Chapter 7. Solving Linear Algebraic Systems
(CDE pp. 129 -)

How to solve the linear system of equations Az =b < z = A™1b

Direct methods. (CDE pp. 136 - 138)

;
1121 + 1929 + ... + Aipdp = bl

n . a21x1+a22x2+...+a2nx”:b2
Ar=b= E a;jx; =bi, 1,=1,2,...,nor ¢

i=1
[ G21%1 + An2T2 + ..+ Qpp Ty = bn,
ai; a2 ... Qip b1
A1 Qg2 ... Qo by . ) .
where A := is the coefficient matrix.
ap1 Qp2  --- Gpp by

Note:

(1) Tt is a bad idea to calculate A~! and then multiply by b.

(2) If Ais an upper (or lower) triangulare, i.e. a;; =0 for ¢ > j (or ¢ < j), and
A is invertible, then we can solve x using the back substitution method:

( b1 —a192T2 — ... — A1pTy
I =
( a11
a11T1+ aioTo+ ... +a1n$n = bl
0+ a22x2+ .. +a2nxn = bg bn—l — an—l,nmn
< , then < Tpo1 =
Ap—1,n—1
0+ ... +0 +apnxn =b,
\ bn
Ty = —
\ Apn

The number of multiplications to solve x,, are zero and the number of divisions
is one.

To solve z,_1; we need one multiplication and one division.
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To solve z; we need (n — 1) multiplication and one division, thus

-1 2
# multiplications =1+2+...+(n—1) = % = % + Q(n), Q(n) is
a remainder of order n.

# divisions = n.

Gaussian elimination

A linear system is not changed under following elementary row operations:

(i) interchanging two equations
(ii) adding a multiple of one equation to another

(iii) multiplying an equation by a nonzero constant

Definition:

a b c

U= 0 d e is an upper triangular 3 x 3 matrix.
00 f
a 0 O

D= 0 d o is a diagonal 3 X 3 matrix.
00 f
a 0 O

L= g d 0 is a lower triangular 3 x 3 matrix.
h i f

The Gauss elimination procedure relay on the elementary row operations and con-
verts the coefficient matrix of the linear equation system to an upper triangular
matrix.



To this end, we start from the first row of the coefficient matrix of the equation
system and using elementary row operations eliminate the elements a;;,7 > 1,
under a;; (make a;; = 0).

The equation system corresponding to this newly obtained matrix A with ele-
ments a;j,a;; = 0,42 > 1, has the same solution as the original one. We repeat
the same procedure of the elementary row operations to eliminate the elements
(i, 1 > 2, from the matrix A.

Continuing in this way, we thus obtain an upper triangular matrix U with corre-
sponding equation system equivalent to the original system (has the same solu-
tion).

We illustrate this procedure through an example:

Solve the equation system:

/

21’1 + T9 + T3 = 2 2 1 1 | 2
y{ 4x;— x9+3z3=0 ,thecoefficient matrixis | 4 -1 3 | 0 |, where
\ 2x1 + 629 — 223 = 10 2 6 -2 | 10
( e a1 _ 4 _ 2
a1 = 2 2 a1 - 2 -
¢ a9 =4 . We use the multipliers m;;,7 > 1,
asq 2
a = 2 = — = — = ]_
[ @31 ma1 o1 D)

Multiply the first row by mo; and then subtract it from row 2 and replace the
result in row 2:

2 1 1 | 2 (—2) 2 1 1 | 2
4 -1 3 | 0 , then | 0 -3 1 | —4
2 6 -2 | 10 2 6 -2 | 10

2 1 1 | 2 2 1 1
d22 =-3 ~

0 -3 1 | —4 |- Now we have andA=\| 0 -3 1
3y =5

0 5 -3 [ 8 0 5 -3



5 ~
Now let mgy = 3 then multiply the second row in A by mg3s and subtract it

from row 3.
2 1 1 | 2 2 1 1
Then | 0 =3 1 | —4 |,whereU=| 0 -3 1 is a upper triangu-
4 4 4
0o 0 —- — 0o 0 —-=
. 3 | 3 3
lar matrix.
2.’1?1 + X9 + T3 = 2
Now we get the equivalent equationsystem —3xy +x3 = —4  with the so-
4 4
——Lq = —
3707 3
T = 1
lution x9 =1 , which, as we can see is also the solution of the original
T3 = -1
equations.

Definition. We define the lower triangular matrices:

1 00 1 0 0 1 0 O
Ll = —mo1 1 0 ;LQ = 0 1 0 and L = mo1 1 0
—1m31 01 0 —132 1 msz1 7132 1

Ly, Ly, and L3 are unite lower triangular 3 x 3-matrix’s, with the property that

L= (LyL,) ' =L;'Ly" and A = LU.

LU factorization of the matrix A

We generalize the above procedure fron 3 x 3 system of equations to n x n and
we have then A = LU, where L is a unite lower triangular matrix and U is an
upper triangular matrix obtained from A by Gauss elimination.

(CDE pp. 138 - 140)

To solve the system Az = b we let now y = Uz, and first solve Ly = b by forward
substitution (from the first row to the last) and obtain the vector y, then using y
as the known right hand side finally we solve Uz = y by backward substitution
(from the last row to the first) and get the solution z.



5
In our example we have mq; = 2, m3; = 1 and mg3s = —3 then

1 00 1 0 0 1 0 0
L, = -2 10 |,Le=1 010 andL=1] 2 1 0
5 5
-1 0 1 0 3 1 1 —3 1
1 00 2 1 1 2 1 1
Now weget LiA=| —2 1 0 4 -1 31l=10o =3 1]|=A
-1 0 1 2 6 -2 0 5 -3

This corresponds the first two elementary row operations in Gaussian elimination

1 0 0 2 1 1 2 1 1
0 > 1 0 o 3 0 0 A
3 3

This corresponds to the last (third) elementary row operation performed in our
example.

Claim: (L, 1L, 9...L;)™" = L and for n = 3 we have (LyL;)™' = L where
1 0 O

L=1 my 1 0 | wherem;; are the multipliers defined above.
mg1 My 1
Thus Az = b <= (LU)x =b < L(Uzx) = b.

As we outlined we let y = Uz and first solve Ly = b to obtain y. Then with such
obtained y as the right hand side we solve z from Uz = y.

We illustrate this procedure through our example:
Ly=1b

In our example we have that

1 0 0 2
L= 2 1 0 and b = 0
5
1 —— 1 1
3 0



Thus we get the system

1 0 0 Z/l 2 yl = 2
Ly=b&s1 2 1 0 ya | = 0 , l.e., 291 +y2 =0
5 5
1 — 1 10 — sy +y3 =10
3 Ys Y1 3312 Y3
Y1 =2
Now using forward substitution we get ¢ 1y, = —4
4
Ys = 3
2 1 1 2
AsforUr=ywehave U=| 0 -3 1 and y = | —4 |, then
4
0 0 —< -
3
2 1 1 x1 2
0 -3 1 s | = —4
0 0 4
I3 3

2.Z‘1+332+.Z‘3:2

and we get the system of equations — 319 + 13 = —4
4 4

——Lq = —

3773

Now using backward substitution as before we get the solution

$1:1
.1'2:]_
.1'3:—]_

Cholesky’s method: (CDE pp. 146 - 147)

Theorem. Let A be a symmetric matrix, (a;; = a;;), then the following state-
ments are equivalent:

(1) A is positive definite.



(2) The eigenvalues of A are positive.

ai;y ... Qig

(3) Sylvesters criteriondet(Ag) > 0fork =1,2,...,n, where Ay =
a1 ... Qg

(4) A = LL* where L is lower triangular and has positive diagonal elements.
(Cholesky’s factorization)
We do not give a proof of this theorem. The interested reader is referred to
literature in algebra and matrix theory.
Iterative methods (CDE pp. 151 -)

Jacobi iteration

Instead of solving Az = b directly, consider iterative solution methods based on
computing a sequence of approximations z*), k = 1,2, ... such that

lim 2% =z or lim ||z%®) — z|| = 0 for some norm.
k—o0 k—o0
(
a1121+ a12T9 ... +a1,Tn = b1
Az =b & |
an,1’1x1+ cen c. +an,1,nxn = bn,1
an1$1+ Ce P +ann$n = bn

Assume that a; # 0, then

)

T = ——[alzl‘g “+ a13T3 + ...+ Q1pTy — bl]
ai
Q Ty = ———[p11%1 + An_12T2 + ... + Ap_12Tp — bp_1]
Gp—1,n—1
Ty = ———[An1%1 + GnaTa + ... + Qp Ty — by
\ Anpn

'/I’ll — 61

20 = ¢

. c e . . . 2 — 2
Given an initial approximation of the solution = z(®) =

20 =,



the iteration steps are given by

( 1
xgk_H) = —a—[alg.’ligk) + a13.’13:(3k) T alnfljglk) - bl]
11
1
< mgﬁl) = —a—[aglﬂﬁgk) + a23x:(,,k) + ...+ agnxg“) — bg]
22
1
x%’““) = _—[anlxgk) + anzxgk) t..F an,n—lxszk—)l — bn]
\ Qnn

Or in compact form: Jacobi coordinates

n n n
k+1 k
Zaijxj = bz & QL = — Zai]’.’bj + bi, then G,M.TZ( ) = — ZCLULE; ) + bz
) J#i

Convergence criterion:

Jacobi gives convergence to the exact solution if A is diagonally dominant.

n
|aii|>2|aij| i=1,2,...,n
j=1

i

4 2 1
Ex. A=| 1 5 1 [ isdiagonally dominant. (Check it!)
013

Note, the Jacobi method needs less operations than Gauss elimination.

2 -1 i
Ex. Solve Az = b where A = , T = and b =
-1 2 To 1
A is diagonally dominant.
_ 2 -1 1 1 ) ) )
Now consider = , i.e. the linear equation system
-1 2 T 1

2.1'1—.7,'2:]_

—$1+2$2:1 .



(0) (0)

Choose zero initial values for z; and x5, i.e. 3’ = 0 and x5, = 0 and build the

20 = 2" 11

Jacobi iteration system , where k is the iteration step.

20D = 2 |

o=
2339 = xgo) +1 ) )
Then we have ) ; , with the solution .
225 = 21" +1 L1
20 =2
=
@ _ 1 (2 _
2x§2)=x§)+1 2z —2+1 zy
In the next iteration step ) ) we get
22" = z{! +1
2 ! 2 _ 1 (2)
Continuing we have obviously lim xgk) =z and lim xgk), where z; = x9 = 1.
k—o0 k—o00
k :cﬁ’” :vgk)
0] 0 0
1 1
g | 3
3 3
21 1 | i
7 7
31 5 | &

Now if we use ||eg||co = r_nzlné\xgk) — z;|, then
=1,

1
lerlloo = max((al” — @], 2§ - 221) = max (|5~ 1|,| 5 -1))
3 3
lezlloo = max(af? — @], 2 — 22l) = max (|5 — 1], 5 - 1))
7 1
”63”00 = maX(‘x?) — a:l‘,xg?’) _ x2|) = max( 3 -1, 3 — 1‘) - 3

1
In this way ||ex+1|loo = §||ek||oo, where ey is the error for step &,k > 0.
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Gauss-Seidel Method

Give an initial approximation of the solution x = ,

then the iteration steps are given by

\ nn

1
( .’l?gk_H) = — [a1 xé ) + algasgk) +.
a1
1
xglc+1) _ __[amxgk—kl) n a23xgk)
22
< ..
1
a:fffll) _ —7[a(n,1),1x§k+n .
(n—1,,n—1
xgc-l—l) _ ——[amx( 1) T Aot

','Cl —_ Cl

.’Il'go) = C9

20 = Cn
.+ alnfU - bl]

.ot agnac(nk) - bg]

-+ a'(n 1),n— 2x( ) + a(n 1),n$(k) -

.+ an n— 1-%,5:6-1-11) - bn]

Or in a compact way in Gauss-Seidel coordinates.

Za”xj =b Za”xj + Z a;jr; =b; & Zawx]

j=1+1

and therefore

(k+1) _
Z i T

i—1

Now we have aiixEkH) = — Zaij$§k+1) - Z aijxg'k) + b;.

i=1

Ex. We consider the same example as above.

E+1
2x§+):

The Jacobi iteration system is

ngkﬂ) =

j=t+1
Z T —l—b
j=i+1
j=i+1
2 -1 T
-1 2 )
xgk) +1
xgk) +1 '

bn—l]

n
Z aijxj + bi,



205 = £ 41

The Gauss-seidel iteration system is ngkﬂ) — (k+1) +1 -
note!
Choose the same initial values for z; and zo, i.e. x§°) = 0, and xgo) = 0, then
ngl) (0) + 1 and we have x§ -
N W _ 0 : w_ 1 M
ext equation 2z, = z;’ +1 gives 2zy’ = 3 +1land z5’ = —
] S~~~
note: note!
The first few iteration steps would give:
k xgk) xgk)
0] 0 0
1] % 3 Obviously lim mgk) = lim xék) =1
2 4 k—00 k—00
9 7 15
8 16
31 | 63
31w | w

Now if we use ||ex||co = max

-1]) =max (5:7) =
=max |-, | ==
24 2

1 15 1‘)_ (1 1) 1 d|| “ (1 )
, max 3 16 —San €3|loco = max 32° 64

||€1||oo = maX(|-T§1) - $1|, ngl) - $2|) = max (‘

€]l = max (‘g _

and this gives that ||exy1]/co = Z”ek“w’ where e is the error for step k.

Thus we can conclude that the Gauss-Seidel method converges faster than the
Jacobi method.

S.0.R. Successive over-relaxation method.

S.0O.R. is a modified Gauss-Seidel iteration.

1—1 n

. c e (k+1) (k) , W (k+1) (k)

The iteration is z; =(1-w)z, ' + a—ii [bi — E 1 A% — | SH Qij }
= 7=t

if w > 1 it is an over-Relaxation and if 0 < w < 1, it is an under-Relaxation.

11

1
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Relaxation coordinates

1—1 n
aiifcgkﬂ) = az'ﬂz(k) - “’(Z “iﬂg‘kﬂ) + Z “ijxgk) - bi)
j=1 j=i+1

Abstraction of iterative methods

In our procedures Az = b and x = Bx+C are equivalent linear equation systems,
where B is the iteration matrix and zx,1 = By + C.

Potential advantages of iteration methods over direct methods

(1) Faster (depends on B, accuracy is required)

(2) Less memory is required (Sparsity of A can be preserved.)

Questions:

(1) For a given A, what is a good choice for B?

(2) When does zy — z?

(3) What is the rate of convergence?

The error at step k is ex = x; — x and that of step (k + 1) is exr1 = Tpa1 — T-

Then we have exy1 = 2441 — 2 = (Bxy + C) — (Bx — C) = B - (v — z) = Bey.
——

€k

Iterating, we have ey = Bey,_1 = B-B-ey_ o =B-B-B-¢, 3=B'-¢;_4=...=
Bk Cr—k = Bk - €p-

Thus we have shown that e, = B* - ¢;.

0 0 0 a12 QA1p
Let L = U= and
P . . 0 a'nfl,n
Qn1 Upn—1 0 0 0
a11 0 0
0 (453 0 e . . -
D = , then A= L+ D+ U, which is a splitting of A.
0 0 ann
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Now we can rewrite Ax =bas (D+ D+ U)x = b then Dz = —(L+ U)z +b.
Jacobi’s method

Dzyy = —(L+U)xy, +b = By = —D7 YL + U), where By is the Jacobi’s
iteration matriz.

Ex.  Write the linear system in the matrix form x = Byx + C!

1 n 1
T =352 1T 3
2.7)1 — T = 1 2 2 . X .
= and written in matrix form
-1+ 215 =1 1 1
T9 = 5551 + 5
T 0 % x 1
b = 2 ' + 1 * |, where
i) % 0 To %
T 0 1 1
T = ' , By = 2 and C = | 2
T % O %

Ex. Determine the same By by the formula B; = —D~ (L + U),

2 -1 0 0 0 -1
A= L= U = D=
-1 2 -1 0 0 O 0 2

20 a b 10
According to the definition is D-D~! = 1, thus =
0 2 c d 01
1
5 0
and D' = | ?
0 3
1 1
-5 0 0 -1 0 =
Then we have B; = —D }(L+U) = 2 1 =1 1 2
0 5 )\ -1 0 S0

Gauss-Seidel’s method

13



As above Az = b, thus (L+ D~+U)z = b but now we choose (L+ D)z = —Ux+b.

And similarly we have (L + D)xzy,1 = —Uxy, + b and then Bgs = —(L + D)~'U,
where Bgs is Gauss-Seidel’s iteration matriz.

Relaxation
Gauss-Seidel gives (L + D)x = —Uzx + b,
thus Dxyy1 = Dzy — [Lagy + (D + U)xy — b).

Relaxation Dxy,1 = Dxy —w[Lzg1 + (D + U)xy, — b], where w is the Relaxation
parameter, w = 1 gives the Gauss-seidel iteration.

Now we have

(WL + D)zt = [(1 —w)D — wU]xy, + wb, thus B, = (wL+ D) (1 —w)D — wU]
where B, is the Relazation iteration matrix.

From Chapter 7 you at least need to know:

Gaussian elimination
Factorization of matrices
Jacob iteration
Gauss-Seidel iteration

Definitions: Multiplier
Upper and lower triangular matrix
Diagonal matrix
Unit matrix
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