Chapter 8. Error estimates for FEM in 1D
(Two-points BVPs)

1. Dirichlet problem:

Consider a horizontal elastic bar occupying the interval I := |0, 1].
Let u(z) denote the displacement at a point € I, and a(z) be the modulus of
elasticity.

Consider the boundary value problem:
, !
(BVP), —(a(x)u (33)) = f(z), O0<z<l,
u(0) = u(l) = 0.

We assume that a(z) is pieceiwse continuous in (0,1), bounded for 0 < z <1
and a(z) >0for 0 <z < 1.

Let v(x) and v'(z), € I, be square integrable functions, that is: v, v € L?(0,1),
and set

H = {v(ac) : /Ol(v(ac)Q +v/(2)%)dz < o0; v(0) = (1) = o}.

The variational formulation for (BVP), is obtained by multiplying the equation
by a function v(z) € H}(0,1) and integrating over (0, 1):

_ /0 (o) (@) v(2)do = /0 ' f(@)o(@)da.

By partial integration we get

- [a(x)u'(m)v(x)}

1

+ /0 ' o) (@) (@) de = /0 ' Hayo(@)ds.

Now since v(0) = v(1) = 0 we have

/0 oo () (@) de = /0 ' F@)o(e)de.

So that the variational formulation for the given equation is:

0

Find u(z) € H} such that

(VF), /0 a(2)u! ()0 (z)dz = /0 f@)(@)dz, Vo(z) € H]



Corollary: u satisfies (BVP), < u satisfies (VF),.

Proof: (=) For simplicity we let a(z) = 1, then (BVP), would be

{ —u"(z) = f(z), O0<z<1,
u(0) = u(l) = 0.

Integrating by parts and using v(0) = v(1) = 0 we get now
1 1
/ v (z)v'(x)dz = / f(x)v(z)dz, Yv(r) € H,.
0 0

Thus, for a(x) = 1, the solution u(z) for the (BVP), satisfies (VF);.

(<) Consider (VF), in the form —/0 [a(z)u'(z)]v(z)dz = /0 f(x)v(z)dz, which

can also be written as

(1) /01 [— (a(x)u'(x))l - f(x)]v(x)dx =0, Vov(z) € Hy
We claim that this gives

~(aep @) - f@) =0, vre (1),

Suppose that our claim is not true! Then there exists a £ € (0,1), such that

~(ater'(©) - 1) 0,

where we may assume without loss of generality that
!
~(a©u'(©) = £&) >0 (or <0).
Assuming that f € C(0,1) and a € C'(0, 1), by continuity 3§ > 0 such that

—(a(x)u'(x))l — f(z) >0, for ze€(£—0,6+0).

Take v(z) in (1) as a hat function, v(z) # 0 on (£ — §,£ + 0), (see figure below):

Then we have v(z) € Hj and /oll - (a(a:)u'(a:))l - f(x)lv\(f)/ dz > 0, which

N >0
>0
contradicts (1), thus our claim is true and the proof is complete. Il
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Conclusion:
i) If both f and a are continuous and a is differentiable, i.e. f € C(0,1) and
a € C'(0,1), then (BVP) and (VF) have the same solution.
ii) If a(z) is discontinuous, then (BVP) is not always well-defined but (VF)
has meaning. Therefore (VF) covers a larger set of data than (BVP).
Minimization problem (MP). For the (BVP), above:
!
~(e@ul@)) = @), o<z <,
u(0) = u(1) = 0.
we formulate a minimization problem (MP) as:

Find u € H{ such that F(u) < F(w), Yw € H}, where F(w) is the total energy
of w(zx) given by

F(w) = %/01 a(w'?de - /lf'wdx

0
Internal energy Load potential



Corollary: (MP) < (VF)  ie.

1 1
F(u) < F(w),Yw € Hy & / au'v'dx = / fvdz, Vv € H,.
0 0

Proof: (<) For w € Hy, let v=w — u, (w = v + u), then v € H} and
I 2 L
F(w):F(u+v):§/ a((u—i—v)') dx—/ flu+v)dz =
0 0

1 [ 1 [ 1 [
= —/ 2au'v'dﬂ:+—/ a(u')dx —|——/ a(v')?dx
2.Jy 2 Jo 2 Jo

@ (&)
1 1

—/ fudx—/ fodx
- (ii1) 0 (iv)

1 1
but (i) + (iv) = 0, since by (VF),, / au'v'dx = / fvdz. Further, by defini-
0

0
tion of F' we have (i7) + (ii7) = F'(u). Thus

and since a(z) > 0 we have F'(w) > F(u). O

(=) Let now F(u) < F(w) and set g(e,w) = F(u + €v), then g has a minimum



at € = 0. But

gle,w) =F(u+ev) = %/Ola((u-l-ev)')Qdm — /Olf(u—l—ev)dx =

1 /1 1 1
=3 / a(u)® + ag®(v')* + 2aeu'v'}dz — / fudx — 5/ fudz.
0 0 0

Now we compute the derivative g.(e,w).

1 1
Note that / fudz and / a(u')?dx are independent of &, therefore
0 0

1 1
gi(e,w) = 5{2&6(’(),)2 + 2au'v'}dx — /0 fudx

=0, i.e.
(e=0)

=0
1 1

/ au'v'dz —/ fvdz = 0.
0 0

1 1
Thus we conclude that F(u) < F(w) = / au'v'dr = / fvdz, which is (VF),.
0 0

Minimum corresponds to € = 0, where g.

2. A mixed Boundary Value Problem

Note that changing the boundary conditions requires a change in the varitional
formulation. Consider the eqution:

(BVP), { _(“(x)u'(x))l =f(z), 0<z<1
u(0) =0, a()u'(1) = g1 # 0.

(In the (BVP), the boundary conditions are u(0) = u(1) = 0)

We multiply the equation by a suitable function v(x), (v(0) = 0), and integrate

to obtain
/[a (z)]"v( dm—/ f(z

by partial integration we get that

—[a(x)u'(m)v(m)]é—i—/ﬂ a(x)u'(m)v'(x)dxz/o f(z)v(x)dzx

but v(0) = 0 and a(1)u'(1) v(1) = g1v(1) so that
R,_/

(2) /01 a(z)u'( d:v—/ f(x)v(z)dz + gv(1), Yo e HE,



where
5 1
A = {u(x) / [(z)? + o/ (2)2]dz < oo, such that v(0) = 0}.
0
Recall that

Hy = {v(z) : /0 [v(2)? + v'(x)?]dx < oo, such thatv(0) = v(1) = 0}.

function in I—T%

Lo 1
H% func1::|on|n H;

X
0 1

Then (2) gives the variational formulation: Find u € H} such that

(VF), /0 a(z)u'(z)v' (z)dr = /0 f(@)v(z)ds + giv(1), Vv € H}

Corollary: (BVP), < (VF),
(=) Trivial (Just as the formalism above)

(<) To prove that a solution of the variational problem (VF), is also a solution
of the two-point boundary value problem (BVP), we have to show:

(i) the solution satisfies the differential equation

(ii) the solution satisfies the boundary conditions

Integrating by parts, we have

/0 a(2) ()0 (2)dz = [a(2)d (2)v(z)]} — /0 la(2)u ()] 'v(z) de



Since v(0) = 0, we get

/0 a(2)e! ()0 (2)dz = a(1)u' ()p(1) — /0 la(2)v (z)] vdz

Thus (2), i.e. the variational formulation (VF), can be written as

(VF), / (@) (2)]'vdz + af / F(@)o(z)dz + gro(1)

(VF), is valid for every v(z) € H(0,1), so that we may first choose v(z) as in
the Dirichlet problem: —(au') = f,v(1) = 0 then we get

(3) —/0 [a(x)u'(x)]'vdx:/o f(z)v(z)dz, Yo(z) € H,

Now as in the previous case (3) gives the differential equation, thus claim (i) is
through.

Also because of (3), (VF), is reduced to giv(1)

= a(1)u'(1)v(1), which chosing
v(l) #0, e.g. ,v(1) =1, gives that g; = a(1)u'(1) and the

he proof is complete.

O

Comments:

i) Dirichlet boundary conditions: (essential B.C.) Strongly imposed.

Inforced explicitly to the trial and test functions in (VF).

ii) Neumann and Robin Boundary conditions; (natural B.C.)
Are automatically satisfied in (VF), therefore are weakly imposed.




The finite element method. (FEM)

Let T, = (0 =29 < 21 < ...<xp < Tys1 = 1) be a partition of 0 < z < 1 into
subintervals Iy = [zx_1, x| and hy = 2 — Tp_1

y .
! . : : : X
‘ x| M Xm+1=1
0=Xg

Define a piecewise constant function h(r) = xx — xx_1 = hy, for z € I;. Let now
Vh(o) = {v : v(z) is continuous and linear on each subinterval, v(0) = v(1) = 0}.
Note Vh(o) is a subspace of

1
Hy = {v(0): [ [o(@)? + (2o < oo, such that u(0) = u(1) =0}.
0
A finite element formulation of the Dirichlet problem (BVP) is now given by:
Find U, € Vh(o) such that

(FEM) /Oa(x)U,'l(x)v'(:r)dx:/O f@)o(z)dz, Yoe VO

Now the purpose is to make estimate of error arising in approximating the solu-
tion for BV P by the functions in Vh(o).

Definition of some norms:
1 1
(1) LP-norm ol = ( / o(e)Pdz)”
0

(2) L*°-norm |v||zec = sup |v(z)]
z€[0,1]

1 1
(3) Weighted L2-norm ||v||, = (/ a(x)\v(x)\de) ’
0
! >
(4) Energy-norm lv|| e = (/ a($)|U'($)|2dx>
0
Note! [0l = [|v"lla

||v||z describes the “elastic energy” for an elastic string modeled for the Dirichlet
(BVP) problem.



Error estimates in the energy norm

Theorem 8.1. Let u(x) be a solution of the Dirichlet (BVP) and Uy(z) is a
solution of (FEM), given below:

{ —la(z)d(z)]' = f(z), O<z<1
u(0) =0 a(l)u'(1) =g1 #0,
(BVP) N

{ —[a(z)u'(z)] = f(z), O<z<1
u(0) =0 wu(l)=0.

(FEM) /0 a(z)Uj, (z)v' (z)dx = /0 f(z)v(z)dz, Vo € V9 Up(z) € V¥

Then
[u = Unlle < |Ju - v|l5,Yo(z) € V;*

Note! This means that the finite element solution U, € Vh(o) is the best approxi-
mation of the solution u by functions in Vh(o).

Proof: Take an arbitrary v € Vh(o), then
1
Ju=Uills = [ alo)’ ~ U3 (a)da
0

- /0 o) (@)~ Uh(@) (@) =/ (@) + /(&) ~Up(2) ) da

—_——
(4 1 %
= /0 a(z) (u'(m) — U;L(x)) (u'(x) — v'(x))dx
1
+ /0 a(z) (w'(2) - Up(@)) (v'(2) — Up()) do
Now since v — Uy, € Vi¥ H}, we have the variational formulation
[ o) () - i@ e = [ (o) - o),
with its finite element counterpart

/01 a(z)Up (z) (v'(a:) — U;'l(x))dx _ /01 f(v(:r) — Uh(:v)),

9



Subtracting these two relations the last line of the estimate (4) above vanishes
so that we have

Ju—Uill = | oo (@) - V@)l (@) — o' (@)}dz
- / 0(o) (@) ~ U (@la@) v (@) — v(a)do
< ([ st - vi@ras)* ([ o) —vra)’

= |lu—=Ullg - lu—vlle,
where, in the last estimate, we used Cauchy Schwarz inequality. Thus
|u—Uhlle < [Ju— 2|5,
and the proof is complete 0

Next step is to show that there exists a function v(x) € Vh(o) such that ||u—v||g is
not “too large”. The function that we shall study is v(z) = mpu(z): the piecewise
linear interpolant of u(z).

y

Let us recall an earlier interpolation error estimate in L,-norm:

10



Theorem 8.2.
(i) Let 0 =2 < 1 < g < ... < Zp, < Tpy1 = 1 be a partition of [0, 1] and
h = ($j+1 —l'j),j = 0,1,...,77,

(ii) Let mpv(z) be the piecewise linear interpolant of v(z).

Then there is an interpolation constant ¢; such that

(5) |mhv — vl|z, < cil|h*"||L, 1<p< oo
(6) |[(mhv) = V||, < cillhv"|L,
(7) |lmhv — vz, < cil|hv'||L,

An apriori error estimate

An apriori error estimate depends on the exact solution u(z) and NOT on the
approximate solution Uy (x). In such estimates the error analyses are performed
theoretically and before computations.

Theorem 8.3. Let u and Uy, be the solutions of the Dirichlet problem (BVP)
and the finite element problem (FEM), respectively. Then there exists an inter-
polation constant C; , depending only on a(z), such that

lu = Unllz < Cillh*u"|lo.

Proof: According to the theorem 8.1 we have
I = Unlle < [l = ]|, Yo € V.
But since myu(z) € Vh(o), then
I = Unlle < llu = maulle = [lv" = (mhu)'lla

1/2

1
< Gl o = G / a(@)h (@) (2)? dz)
0
where in the last inequality above we use theorem 8.2. O

Now if the objective is to divide (0,1) into a fixed, finite, number of subintervals,
then one can use the proof of theorem 8.3: to obtain an optimal (a best possible)
partition of (0,1); in the sense that: whenever a(z)u”(x) gets large we compensate
by making h(z) smaller.

11



This, however, requires that the ezact solution u(x) is known.
2. An a posteriori error estimate

Now we want to study “a posteriori” error analysis, where instead of the unknown
value of u(z), we use the known values of the approximate solution to estimate
the error.

This means that the error analysis performed after the computation is completed.

Notation: We shall denote the error by e(z), i.e., e(x) = u(x) — Up(x). Then
e € Hy.

Below we derive an a posteriori error estimate of (BVP):

{ —la(z)u'(2)] = f(z), 0<zx<l,
u(0) = u(1) = 0.

The definition of the energy norm gives

1

le(@)|1% = / o(z) (¢! (2)) i = / o(z) (! (z) - Uj(x))€!(z)dz =

:/0 a(x)u'(x)e'(x)dm—/o a(z)U; (z)e' (z)dx
But (VF) gives that
/Oa(x)u'(ac)e'(x)dxz/o f(x)e(x)dz.
Thus we get
||€(»”E)||129=/0 f(ilﬁ)@(ﬂﬁ)dﬂﬂ—/0 a(z)Uy(z)e (z)dx

Now in the integrals above we add and subtract mpe(x) and 7€’ (x) respectively,
where mhe(x) is the interpolant of the error. Then

le(2)II% =/0 f(@)[e(x) —Whe(x)]der/O f(@)mhe(z)de

-’

~”

(4)
—/0 a(:v)U,'L(ac)[e'(ac)—Whe'(x)]dx—/o a(z)U; (z)mhe’ (z)dx .

-’

~”

(i1)

12



Now since Uy (z) is a solution of the (FEM) and mhe(x) € Vh(o) we have

/0 a(z)Uj (x)mhe’ (x)dz = /0 f(x)mpe(z)de = —(ii) + (1) = 0.

Hence

D= [ 1@le@) = melwlde ~ [ a@U@E) - mc @l

- -’
-~

(iid)

M

= [ lete) ~ metwitsr =3 [ a0 ¢10) — (ra )

k=1 Y Tk-1

Now, we integrate by parts over each subinterval (zy_1, zg):

- _[g(x)U,'l(x e(x) — mhe(z)) ] " / (a(2)U}(2))' (e(x) — mhe(x)) da

o) F(z) ¢ (x) F(z)

Since e(xy) = mpe(xy),k = 0,1..., M, where xxs are the interpolation nodes so
that F'(zy) = F(xk—1) = 0, and thus

!

_ / a(2)U,(2) (€ (z) — mhe' (7)) dz = / (a(x)U,'L(ac)> (e(z) — mhe(z))dz.

Hence summering over k, we get

- / o) U ()¢ (z) — mpe! (2)) e = / (a(2)U ()] (e(x) — mhe(a))dz,

and therefore
| (ﬂt)lliﬂ=/0 f(fl?)[e(ﬂc)—7Th€(33)]dﬂ€+/0 [a(z) Uy (2)] (e(z) — mhe(z))dx
=/0 {f(z) + [a(z)Uy ()] He(z) — mhe(z))dz,

Let now R(Ux(z)) = f(z) + (a(z)U}(x))’, where R(Up(x)) is the residual error,
which is a well-defined function except in the set {zy}, since (a(zy)U.(zx))" are
not defined.

13



Now we can rewrite the above estimate as:

le(z)|% :/ R(Un(z))(e(x) — mpe(x))dx =

1# z ) - Valz e(z) —me(a)) x
: mh( JR(Un(z)) ( )( h(z) )d

< ([ atromene) ([ ao( ) w)’

where we have used Cauchy Schwarz inequality. Now recalling the definition of
the weighted L2-norm we have,

H (e(x) — mne())
h(zx)

-~

(v)

To estimate (v) we use the interpolation estimate (3) for e(z) in a subinterval,
then

H (e(z) ;(;r;e(x)) Ha < G-l @)]|a = Ci - [|e()]| s
Thus X 1
le(x)[|% < (/0 ﬁh%x)R?(Uh(x))dm)i - Ci - |le()|| g

and hence we have:

Theorem 8.4. There is an interpolation constant ¢; depending only on a(z)
such that the finite element approximation Uy (x) satisfies

1

le@llz < i /0 ﬁhQ(IE)R2(Uh(x))dm)2

Now we have an error estimate which uses the approximate solution and which
can be used for mesh-refinements, [changing the length of the interval h(z) in the
regions (subintervals) which is necessary.]
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The idea is: Assume that one seeks an error bound

lle(z)||z < TOL (errortolerance).

Use following steps:

(i) Make an initial partition of the interval

(ii) Compute the corresponding FEM solution Uy (x) and residual

(iii) If ||e(z)||z > TOL refine the mesh in the places for which
——R*(Uy(z)) is large and perform (ii) and (iii) again.

a(z)

From Chapter 8 you at least need to know:

Definitions: H} and H}
Weighted L?-norm
Energy-norm
Error e(z)

Variational formulation (VF)
Formulate minimization problem (MP)
Finite element formulation (FEM)

Corollary: u(z) satisfies (MP) < u(z) satisfies (VF).
Corollary: u(z) satisfies (BVP), < u(x) satisfies (VF),

Theorem 8.1: Let u(x) be a solution of the Dirichlet (BVP) and U,(z) is a
solution of
(FEM), then ||u — Upllg < ||lu — v||p, Vo(z) € V0

Theorem 8.3: (A priori estimate)
Theorem 8.4: (A posteriori estimate)
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