$ would be $\{x^j\}_{j=0}^q = \{1, x, x^2, x^3, \dots, x^q\}.$ The dimension of P^q is therefore q+1.

Ex. The Taylor polynomial of degree q of a function u(x) at x_0 :

$$u(x_0) + u'(x_0)(x - x_0) + \frac{1}{2}u''(x_0)(x - x_0)^2 + \ldots + \frac{1}{q!}D^{(q)}u(x_0)(x - x_0)^q$$

Let
$$V^{(q)}(0,1) = \{\underbrace{x^0}_{=1}, x^1, x^2, \dots, x^q\} = \{1, x, x^2, \dots, x^q\}, 0 \le x \le 1$$
 and

$$V_0^{(q)}(0,1) = \{v : v \in V^{(q)}, v(0) = v(1) = 0\}, \text{ then } V_0^{(q)} \subset V^{(q)} \subset P^q(0,1).$$

c. Legendre polynomials are given by

$$P_k(x) = (-1)^k \frac{d^k}{dx^k} (x^k (1-x)^k) \text{ or } P_n(x) = \frac{2}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n$$

Ex.
$$P_0(x) = 1$$
 $P_1(x) = x$ $P_2(x) = \frac{3}{2}x^2 - \frac{1}{2}$ $P_3(x) = \frac{5}{2}x^3 - \frac{3}{2}x$

d. Trigonometric polynomials.

$$T^{q} = \left\{ f(x) = \sum_{k=0}^{q} \left(a_{k} \cos \left(\frac{2\pi}{T} kx \right) + \beta_{k} \sin \left(\frac{2\pi}{T} kx \right) \right) \right\}$$

e. Lagrange bases $\{\lambda_i\}_{i=0}^q \in P^q(a,b)$ associated to the distinct (q+1) points $\xi_0 < \xi_1 < \ldots < \xi_q$ in (a,b) determined by the requirement that $\lambda_i(\xi_j) = 1$ if i=j, and 0 otherwise.

$$\lambda_i(x) = \prod_{k \neq i} \frac{x - \xi_k}{\xi_i - \xi_k}$$

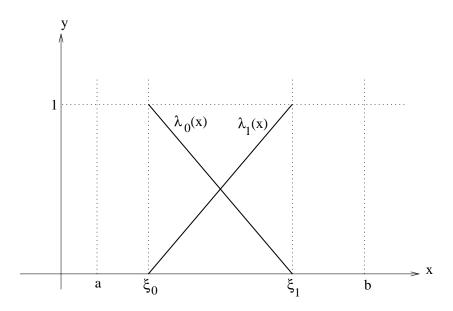
The polynomial $p \in P^q(a,b)$ that has the value $p_i = p(\xi_i)$ at the nodes $x = \xi_i$ for $i = 0, 1, \ldots, q$ expressed in terms of the corresponding Lagrange basis is given by

$$p(x) = p_0 \lambda_0(x) + p_1 \lambda_1(x) + \ldots + p_q \lambda_q(x).$$

Note! For every node $x = \xi_i$ we have associated a base function $\lambda_i(x)$, $i = 0, 1, \ldots, q$, thus if $p \in P^q(a, b)$, then we have q + 1 nodes and (q + 1) basis functions.

Ex. Linear Lagrange basis functions for q = 1 are

$$\lambda_0(x) = (x - \xi_1)/(\xi_0 - \xi_1)$$
 and $\lambda_1(x) = (x - \xi_0)/(\xi_1 - \xi_0)$



f. Polynomial interpolant $\pi_q f \in P^q(a,b)$ of a continuous function f(x) on [a,b]:

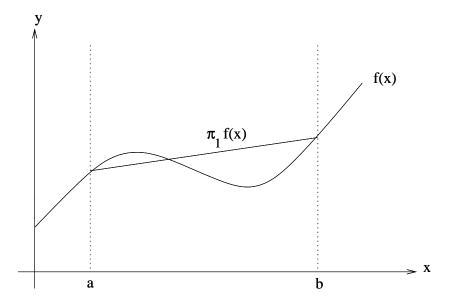
Choose distinct interpolation nodes $a = \xi_0 < \xi_1 < \ldots < \xi_q = b$.

 $\pi_q f \in P^q(a,b)$ interpolates f(x) at the nodes $\{\xi_i\}$ for $i=0,\ldots,q$.

Note! There are (q+1) nodes for which $\pi_q f(\xi_i) = f(\xi_i)$.

Now Lagrange's formula gives

$$\pi_q f(x) = f(\xi_0) \lambda_0(x) + f(\xi_1) \lambda_1(x) + \ldots + (f(\xi_q) \lambda_q(x)) \text{ for } a \le x \le b$$



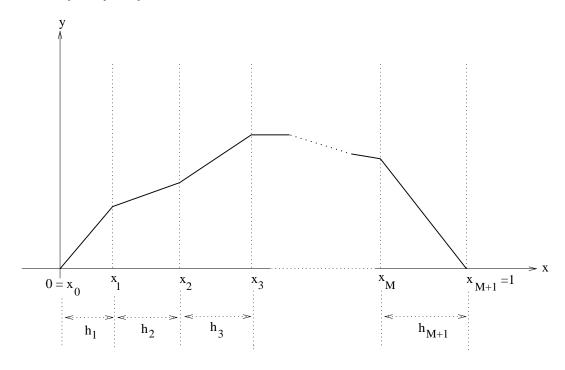
Ex. For q = 1 there are (q + 1) = 2 nodes, f(a) and f(b), and 2 bases, $\lambda_0(x), \lambda_1(x)$. We have $\xi_0 = a$ and $\xi_1 = b$, then

$$\lambda_i(x) = \prod_{j \neq i} \frac{x - \xi_j}{\xi_i - \xi_j}$$
 gives $\lambda_0(x) = \frac{x - b}{a - b}$ and $\lambda_1(x) = \frac{x - a}{b - a}$ and

we get the polynomial interpolant

$$\pi_1 f(x) = f(a) \frac{x-b}{a-b} + f(b) \frac{x-a}{b-a}$$

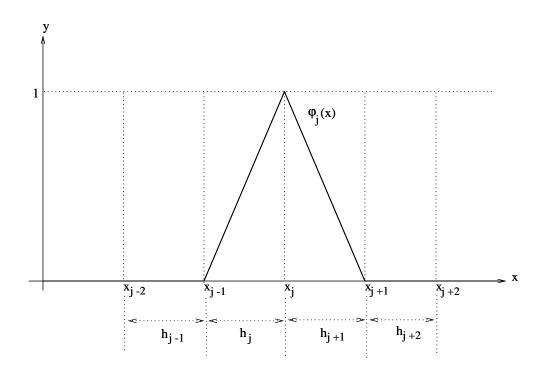
g. $V_h^{(q)} = \{v : v \text{ is continuous piecewise linear function on } T_h\}, V_h^{(q)} \subset P^q(0,1),$ where $Th: 0 = x_0 < x_1 < \ldots < x_M < x_{M+1} = 1, q = M+1,$ with $h_j = x_j - x_{j-1}$, is a partition of (0,1) into (M+1) subintervals.



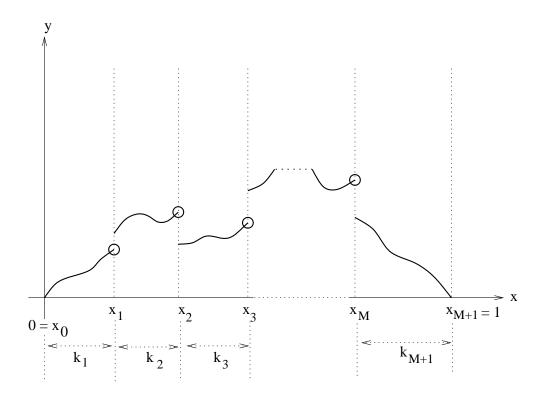
Note! $\overset{\circ}{V}_{h}^{(q)} = \{v : v \in \circ V_{h}^{(q)}, v(0) = v(1) = 0\}.$

One usual basis for V_h is $\varphi_j(x)$:

$$\varphi_i(x) = \begin{cases} \frac{x_{i+1} - x}{h_{i+1}} & x_i \le x \le x_{i+1} \\ \frac{x - x_{i-1}}{h_i} & x_{i-1} \le x \le x_i \\ 0 & x \le x_{i-1} & x_{i+1} \le x \end{cases}$$



h. $W_k^{(q-1)}\subset P^q(0,1)$ $W_k^{(q-1)}=\{w: w \text{ discontinuous piecewise polynoms of degree } (q-1) \text{ on } T_k\}.$



i. $H^s \subseteq C^s(0,T)$

$$H^{s} = \left\{ f : \|f\| + \sum_{k \le s} \left\| \frac{\partial^{k} f}{\partial t^{k}} \right\| < \infty \right\}$$

Examples of IVP

(1) An initial value problem, (IVP), in population dynamics:

$$\begin{cases} \dot{u}(t) = \lambda \cdot u(t) & 0 < t < 1 \\ u(0) = u_0 \end{cases}$$
 where

 $\dot{u}(t) = \frac{du}{dt}$, λ is a positive constant.

This equation has the increasing, analytic solution $u(t) = u_0 \cdot e^{\lambda \cdot t}$, which would blow up as $t \to \infty$, $(\lambda > 0)$.

In general we have $\dot{u}(t) = F(u, t)$, where $u(t) \in \mathbb{R}^n$ and $t \in \mathbb{R}^+$, thus

$$u(t) = \begin{pmatrix} u_1(t) \\ u_2(t) \\ \dots \\ u_n(t) \end{pmatrix} = (u_1(t), u_2(t), \dots, u_n(t))^T \text{ and } F : R^n \times R^+ \to R^n$$

(2) (PDE)
$$\begin{cases} -\Delta u(x) + ab \cdot \nabla u(x) = f & x \in \Omega \\ u(x) = 0 & x \in \partial \Omega \end{cases}$$
, where

$$b
abla_x(u) = (b_1, b_2, \dots, b_n) \left(egin{array}{c} u_{x_1} \\ u_{x_2} \\ \dots \\ u_{x_n} \end{array}
ight)$$

(3) Heat equation with Neumann boundary condition:

(PDE)
$$\begin{cases} \frac{\partial u}{\partial t} = \Delta u & x \in \Omega \\ \frac{\partial u}{\partial n} = 0 & x \in \partial \Omega \end{cases}$$

Numerical solutions of (IVP)

(a) A finite difference method.

Approximate with explicit forward Euler method.

(1)
$$\begin{cases} \frac{u(t_{k+1}) - u(t_k)}{t_{k+1} - t_k} = \lambda \cdot u(t_k) \\ u(0) = u_0 \end{cases}$$
, where $\dot{u}(t) \approx \frac{u(t_{k+1}) - u(t_k)}{t_{k+1} - t_k}$

There are corresponding finite difference methods for PDE's.

(b) Galerkin's metod. A finite element method for approximating (IVP). Let U(t) be an approximation of the real solution u(t) of the equation (1), then

$$\dot{u}(t) - \lambda \cdot u(t) = 0$$
 and

$$\dot{U}(t) - \lambda \cdot U(t) \neq 0$$

<u>Definition:</u> If U(t) is an approximation of u(t), then

$$R(U(t)) = \dot{U}(t) - \lambda \cdot U(t)$$

is called the residual error of U(t).

We have $V^{(q)} = \{\xi_0, \xi_1 t, \xi_2 t^2, \dots, \xi_q t^q\}$ and $V_0^{(q)} = \{\xi_1 t, \xi_2 t^2, \dots, \xi_q t^q\}$.

Multiply the equation (1) by a function $v(t) \in V_0^{(q)}$ and integrate!

$$\int_{0}^{T} u'(t)v(t)dt = \lambda \cdot \int_{0}^{T} u(t) \cdot v(t)dt, \quad \forall v(t) \in V_{0}^{(q)} = \{\xi_{1}t, \xi_{2}t^{2}, \dots, \xi_{q}t^{q}\}, \text{ then } \int_{0}^{T} (u'(t) - \lambda \cdot u(t))v(t)dt = 0$$

Now we want to find an approximate solution U(t) in the trial space,

$$V^{(q)} = \{\xi_0, \xi_1 t, \xi_2 t^2, \dots, \xi_q t^q\}, \xi_0 = v(0), \xi_k \in \mathbb{R}, 0 \le k \le q$$

Note! If
$$v(t) \in V^{(q)}$$
, then $v(0) = \xi_0 + 0 + \dots 0 = \xi_0$

If
$$v(t) \in V_0^{(q)}$$
, then $v(0) = 0 + 0 + \ldots + 0 = 0$

As above the residual R(U(t)) is orthogonal to the test function space,

$$V_0^{(q)} = \{v(t) \in V^{(q)} : v(0) = 0\} = \{\xi_1 t, \xi_2 t^2, \dots, \xi_q t^q\},\$$

Note! $V_0^{(q)} \subseteq V^{(q)}$ and $R(U(t)) \perp v(t); \forall v(t) \in V^{(q)}$.

In our case the real solution belongs to C((0,T)), or better to H^s which is a subspace of C((0,T)).

We look for a solution U(t) in a finite dimensional subspace e.g. $V^{(q)}$.

The approximate differential equation is now

$$\begin{cases} \dot{U}(t) = \lambda \cdot U(t) & 0 < t < 1 \\ U(0) = u_0 \end{cases}$$

1. Multiply the differential equation by a function v(t) from the test function space. Since $R(U(t)) \perp v(t)$ and according to the definition we have $R(U(t)) = \dot{U}(t) - \lambda \cdot U(t)$, thus

$$\int_{0}^{1} (\dot{U}(t) - \lambda \cdot U(t))v(t)dt = \int_{0}^{1} R(U(t))v(t)dt = \langle R(U(t)), v(t) \rangle = 0, \ \forall v(t) \in V_{0}^{(q)}$$

Then the Galerkin method is formulated as follows:

Given u(t), find the approximate solution $U(t) \in V^{(q)}$, such that

$$(2) \dots \int_0^1 R(U(t))v(t)dt = \int_0^1 (U'(t) - \lambda \cdot U(t))v(t)dt = 0, \ \forall v(t) \in V_0^{(q)}$$

2. If $U(t) = \sum_{k=0}^{q} \xi_k t^k$, then $\dot{U}(t) = \sum_{k=1}^{q} k \xi_k t^{k-1}$ and $v_j(t) = t^j, j = 1, 2, \dots, q$. Since $v(t) \in V_0^{(q)}$ we have $v_0(t) = 0, v_1(t) = t, v_2(t) = t^2, \dots, v_q(t) = t^q$, which inserting in (2) implies that

$$\int_0^1 \left(\sum_{k=1}^q k \xi_k t^{k-1} - \lambda \sum_{k=0}^q \xi_k t^k \right) \cdot t^j dt = 0, \quad j = 1, 2, \dots, q$$

This equation we can rewrite as

$$\int_{0}^{1} \left(\sum_{k=1}^{q} (k\xi_{k}t^{k+j-1} - \lambda \cdot \xi_{k}t^{k+j}) - \lambda \xi_{0} \cdot t^{j} \right) dt = 0$$

Integrate! ξ_k and k are constants independent of t.

$$\sum_{k=1}^{q} \xi_k \left[k \cdot \frac{t^{k+1}}{k+j} - \lambda \frac{t^{j+k+1}}{j+k+1} \right]_{t=0}^{t=1} - \left[\lambda \cdot \xi_0 \frac{t^{j+1}}{j+1} \right]_{t=0}^{t=1} = 0, \quad \text{then}$$

$$\sum_{k=1}^{q} \left(\frac{k}{k+j} - \frac{\lambda}{k+j+1} \right) \xi_k = \frac{\lambda}{j+1} \cdot \xi_0 \quad j = 1, 2, \dots, q$$

Ex. Let $\lambda = 1, \xi_0 = 1$ and q = 2

$$j=1$$

$$\left(\frac{1}{1+1} - \frac{1}{1+1+1}\right) \cdot \xi_1 + \left(\frac{2}{2+1} - \frac{1}{2+1+1}\right) \xi_2 = \frac{1}{1+1} \cdot 1 \text{ gives } \frac{1}{6} \cdot \xi_1 + \frac{5}{12} \cdot \xi_2 = \frac{1}{2}$$

$$j = 2$$

$$\left(\frac{1}{1+2} - \frac{1}{1+2+1}\right) \cdot \xi_1 + \left(\frac{2}{2+2} - \frac{1}{2+2+1}\right) \xi_2 = \frac{1}{2+1} \cdot 1 \text{ gives } \frac{1}{12} \cdot \xi_1 + \frac{3}{10} \cdot \xi_2 = \frac{1}{3}$$

then we have the equation system

$$\begin{cases} 2\xi_1 + 5\xi_2 = 6 \\ 5\xi_1 + 18\xi_2 = 20 \end{cases}$$
, which gives $\xi_1 = 0.22...$ $\xi_2 = 1.11...$

Now let the approximate solution be $U(t)=1+0,22\cdot t+1,11\cdot t^2$, then $\dot{U}(t)=0,22+2,22\cdot t$.

Note! The residual error, R(U(t)), of U(t) for this example is

$$R(U(t)) = \dot{U}(t) - \lambda \cdot U(t) = \dot{U}(t) - U(t) = 0, 22 + 2, 22t - 1 - 0, 22t - 1, 11t^{2},$$

thus

$$R(U(t)) = -0.88 + 2 \cdot t - 1.11 \cdot t - 1.11 \cdot t^2$$
 (We want $R(U(t)) \cong 0$).

Hence $a_{jk} = \frac{k}{k+j} - \frac{\lambda}{k+j+1}$, although invertible, is *ill-conditioned*, mostly because $\{t^j\}_{j=1}^q$ does not form an orthogonal basis.

Instead the use of Legendre OG-polynomials would make the problem well conditoned.

Heat equation. The finite element method (CDE pp. 113-114)

Heat equations are separated in **a.** stationary heat equations, $\dot{u} = \frac{du}{dt} = 0$

b. time dependent heat equation $\dot{u} = \frac{du}{dt} \neq 0$

Ex. (PDE) Stationary (time independent) heat equation in 1D

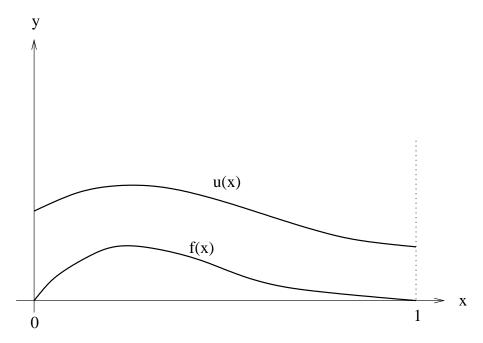
Notation:

u(x) is the temperature $x \in (0, 1)$

q(x) is the heat flux in the direction of the positive x-axis

f(x) is the heat source

a(x) is the heat conductivity coefficient



(i) Conservation of energy:

Note! In 1D case there is only one heat direction, along the x-axis!

Heat flux through end points x_1 and x_2 , i.e. the heat produced in (x_1, x_2) per unit time:

$$q(x_2) - q(x_1) = \int_{x_1}^{x_2} f(x)dx$$
 thus $f(x) = q'(x)$ $x \in (0, 1) \dots (1)$

Fourier's Law:

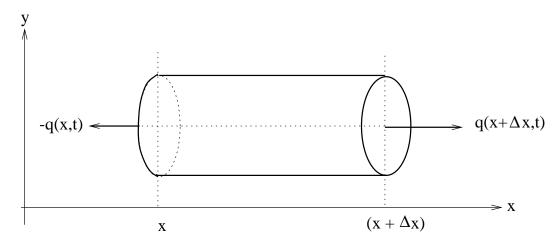
Heat flows from warm regions to cold is proportional to the temperature gradient a(x), and is given by constitutive equation for heat flow.

$$q(x) = -a(x) \cdot u'(x)$$
 then $q'(x) = -(a(x) \cdot u'(x))' \dots (2)$

(1) and (2) give $(a(x) \cdot u'(x))' = f(x)$, which is the stationary heat equation in 1D.

Ex. Time dependent heat equation in 1D.

Energy balance $\dot{u} = \frac{du}{dt}$



The heat produced by the heat source along x axis and in an interial of length Δx is $f(x) \cdot \Delta x$.

The heest flow through the end points x and $(x + \Delta x)$ is $q(x + \Delta x, t) - q(x, t)$.

Then
$$\dot{u} \cdot \Delta x = f(x) \cdot \Delta x - [q(x + \Delta x, t) - q(x, t)]$$

Divide by Δx and let $\Delta x \to 0$, then

$$\dot{u} = f(x) - \lim_{\Delta x \to 0} \frac{q(x + \Delta x) - q(x)}{\Delta x} = f(x) - q'(x),$$

but $q'(x) = -(a(x) \cdot u'(x))'$ and we have

$$\dot{u} - (a(x) \cdot u'(x))' = f(x) \quad 0 < x < 1,$$

which is the time dependent heat eequation in the x-direction.

The Galerkin method on the stationary heat equation in 1-D:

$$\dot{u} = \frac{du}{dt} = 0$$

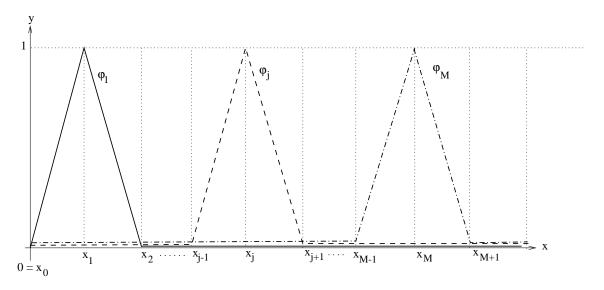
$$\begin{cases} -\frac{d}{dx} \left(a(x) \cdot \frac{d}{dx} u(x) \right) = f(x) & 0 < x < 1 \\ u(0) = u(1) = 0 \end{cases}$$

Let a(x) = 1, then we have

$$\begin{cases} -u''(x) = f(x) & 0 < x < 1 \\ u(0) = u(1) = 0 \end{cases}$$

Let

- i. $T_h: 0=x_0 < x_1 < \ldots < x_M < x_{M+1}=1$ be a partition of $(0,1), h_j=x_j-x_{j-1}$
- ii. $V_h^0 = \{v : v \text{ continuous, piecewise linear functions on } T_h, \text{ with } v(0) = v(1) = 0\}$
- iii. $\{\varphi_j\}_{j=1}^M$ be bases functions for V_h :



Now the Galerkin method for this equation is formulated as follows:

Find the approximate solution $U(x) \in V_h^0$ such that

$$(3) \dots \int_0^1 (-U''(x) - f(x))v(x)dx = 0 \quad \forall v(x) \in V_h^0$$

Observe that if $U(x) \in V_h^0$, then U(x)'' is either equal to zero or is not a well-defined equation and the equation (3) does not make sense, unless $f(x) \equiv 0$, but then $u(x) \equiv 0$ and we have the trivial case.

However, if we consider instead the equation after partial integration we get

$$-\int_0^1 U''(x)v(x)dx = \int_0^1 U'(x)v'(x)dx - [U'(x)v(x)]_0^1$$

and since v(0) = v(1) = 0 for $v(x) \in V_h$ we get

$$-\int_0^1 U''(x)v(x)dx = \int_0^1 U'(x)v'(x)dx$$

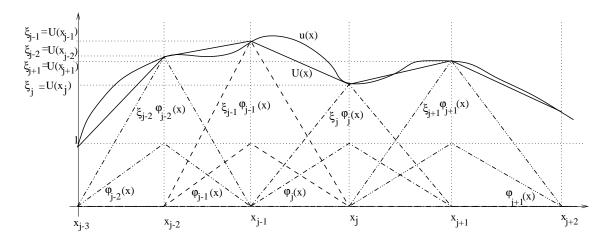
Now for $U(x), v(x) \in V_h, U'(x)$ and v'(x) are well defined (except at the nodes) and the equation (\diamondsuit) has a meaning.

The Galerkin finite element method (FEM) is now reduced to: (CDE pp. 115-120)

Find $U(x) \in V_h^0$ such that

(4) ...
$$\int_0^1 U'(x)v'(x)dx = \int_0^1 f(x)v(x)dx$$
 for all $v(x) \in V_h^0$

We shal determine $\xi_j = u(x_j)$ the approximate values of u(x) at the node points, x_j .



Then using bases functions $\varphi_i(x)$, we may write

$$U(x) = \sum_{j=1}^{M} \xi_j \cdot \varphi_j(x)$$
 and $U'(x) = \sum_{j=1}^{M} \xi_j \varphi'(x)$

Now we can write

$$(4) \dots \int_{0}^{1} U'(x)v'(x)dx = \int_{0}^{1} f(x)v(x)dx \text{ as}$$

$$\sum_{j=1}^{M} \xi_{j} \int_{0}^{1} \varphi'_{j} \cdot v'(x)dx = \int_{0}^{1} f(x)v(x)dx \quad \forall v(x) \in V_{h}^{0}$$

Note! Since every $v(x) \in V_h^0$ is a linear combination of the basis functions $\varphi_j(x)$, it suffices to try with $v(x) = \varphi_k(x)$, for k = 1, 2, ..., M.

That is to find ξ_j (constants), $1 \leq j \leq M$ such that

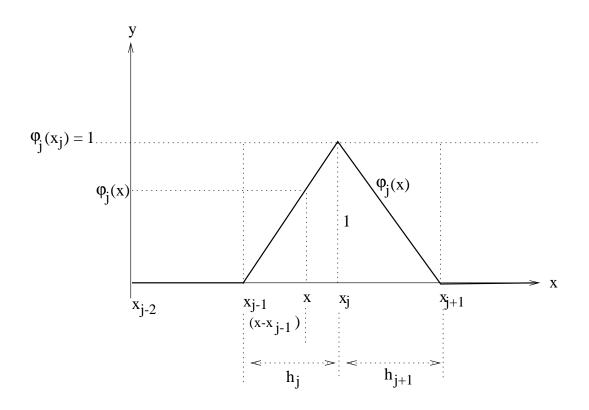
$$(1) \dots \sum_{j=1}^{M} \underbrace{\left(\int_{0}^{1} \varphi_{j}'(x) \cdot \varphi_{k}'(x) dx\right)}_{a_{j}} \cdot \xi_{j} = \underbrace{\int_{0}^{1} f(x) \varphi_{k}(x) dx}_{b_{k}} \text{ for } k = 1, 2, \dots, M.$$
Stiffness matrix
$$b_{k}$$
Loud vector

The equation (\heartsuit) we can rewrite as $\mathbf{A}\xi = \mathbf{b}$, where

$$\mathbf{A} = \{a_{j,k}\}_{j,k=1'}^{M} \quad \mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ \dots \\ b_M \end{pmatrix} \quad \text{and} \quad \xi = \begin{pmatrix} \xi_1 \\ \xi_2 \\ \dots \\ \xi_M \end{pmatrix}$$

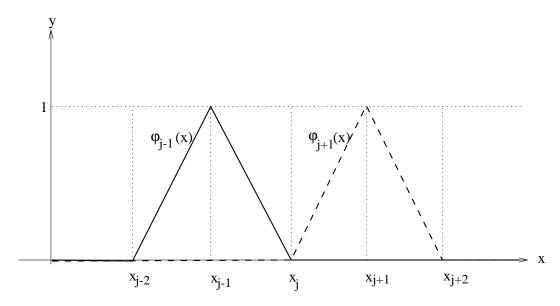
To calculate the stiffness matrix **A** we first determine $\varphi'_j(x)$:

$$\varphi_{i}(x) = \begin{cases} \frac{x - x_{i-1}}{h_{i}} & x_{i-1} \leq x \leq x_{i} \\ \frac{x_{i+1} - x}{h_{i+1}} & x_{i} \leq x \leq x_{i+1} & \text{then } \varphi'_{i}(x) = \begin{cases} \frac{1}{h_{i}} & x_{i-1} \leq x \leq x_{i} \\ -\frac{1}{h_{i+1}} & x_{i} \leq x \leq x_{i+1} \end{cases} \\ 0 & \text{else} \end{cases}$$

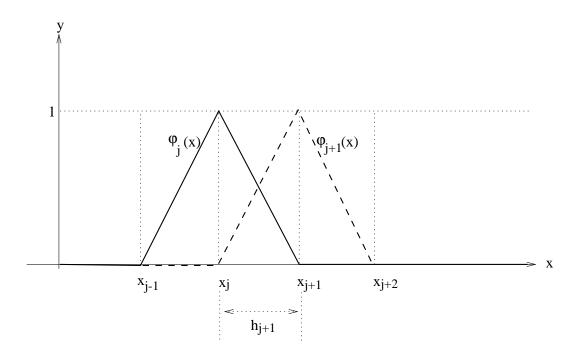


Stiffness matrix A:

For |i-j| > 1, we have $a_{jk} = \int_0^1 \varphi'_j(x) \cdot \varphi'_k(x) dx = 0$,



since for |i-j|>1 we have that $\varphi_i(x)$ and $\varphi_j(x)$ have non-overlapping supports.



$$a_{ii} = \int_{x_{i-1}}^{x_i} \left(\frac{1}{h_i}\right)^2 dx + \int_{x_i}^{x_{i+1}} \left(-\frac{1}{h_{i+1}}\right)^2 dx = \underbrace{\frac{h_i}{x_i - x_{i-1}}}_{h_i^2} + \underbrace{\frac{h_{i+1}}{x_{i+1} - x_i}}_{h_{i+1}^2} = \frac{1}{h_i} + \frac{1}{h_{i+1}}$$

 $\underline{j=i+1}$

$$a_{i,i+1} = \int_{x_i}^{x_{i+1}} \left(-\frac{1}{h_{i+1}} \right) \cdot \frac{1}{h_{i+1}} dx = -\frac{x_{i+1} - x_i}{h_{i+1}^2} = -\frac{1}{h_{i+1}}$$

Changing i to (i-1), we get $a_{i-1,i} = -\frac{1}{h_{i+1}}$

To summarize, we have

$$\begin{cases} a_{ij} = 0 & \text{if } |i - j| > 1 \\ a_{ii} = \frac{1}{h_i} + \frac{1}{h_{i+1}} & i = 1, 2, \dots, M \\ a_{i-1,i} = -\frac{1}{h_i} & i = 2, 3, \dots, M \end{cases}$$

Thus by symmetry

$$\mathbf{A} = \begin{bmatrix} \frac{1}{h_1} + \frac{1}{h_2} & -\frac{1}{h_2} & 0 & \dots & 0 \\ -\frac{1}{h_2} & \frac{1}{h_2} + \frac{1}{h_3} & -\frac{1}{h_3} & 0 & 0 \\ 0 & \dots & \dots & 0 \\ \dots & 0 & \dots & \dots & -\frac{1}{h_M} \\ 0 & \dots & 0 & -\frac{1}{h_M} & \frac{1}{h_M} + \frac{1}{h_{M+1}} \end{bmatrix}$$

With uniform mesh, i.e.
$$h_i = h$$
 we get $\mathbf{A} = \frac{1}{h}$.

$$\begin{bmatrix} 2 & -1 & 0 & \dots & 0 \\ -1 & 2 & -1 & 0 & \dots & \dots \\ 0 & -1 & 2 & -1 & 0 & \dots \\ \dots & \dots & \dots & \dots & 0 \\ \dots & \dots & \dots & \dots & 0 \\ 0 & \dots & \dots & 0 & -1 & 2 & -1 \\ 0 & \dots & \dots & 0 & -1 & 2 \end{bmatrix}$$

Here are some properties for the matrix A:

- A is a sparse, tridiagonal and symmetric matrix.
- This may be interpreted that the basis are "nearly" orthogonal.

Definition: The matrix **A** is positive definite if

$$\forall \eta \in R^M, \eta \neq 0, \eta^T \mathbf{A} \eta > 0 \text{ i.e. } \sum_{i,j=1}^M \eta_i \cdot A \cdot \eta_j > 0$$

Proposition: If the square matrix A is positive definite then

- i. $\mathbf{A}^{-1} \exists$ "**A** is invertible"
- ii. $\mathbf{A}\xi = b$ has a unique solution

Proof:

- (i) Suppose $\mathbf{A}\mathbf{x} = \mathbf{0}$ then $\mathbf{x}^T \mathbf{A}\mathbf{x} = \mathbf{0}$, but A is positive definite, then $\mathbf{x} \equiv \mathbf{0}$ and \mathbf{A} has full Range and we can conclude that \mathbf{A} is invertible.
- (ii) Since **A** is invertible $\mathbf{A}\xi = \mathbf{b}$ has a unique solution $\xi = \mathbf{A}^{-1}\mathbf{b}$

However it is a bad idea to invert a matrix to solve the linear equation system.

Corollary: For
$$M=2$$
. $A=\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$, $U(x,y)=\begin{pmatrix} x \\ y \end{pmatrix}$, then

$$U^{T}AU = (x,y) \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = (x,y) \begin{pmatrix} 2x - y \\ -x + 2y \end{pmatrix} = 2x^{2} - xy - xy + 2y^{2} = x^{2} + y^{2} + x^{2} - 2xy + y^{2} = x^{2} + y^{2} + (x - y)^{2} > 0,$$

then **A** is positive definite.

$$U^T A U = 0$$
 only if $x = y = 0$ i.e. $U = 0$.

Loud vector b:

We have
$$b_i = \int_0^1 f(x)\varphi_i(x)dx$$
, then $b_i = \int_{x_{i-1}}^{x_i} f(x)\frac{x - x_{i-1}}{h_i}dx + \int_{x_i}^{x_{i+1}} f(x)\frac{x_{i+1} - x}{h_{i+1}}dx$

Conclusion:

- 1. We need to approximate functions by polynomials agreeing with the functional values at certain points (nodes): Interpolations. Chapter 5.
- 2. We need to integrate or approximate integrals over subintervals and then sum: Gauss quadrature rules. Chapter 5.
- 3. We need to solve linear systems of equations. Gauss - elimination, Gauss-Seidel, Gauss-Jacobi. Chapter 7.

From chapter 6 you at least need to know

Galerkin orthogonality

<u>Definition:</u> Linear space

Scalar product space

Scalar product for functions

Ortogonal functions Norm for functions Residual error

Trial space

Test function space

Uniform mesh

Caucy-Schwartz inequality

Spaces
$$C^n(a,b), P^q(a,b), V^{(q)}, V^{(q)}_0, V^{(q)}_h, V^{0(q)}_h, W^{(q-1)}_k$$

Lagrange basis and polynom

Polynomial interpolant $\pi_q f$

Formulation for the Galerkin method

Formulation for the Galerkin finite element method (FEM)

Basis $\varphi_i(x)$ for V_h

Calculate stiffness matrix and loud vector matrix