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Chapter 0

Introduction

This note presents an introduction to the Galerkin finite element method
(FEM) as a general tool for numerical solution of differential equations. Our
objective is to construct and analyze some simple FEMs for approximate so-
lutions of both ordinary, and partial differential equations (ODEs and PDEs).
In its final step, a finite element procedure yields a linear system of equa-
tions (LSE) where the unknowns are the approximate values of the solution
at certain nodes. Then an approximate solution is constructed by adapting
piecewise polynomials of certain degree to these nodal values.

The entries of the coefficient matrix and the right hand side of FEM’s
final linear system of equations consist of integrals which, e.g. for complex
geometries or less smooth data, are not always easily computable. Therefore,
numerical integration and quadrature rules are introduced to approximate
such integrals. Furthermore, iteration procedures are included in order to ef-
ficiently compute the numerical solutions of such obtained matrix equations.

Interpolation techniques are presented for both accurate polynomial ap-
proximations and also to derive basic a priori and a posteriori error estimates
necessary to determine qualitative properties of the approximate solutions.
That is to show how the approximate solution, in some adequate measur-
ing environment, e.g. a certain norm, approaches the exact solution as the
number of nodes, hence unknowns, increase.

Some theoretical aspects as existence, uniqueness, stability and conver-
gence are discussed as well.

Mathematically, Galerkin’s method for solving a general differential equa-
tion (both PDEs and ODEs) is based on seeking an approximate solution,
which is

7



8 CHAPTER 0. INTRODUCTION

1. Easy to differentiate and integrate

2. Spanned by a set of “nearly orthogonal” basis functions in a finite-
dimensional vector space.

3. Galerkin orthogonality relation. Roughly speaking, this means that:
the error between the exact and approximate solutions is orthogonal to
the finite dimensional vector space containing the approximate solution.

0.1 Preliminaries

In this section we give a brief introduction to some key concepts in differential
equations. A more rigorgous and thorough introduction will be presented in
the following Chapter 1.

• A differential equation is a relation between an unknown function u and
its derivatives u(k), 1 ≤ k ≤ N , where k and N are integers.

• If the function u(x) depends on only one variable (x ∈ R), then the equation
is called an ordinary differential equation (ODE).

Example 0.1. As a simple example of an ODE we mention the population
dynamics model

du

dt
− λu(t) = f(t), t > 0. (0.1.1)

If f(t) ≡ 0, then the equatios is clalled homogeneous, otherwise it is called
inhomogeneous. For a nonnegative λ, the homogeneous equation du

dt
−λu(t) =

0 has an exponentially growing analytis solution given by u(t) = u(0)eλt,
where u(0) is the initial population.

• The order of a differential equation is determined by the order of the highest
derivative (N) of the function u that appears in the equation.

• If the function u(x, t) depends on more than one variable, then the differ-
ential equation is called a partial differential equation (PDE), e.g.

ut(x, t) − uxx(x, t) = 0,

is a homogeneous PDE of second order whereas, for f 6= 0,

uyy(x, y) + uxx(x, y) = f(x, y),
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is a non-homogeneous PDE of second order.

• A solution to a differential equation is a function; e.g. u(x), u(x, t) or
u(x, y).

• In general the solution u cannot be expressed in terms of elementary func-
tions and numerical methods are the only way to solve the differential equa-
tions by constructing approximate solutions. Then, the main questions are:
how close is the computed approximate solution to the exact solution? and
how and in which environment does one measure this closeness? In which
extent does the approximate solution preserve the physical quality (proper-
ties) of the exact solution? These are some of the questions that we want to
deal with in this text.

• A linear ordinary differential equation of order n has the general form:

L(t,D)u = u(n)(t) + an−1(t)u
(n−1)(t) + . . . + a1(t)u

′(t) + a0(t)u(t) = b(t),

where D = d/dt denotes the derivative, and u(k) := Dku, with Dk := dk

dtk
, 1 ≤

k ≤ n (the k-th order derivative). The corresponding linear differential
operator is denoted by

L(t,D) =
dn

dtn
+ an−1(t)

dn−1

dtn−1
+ . . . + a1(t)

d

dt
+ a0(t).

0.2 Trinities

Below we introduce the so called trinities classifying the main ingredients
involved in the process of identifying and modeling problems in differential
equations of second order, see Karl E. Gustafson (??) for details.

The usual three operators involved in differential equations are

Laplace operator ∆n :=
∂2

∂x2
1

+
∂2

∂x2
2

+ . . . +
∂2

∂x2
n

, (0.2.1)

Diffusion operator
∂

∂t
− ∆n, (0.2.2)

d’Alembert operator ¤ :=
∂2

∂t2
− ∆n, (0.2.3)

where we have the space variable x := (x1, x2, x3, . . . , xn) ∈ Rn, the time
variable t ∈ R+, and ∂2/∂x2

i denotes the second partial derivative with re-
spect to xi, 1 ≤ i ≤ n. We also define a first order operator, namely the
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gradient operator ∇n which is a vector valued operator and is defined as

∇n :=
( ∂

∂x1

,
∂

∂x2

, . . . ,
∂

∂xn

)
.

Classifying general second order PDEs in two dimensions
A general second order PDE in two dimensiona and with constant coefficients
can be written as

Auxx(x, y)+2Buxy(x, y)+Cuyy(x, y)+Dux(x, y)+Euy(x, y)+Fu(x, y)+G = 0.

Here we introduce the concept of discriminant d = AC − B2: The discrim-
inant is a quantity that specifies the role of the coefficients, of the terms
with two derivatives, in determining the equation type in the sence that the
equation is:

Elliptic: if d > 0, Parabolic: if d = 0, Hyperbolic: if d < 0.

Example 0.2. Below are the classes of the most common differential equa-
tions together with examples of their most simple forms:

Elliptic Parabolic Hyperbolic

Potential equation Heat equation Wave Equation

∆u = 0
∂u

∂t
− ∆u = 0

∂2u

∂t2
− ∆u = 0

uxx + uyy = 0 ut − uxx = 0 utt − uxx = 0

A = C = 1, B = 0 B = C = 0, A = −1 A = −1, B = 0, C = 1

d = 1 > 0 d = 0 d = −1 < 0.

Second order differential equations with variable coefficients in 2-D
In the variable coefficients case, one can only have a local classification.

Example 0.3. Consider the Tricomi operator of gas dynamics:

Lu(x, y) = yuxx + uyy.

Here the coefficient y is not a constant and we have A = y, B = 0, and
C = 1. Hence d = AC − B2 = y and consequently, the domain of ellipticity
is y > 0, and so on, see Figure 1.
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elliptic

parabolic
x

y

hyperbolic

Figure 1: Tricomi; an example of a variable coefficient classification.

• Summing up and generalizing to n space variables we have

Notation Surname Operator Classification

∆n Laplacian Potential operator Elliptic
∂

∂t
− ∆n Heat Diffusion operator Parabolic

¤ = ∂2

∂t2
− ∆n d’Alembertian Wave operator Hyperbolic

The usual three types of problems in differential equations

1. Initial value problems (IVP)

The simplest differential equation is u′(x) = f(x) for a < x ≤ b, but also
(u(x) + c)′ = f(x) for any constant c. To determine a unique solution a
specification of the initial value u(a) = u0 is generally required. For example
for f(x) = 2x, 0 < x ≤ 1, we have u′(x) = 2x and the general solution is
u(x) = x2 + c. With an initial value of u(0) = 0 we get u(0) = 02 + c =
c = 0. Hence the unique solution to this initial value problem is u(x) = x2.
Likewise for a time dependent differential equation of second order (two time
derivatives) the initial values for t = 0, i.e. u(x, 0) and ut(x, 0), are generally
required. For a PDE such as the heat equation the initial value can be a
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function of the space variable.

Example 0.4. The wave equation, on the real line, augmented with the given
initial data:





utt − uxx = 0, −∞ < x < ∞, t > 0,

u(x, 0) = f(x), ut(x, 0) = g(x), −∞ < x < ∞, t = 0.

Remark 0.1. Note that, here, for the unbounded spatial domain (−∞,∞)
it is required that u(x, t) → 0 as |x| → ∞.

2. Boundary value problems (BVP)

a. Boundary value problems in R

Example 0.5. Consider the stationary heat equation:

−
(
a(x)u′(x)

)′
= f(x), for 0 < x < 1.

In order to determine a solution u(x) uniquely (see Remark 0.2 below),
the differential equation is complemented by boundary conditions im-
posed at the boundary points x = 0 and x = 1; for example u(0) = u0

and u(1) = u1, where u0 and u1 are given real numbers.

b. Boundary value problems in Rn

Example 0.6. The Laplace equation in Rn, x = (x1, x2, . . . , xn):





∆nu =
∂2u

∂x2
1

+
∂2u

∂x2
2

+ . . . +
∂2u

∂x2
n

= 0, x ∈ Ω ⊂ Rn,

u(x) = f(x), x ∈ ∂Ω (boundary of Ω).

Remark 0.2. In general, in order to obtain a unique solution for a (partial)
differential equation, one needs to supply physically adequate boundary data.
For instance in Example 0.1 for the potential problem uxx + uyy, stated in
a rectangular domain (x, y) ∈ Ω := (0, 1) × (0, 1), to determine a unique
solution we need to give 2 boundary conditions in the x-direction, i.e. the
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numerical values of u(0, y) and u(1, y), and another 2 in the y-direction:
the numerical values of u(x, 0) and u(x, 1); whereas to determine a unique
solution for the wave equation utt−uxx = 0, it is necessary to supply 2 initial
conditions in the time variable t, and 2 boundary conditions in the space
variable x. We observe that in order to obtain a unique solution we need to
supply the same number of boundary (initial) conditions as the order of the
differential equation in each spatial (time) variable. The general rule is that
one should supply as many conditions as the highest order of the derivative in
each variable. See also Remark 0.1, in the case of unbounded spatial domain.

3. Eigenvalue problems (EVP)

Let A be a given matrix. The relation Av = λv, v 6= 0, is a linear equation
system where λ is an eigenvalue and v is an eigenvector. In the example
below we introduce the corresponding terminology for differential equations.

Example 0.7. A differential equation describing a steady state vibrating
string is given by

−u′′(x) = λu(x), u(0) = u(π) = 0,

where λ is an eigenvalue and u(x) is an eigenfunction. u(0) = 0 and u(π) = 0
are boundary values.

The differential equation for a time dependent vibrating string with small
displacement u, which is fixed at the end points, is given by





utt(x, t) − uxx(x, t) = 0, 0 < x < π, t > 0,

u(0, t) = u(π, t) = 0, t > 0, u(x, 0) = f(x), ut(x, 0) = g(x).

Using separation of variables, see also Folland (??), this equation can be split
into two eigenvalue problems: Insert u(x, t) = X(x)T (t) 6= 0 (a nontrivial
solution) into the differential equation to get

utt(x, t) − uxx(x, t) = X(x)T ′′(t) − X ′′(x)T (t) = 0. (0.2.4)

Dividing (0.2.4) by X(x)T (t) 6= 0 separates the variables, viz

T ′′(t)

T (t)
=

X ′′(x)

X(x)
= λ = C (independent of x and t). (0.2.5)
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Consequently we get 2 ordinary differential equations (2 eigenvalue problems):

X ′′(x) = λX(x), and T ′′(t) = λT (t). (0.2.6)

The usual three types of boundary conditions

1. Dirichlet boundary condition
(the solution is known at the boundary of the domain),

u(x, t) = f(x), for x = (x1, x2, . . . , xn) ∈ ∂Ω, t > 0.

2. Neumann boundary condition
(the derivative of the solution in the direction of the outward normal is

given)

∂u

∂n
= n · grad(u) = n · ∇u = f(x), x ∈ ∂Ω

n = n(x) is the outward unit normal to ∂Ω at x ∈ ∂Ω, and

grad(u) = ∇u =
( ∂u

∂x1

,
∂u

∂x2

, . . . ,
∂u

∂xn

)
.

3. Robin boundary condition
(a combination of 1 and 2),

∂u

∂n
+ k · u(x, t) = f(x), k > 0, x = (x1, x2, . . . , xn) ∈ ∂Ω.

In homogeneous case, i.e. for f(x) ≡ 0, Robin condition means that the heat
flux ∂u

∂n
through the boundary is proportional to the temperature (in fact the

temperture difference between the inside and outside) at the boundary.

Example 0.8. For u = u(x, y) we have n = (nx, ny), with |n| =
√

n2
x + n2

y =
1 and n · ∇u = nxux + nyuy.

Example 0.9. Let u(x, y) = x2 + y2. We determine the normal derivative
of u in (the assumed normal) direction v = (1, 1). The gradient of u is
the vector valued function ∇u = 2x · ex + 2y · ey, where ex = (1, 0) and
ey = (0, 1) are the unit orthonormal basis in R2: ex · ex = ey · ey = 1 and
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x

y

Ω

n = (nx, ny)

n2

n1

P

Figure 2: The domain Ω and its outward normal n at a point P ∈ ∂Ω.

ex · ey = ey · ex = 0. Note that v = ex + ey = (1, 1) is not a unit vector. The
normalized v is obtained viz v̂ = v/|v|, i.e.

v̂ =
ex + ey

|ex + ey|
=

(1, 1)√
12 + 12

=
(1, 1)√

2
.

Thus with ∇u(x, y) = 2x · ex + 2y · ey, we get

v̂ · ∇u(x, y) =
ex + ey

|ex + ey|
· (2x · ex + 2y · ey).

which gives

v̂ · ∇u(x, y) =
(1, 1)√

2
· [2x(1, 0) + 2y(0, 1)] =

(1, 1)√
2

· (2x, 2y) =
2x + 2y√

2
.

The usual three questions

I. In theory

I1. Existence: there exists at least one solution u.

I2. Uniqueness, we have either one solution or no solutions at all.

I3. Stability, the solution depends continuously on the data.

Note. A property that concerns behavior, such as growth or decay,
of perturbations of a solution as time increases is generally called a
stability property.
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II. In applications
II1. Construction, of the solution.

II2. Regularity, how smooth is the found solution.

II3. Approximation, when an exact construction of the solution is
impossible.

Three general approaches to analyzing differential equations

1. Separation of Variables Method. The separation of variables tech-
nique reduces the (PDEs) to simpler eigenvalue problems (ODEs). Also
called Fourier method, or solution by eigenfunction expansion (Fourier anal-
ysis).

2. Variational Formulation Method. Variational formulation or the
multiplier method is a strategy for extracting information by multiplying a
differential equation by suitable test functions and then integrating. This is
also referred to as The Energy Method (subject of our study).

3. Green’s Function Method. Fundamental solutions, or solution of
integral equations (is the subject of an advanced PDE course).

Preface and acknowledgments.
This text is an elementary approach to finite element method used in nu-

merical solution of differential equations. The purpose is to introduce students
to piecewise polynomial approximation of solutions using a minimum amount of
theory. The presented material in this note should be accessible to students with
knowledge of calculus of single- and several-variables, linear algebra and Fourier
analysis. The theory is combined with approximation techniques that are easily
implemented by Matlab codes presented at the end.

During several years, many colleagues have been involved in the design, pre-
sentation and correction of these notes. I wish to thank Niklas Eriksson and
Bengt Svensson who have read the entire material and made many valuable sug-
gestions. Niklas has contributed to a better presentation of the text as well as
to simplifications and corrections of many key estimates that has substantially
improved the quality of this lecture notes. Bengt has made all xfig figures. The
final version is further polished by John Bondestam Malmberg and Tobias Gebäck
who, in particular, have many useful input in the Matlab codes.



Chapter 1

Partial Differential Equations

In this chapter we adjust the overture in the introduction to models of initial-
and boundary-value problems and dervie some of the basic pdes.

We recall the common notation Rn for the real Euclidean spaces of dimen-
sion n with the elements x = (x1, x2, . . . , xn) ∈ Rn. In the most applications
n will be 1, 2, 3 or 4 and the variables x1, x2 and x3 denote coordinates in
one, two, or three space dimensions, whereas x4 represents the time variable.
In this case we usually replace (x1, x2, x3, x4) by a most common notation:
(x, y, z, t). Further we shall use the subscript notation for the partial deriva-
tives, viz:

uxi
=

∂u

∂xi

, u̇ = ut =
∂u

∂t
, uxy =

∂2u

∂x∂y
, uxx =

∂2u

∂x2
, ü =

∂2u

∂t2
, etc.

A more general notation for partial derivatives of a sufficiently smooth func-
tion u (see definition below) is given by

∂|α|u

∂xα1

1 . . . ∂xαn
n

:=
∂α1

∂xα1

1

· ∂α2

∂xα2

2

· . . . · ∂αn

∂xαn
n

u,

where ∂αi

∂x
αi
i

, 1 ≤ i ≤ n, denotes the partial derivative of order αi with respect

to the variable xi, α = (α1, α2, . . . , αn) is a multi-index of integers αi ≥ 0
and |α| = α1 + . . . + αn.

Definition 1.1. A function f of one real variable is said to be of class C(k)

on an interval I if its derivatives f ′, . . . , f (k) exist and are continuous on I.
A function f of n real variables is said to be of class C(k) on a set S ⊂ Rn if
all of its partial derivatives of order ≤ k , i.e. ∂|α|f/(∂xα1

1 . . . ∂xαn
n ) with the

multi-index |α| = α1 + . . . + αn ≤ k, exist and are continuous on S.

17
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As we mentioned, a key defining property of a partial differential equation
is that there is more than one independent variable and a PDE is a relation
between an unknown function u(x1, . . . , xn) and its partial derivatives:

F (x1, . . . , xn, u, ux1
, ux2

, . . . , ux1x1
, . . . , ∂|α|u/∂xα1

1 . . . ∂xαl

l , . . .) = 0. (1.0.1)

The order of an equation is defined to be the order of the highest deriva-
tive in the equation. The most general PDE of first order in two independent
variables, x and y can be written as

F (x, y, u(x, y), ux(x, y), uy(x, y)) =: F (x, y, u, ux, uy) = 0. (1.0.2)

Likewise the most general PDE of second order in two independent variables
is of the form

F (x, y, u, ux, uy, uxx, uxy, uyy) = 0. (1.0.3)

It turns out that, when the equations (1.0.1)-(1.0.3) are considered in bounded
domains Ω ⊂ Rn, in order to obtain a unique solution (see below) one should
provide conditions at the boundary of the domain Ω called boundary condi-
tions, denoted, e.g. by B(u) = f or B(u) = 0 (as well as conditions for t = 0,
initial conditions; denoted, e.g. by I(u) = g or I(u) = 0), as in the theory of
ordinary differential equations. B and I are expressions of u and its partial
derivatives, stated on the whole or a part of the boundary of Ω (or, in case
of I, for t = 0), and are associated to the underlying PDE. Below we shall
discuss the choice of relevant initial and boundary conditions for a PDE.

A solution of a PDE of type (1.0.1)-(1.0.3) is a function u that identically
satisfies the corresponding PDE, and the associated initial and boundary
conditions, in some region of the variables x1, x2, . . . , xn (or x, y). Note
that a solution of an equation of order k has to be k times differentiable.
A function in C(k) that satisfies a PDE of order k is called a classical (or
strong) solution of the PDE. We sometimes also have to deal with solutions
that are not classical. Such solutions are called weak solutions. In this note,
in the variational formulation for finite element methods, we actually deal
with weak solutions. For a more thorough discussion on weak solutions see,
e.g. any textbook in distribution theory.

Definition 1.2 (Hadamard’s criteria). A problem consisting of a PDE asso-
ciated with boundary and/or initial conditions is called well-posed if it fulfills
the following three criteria:
1. Existence The problem has a solution.
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2. Uniqueness There is no more than one solution.

3. Stability A small change in the equation or in the side (initial and/or
boundary) conditions gives rise to a small change in the solution.

If one or more of the conditions above does not hold, then we say that
the problem is ill-posed. The fundamental theoretical question of PDEs
is whether the problem consisting of the equation and its associated side
conditions is well-posed. However, in certain engineering applications we
might encounter problems that are ill-posed. In practice, such problems are
unsolvable. Therefore, when we face an ill-posed problem, the first step
should be to modify it appropriately in order to render it well-posed.

Definition 1.3. An equation is called linear if in (1.0.1), F is a linear func-
tion of the unknown function u and its derivatives.

Thus, for example, the equation ex2yux + x7uy + cos(x2 + y2)u = y3 is a
linear equation, while u2

x + u2
y = 1 is a nonlinear equation. The nonlinear

equations are often further classified into subclasses according to the type of
their nonlinearity. Generally, the nonlinearity is more pronounced when it
appears in higher order derivatives. For example, the following equations are
both nonlinear

uxx + uyy = u3 + u. (1.0.4)

uxx + uyy = |∇u|2u. (1.0.5)

Here |∇u| denotes the norm of the gradient of u. While (1.0.5) is nonlinear,
it is still linear as a function of the highest-order derivative (here uxx and
uyy). Such a nonlinearity is called quasilinear. On the other hand in (1.0.4)
the nonlinearity is only in the unknown solution u. Such equations are called
semilinear.

1.1 Differential operators, superposition

We recall that we denote the set of continuous functions in a domain D (a
subset of Rn) by C0(D) or C(D). Further, by C(k)(D) we mean the set of all
functions that are k times continuously differentiable in D. Differential and
integral operators are examples of mappings between function classes as C(k).
We denote by L[u] the operation of a mapping (operator) L on a function u.
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Definition 1.4. An operator L that satisfies

L[β1u1 + β2u2] = β1L[u1] + β2L[u2], ∀β1, β2 ∈ R, (1.1.1)

where u1 and u2 are functions, is called a linear operator. We may generalize
(1.1.1) as

L[β1u1 + . . . + βkuk] = β1L[u1] + . . . + βkL[uk], ∀β1, . . . , βk ∈ R, (1.1.2)

i.e. L maps any linear combination of uj’s to corresponding linear combina-
tion of L[uj]’s.

For instance the integral operator L[f ] =
∫ b

a
f(x) dx defined on the space

of continuous functions on [a, b] defines a linear operator from C[a, b] into R,
which satisfies both (1.1.1) and (1.1.2).

A linear partial differential operator L that transforms a function u of
the variables x = (x1, x2, . . . , xn) into another function Lu is given by

L[•] = a(x) • +
n∑

i=1

bi(x)
∂ •
∂xi

+
n∑

i,j=1

cij(x)
∂2 •

∂xi∂xj

+ . . . (1.1.3)

where • represents any function u in, say C(ℓ), and the dots at the end indicate
higher-order derivatives, but the sum contains only finitely many terms.

The term linear in the phrase linear partial differential operator refers
to the following fundamental property: if L is given by (1.1.3) and uj, 1 ≤
j ≤ k, are any set of functions possessing the requisite derivatives, and
βj, 1 ≤ j ≤ k, are any constants then the relation (1.1.2) is fulfilled. This
is an immediate consequence of the fact that (1.1.1) and (1.1.2) are valid for
L replaced with the derivative of any admissible order. A linear differential
equation defines a linear differential operator: the equation can be expressed
as L[u] = F , where L is a linear operator and F is a given function. The
differential equation of the form L[u] = 0 is called a homogeneous equation.
For example, define the operator L = ∂2/∂x2 − ∂2/∂y2. Then

L[u] = uxx − uyy = 0,

is a homogeneous equation, while the equation

L[u] = uxx − uyy = x,
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is an example of a nonhomogeneous equation. In a similar way we may define
another type of constraint for the PDEs that appears in many applications:
the boundary conditions. In this regard the linear boundary conditions are
defined as operators B satisfying

B(β1u1 + β2u2) = β1B(u1) + β2B(u2), ∀β1, β2 ∈ R, (1.1.4)

at the boundary of a given domain Ω.

The Superposition principle. An important property of the linear op-
erators is that if the functions uj, 1 ≤ j ≤ k, satisfy the linear differen-
tial equations L[uj] = Fj, and the linear boundary conditions B(uj) = fj

for j = 1, 2, . . . , k, then any linear combination v :=
∑ℓ

i=1 βiui, ℓ ≤ k,

satisfies the equation L[v] =
∑ℓ

i=1 βiFi as well as the boundary condition

B(v) =
∑ℓ

i=1 βifi. In particular, if each of the functions ui, 1 ≤ i ≤ ℓ, sat-
isfies the homogeneous equation L[u] = 0 and the homogeneous boundary
condition B(u) = 0, then every linear combination of them satisfies that
equation and boundary condition too. This property is called the superpo-
sition principle. It allows to construct complex solutions through combining
simple solutions: suppose we want to determine all solutions of a differential
equation associated with a boundary condition viz,

L[u] = F, B(u) = f. (1.1.5)

We consider the corresponding, simpler homogeneous problem:

L[u] = 0, B(u) = 0. (1.1.6)

Now it suffices to find just one solution, say v of the original problem (1.1.5).
Then, for any solution u of (1.1.5), w = u − v satisfies (1.1.6), since L[w] =
L[u] − L[v] = F − F = 0 and B(w) = B(u) − B(v) = f − f = 0. Hence
we obtain a general solution of (1.1.5) by adding the general (homogeneous)
solution w of (1.1.6) to any particular solution of (1.1.5).

Following the same idea one may apply superposition to split a problem
involving several inhomogeneous terms into simpler ones each with a single
inhomogeneous term. For instance we may split (1.1.5) as

L[u1] = F, B(u1) = 0,

L[u2] = 0, B(u2) = f,
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and then take u = u1 + u2.
The most important application of the superposition principle is in the

homogeneous case: linear homogeneous differential equations satisfying ho-
mogeneous boundary conditions (which we repeat from above).

The Superposition principle for the homogeneous case. If the func-
tions uj, 1 ≤ j ≤ k, satisfy (1.1.6): the linear differential equation L[uj] = 0
and the boundary conditions (linear) B(uj) = 0 for j = 1, 2, . . . , k, then any

linear combination v :=
∑ℓ

i=1 βiui, ℓ ≤ k, satisfies the same equation and
boundary condition: (1.1.6).

Finally, the superposition principle is used to prove uniqueness of solu-
tions to linear PDEs.

1.1.1 Exercises

Problem 1.1. Consider the problem

uxx + u = 0, x ∈ (0, ℓ); u(0) = u(ℓ) = 0.

Clearly the function u(x) ≡ 0 is a solution. Is this solution unique? Does
the answer depend on ℓ?

Problem 1.2. Consider the problem

uxx + ux = f(x), x ∈ (0, ℓ); u(0) = u′(0) =
1

2
[u′(ℓ) + u(ℓ)].

a) Is the solution unique? (f is a given function).
b) Under what condition on f a solution exists?

Problem 1.3. Suppose ui, i = 1, 2, . . . , N are N solutions of the linear dif-
ferential equation L[u] = F , where F 6= 0. Under what condition on the
constant coefficients ci, i = 1, 2, . . . , N is the linear combination

∑N
i=1 ciui

also a solution of this equation?

Problem 1.4. Consider the nonlinear ordinary differential equation ux =
u(1 − u).
a) Show that u1(x) ≡ 1 and u2(x) = 1 − 1/(1 + ex) both are solutions, but
u1 + u2 is not a solution.
b) For which value of c1 is c1u1 a solution? What about c2u2?
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Problem 1.5. Show that each of the following equations has a solution of
the form u(x, y) = f(ax + by) for a proper choice of constants a, b. Find the
constants for each example.

a) ux + 3uy = 0. b) 3ux − πuy = 0. c) 2ux + euy = 0.

Problem 1.6. a) Consider the equation uxx + 2uxy + uyy = 0. Write the
equation in the coordinates s = x, t = x − y.
b) Find the general solution of the equation.
c) Consider the equation uxx − 2uxy + 5uyy = 0. Write it in the coordinates
s = x + y and t = 2x.

Problem 1.7. a) Show that for n = 1, 2, 3, . . . , un(x, y) = sin(nπx) sinh(nπy)
satisfies

uxx + uyy = 0, u(0, y) = u(1, y) = u(x, 0) = 0.

b) Find a linear combination of un’s that satisfies u(x, 1) = sin 2πx−sin 3πx.
c) Solve the Dirichlet problem

uxx + uyy = 0, u(0, y) = u(1, y) = 0,

u(x, 0) = 2 sin πx, u(x, 1) = sin 2πx − sin 3πx.

1.2 Some equations of mathematical physics

Below we further develope some of the basic partial differential equations of
mathematical physics, introduced in the previous chapter, that will be the
subject of our studies throughout the book. These equations all involve a
fundamental differential operator of order two, called the Laplacian, acting
on C(2)(Rn) and defined as follows:

∇2u =
∂2u

∂x2
1

+
∂2u

∂x2
2

+ . . . +
∂2u

∂x2
n

, u ∈ C(2)(Rn). (1.2.1)

Basically, there are three types of fundamental physical phenomena described
by differential equations involving the Laplacian:

∇2u = F (x), The Poisson equation

ut − k∇2u = F (x, t), The heat equation

utt − c2∇2u = F (x, t), The wave equation.

(1.2.2)
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Here F is a given function. If F 6= 0, then the equations (1.2.2) are in-
homogeneous. In the special case when F ≡ 0, the equations (1.2.2) are
homogeneous, then the first equation is called the Laplace equation.

Here the first equation, being time independent, has a particular nature:
besides the fact that it describes the steady-state heat transfer and the stand-
ing wave equations (loosely speaking, the time independent versions of the
other two equations), the Laplace equation (the first equation in (1.2.2) with
F ≡ 0) arises in describing several other physical phenomena such as electro-
static potential in regions with no electric charge, gravitational potential in
the regions with no mass distribution, as well as problems in elasticity, etc.

A model for the stationary heat equation in one dimension

We model heat conduction in a thin heat-conducting wire stretched between
the two endpoints of an interval [a, b] that is subject to a heat source of
intensity f(x), see Figure 1.1. We are interested in the stationary distribution
of temperature u(x) in the wire.

u(x)

f(x)

a b

wire

Figure 1.1: A heat-conducting one dimensional wire.

Let q(x) denote the heat flux in the direction of the positive x-axis in
the wire a < x < b. Conservation of energy in the stationary case requires
that the net heat through the endpoints of an arbitrary subinterval (x1, x2)
of (a, b) is equal to the heat produced in (x1, x2) per unit time:

q(x2) − q(x1) =

∫ x2

x1

f(x) dx.
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By the Fundamental Theorem of Calculus,

q(x2) − q(x1) =

∫ x2

x1

q′(x) dx,

hence we conclude that
∫ x2

x1

q′(x) dx =

∫ x2

x1

f(x) dx.

Since x1 and x2 are arbitrary, assuming that the integrands are continuous,
yields

q′(x) = f(x), for a < x < b, (1.2.3)

which expresses conservation of energy in differential equation form. We
need an additional equation that relates the heat flux q to the temperature
gradient u′ called a constitutive equation. The simplest constitutive equation
for heat flow is Fourier’s law:

q(x) = −c(x)u′(x), (1.2.4)

which states that heat flows from warm regions to cold regions at a rate pro-
portional to the temperature gradient u′(x). The constant of proportionality
is the coefficient of heat conductivity c(x), which we assume to be a positive
function in [a, b]. Combining (1.2.3) and (1.2.4) gives the stationary heat
equation in one dimension:

−(c(x)u′(x))′ = f(x), for a < x < b. (1.2.5)

To define a solution u uniquely, the differential equation is complemented by
boundary conditions imposed at the boundary points x = a and x = b. A
common example is the homogeneous Dirichlet conditions u(a) = u(b) = 0,
corresponding to keeping the temperature zero at the endpoints of the wire.
The result is a two-point boundary value problem:





−(c(x)u′(x))′ = f(x), in (a, b),

u(a) = u(b) = 0.
(1.2.6)

The boundary condition u(a) = 0 may be replaced by −c(a)u′(a) = q(a) = 0,
corresponding to prescribing zero heat flux, or insulating the wire, at x = a.
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Later, we also consider non-homogeneous boundary conditions of the form
u(a) = ua or q(a) = g where ua and g may be different from zero.

The time-dependent heat equation in (1.2.2) describes the diffusion of ther-
mal energy in a homogeneous material where u = u(x, t) is the temperature
at a position x at time t and k(x) is called thermal diffusivity or heat con-
ductivity (corresponding to c(x) in (1.2.4)-(1.2.6)) of the material.

Remark 1.1. The heat equation can be used to model the heat flow in solids
and fluids, in the later case, however, it does not take into account the convec-
tion phenomenon; and provides a reasonable model only if phenomena such
as macroscopic currents in the fluid are not present (or negligible). Further,
the heat equation is not a fundamental law of physics, and it does not give
reliable answers at very low or very high temperatures.

Since temperature is related to heat, which is a form of energy, the basic
idea in deriving the heat equation is to use the law of conservation of energy.
Below we derive the general form of the heat equation in arbitrary dimension.

Fourier’s law of heat conduction and derivation of the heat equation
Let Ω ⊂ Rd, d = 1, 2, 3, be a fixed spatial domain with boundary ∂Ω. The
rate of change of thermal energy with respect to time in Ω is equal to the
net flow of energy across the boundary of Ω plus the rate at which heat is
generated within Ω.

Let u(x, t) denote the temperature at the position x = (x, y, z) ∈ Ω and
at time t. We assume that the solid is at rest and that it is rigid, so that the
only energy present is thermal energy and the density ρ(x) is independent of
the time t and temperature u. Let E denote the energy per unit mass. Then
the amount of thermal energy in Ω is given by

∫

Ω

ρ E dx,

and the time rate (time derivative) of change of thermal energy in Ω is:

d

dt

∫

Ω

ρ E dx =

∫

Ω

ρ Et dx.

Let q = (qx, qy, qz) denote the heat flux vector and n = (nx, ny, nz) denote
the outward unit normal to the boundary ∂Ω, at the point x ∈ ∂Ω. Then
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q · n represents the flow of heat per unit cross-sectional area per unit time
crossing a surface element. Thus

−
∫

∂Ω

q · n dS

is the amount of heat per unit time flowing into Ω across the boundary ∂Ω.
Here dS represents the element of surface area. The minus sign reflects the
fact that if more heat flows out of the domain Ω than in, the energy in Ω
decreases. Finally, in general, the heat production is determined by external
sources that are independent of the temperature. In some cases (such as an
air conditioner controlled by a thermostat) it depends on temperature itself
but not on its derivatives. Hence in the presence of a source (or sink) we
denote the corresponding rate at which heat is produced per unit volume by
f = f(x, t, u) so that the source term becomes

∫

Ω

f(x, t, u) dx.

Now the law of conservation of energy takes the form

∫

Ω

ρ Et dx +

∫

∂Ω

q · n dS =

∫

Ω

f(x, t, u) dx. (1.2.7)

Applying the Gauss divergence theorem to the integral over ∂Ω we get

∫

Ω

(ρ Et + ∇ · q − f) dx = 0, (1.2.8)

where ∇· denotes the divergence operator. In the sequel we shall use the
following simple result:

Lemma 1.1. Let h be a continuous function satisfying
∫
Ω

h(x) dx = 0 for
every domain Ω ⊂ Rd. Then h ≡ 0.

Proof. Let us assume to the contrary that there exists a point x0 ∈ Rd

where h(x0) 6= 0. Assume without loss of generality that h(x0) > 0. Since
h is continuous, there exists a domain (maybe very small) Ω, containing
x0, and ε > 0, such that h(x) > ε, for all x ∈ Ω. Therefore we have∫
Ω

h(x) dx > εVol(Ω) > 0, which contradicts the lemma’s assumption.
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From (1.2.8), using the above lemma, we conclude that

ρ Et = −∇ · q + f. (1.2.9)

This is the basic form of our heat conduction law. The functions E and q
are unknown and additional information of an empirical nature is needed
to determine the equation for the temperature u. First, for many materials,
over a fairly wide but not too large temperature range, the function E = E(u)
depends nearly linearly on u, so that

Et = λut. (1.2.10)

Here λ, called the specific heat, is assumed to be constant. Next, we relate
the temperature u to the heat flux q. Here we use Fourier’s law but, first, to
be specific, we describe the simple facts supporting Fourier’s law:
(i) Heat flows from regions of high temperature to regions of low temperature.
(ii) The rate of heat flow is small or large accordingly as temperature changes
between neighboring regions are small or large.

To describe these quantitative properties of heat flow, we postulate a
linear relationship between the rate of heat flow and the rate of temperature
change. Recall that if x is a point in the heat conducting medium and
n is a unit vector specifying a direction at x, then the rate of heat flow
at x in the direction n is q · n and the rate of change of the temperature is
∂u/∂n = ∇u·n, the directional derivative of the temperature. Since q·n > 0
requires ∇u · n < 0, and vice versa, (from calculus the direction of maximal
growth of a function is given by its gradient), our linear relation takes the
form q ·n = −κ∇u ·n, with κ = κ(x) > 0. Since n specifies any direction at
x, this is equivalent to the assumption

q = −κ∇u, (1.2.11)

which is Fourier’s law. The positive function κ is called the heat conduction
(or Fourier) coefficient. Let now σ = κ/λρ and F = f/λρ and insert (1.2.10)
and (1.2.11) into (1.2.9) to get the final form of the heat equation:

ut = ∇ · (σ∇u) + F. (1.2.12)

The quantity σ is referred to as the thermal diffusivity (or diffusion) coef-
ficient. If we assume that σ is constant, then the final form of the heat
equation would be

ut = σ∇2u + F, or ut = σ ∆u + F. (1.2.13)
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Here ∆ = div∇ = ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 denotes the Laplace operator in three
dimensions.

The third equation in (1.2.2) is the wave equation: utt − c2∇2u = F .
Here u represents a wave traveling through an n-dimensional medium; c
is the speed of propagation of the wave in the medium and u(x, t) is the
amplitude of the wave at position x and time t. The wave equation provides
a mathematical model for a number of problems involving different physical
processes as, e.g. in the following examples:

(i) Vibration of a stretched string, such as a violin string (1-dimensional).

(ii) Vibration of a column of air, such as a clarinet (1-dimensional).

(iii) Vibration of a stretched membrane, such as a drumhead (2-dimensional).

(iv) Waves in an incompressible fluid, such as water (2-dimensional).

(v) Sound waves in air or other elastic media (3-dimensional).

(vi) Electromagnetic waves, such as light waves and radio waves (3-dimensional).

Note that in (i), (iii) and (iv), u represents the transverse displacement
of the string, membrane, or fluid surface; in (ii) and (v), u represents the
longitudinal displacement of the air; and in (vi), u is any of the components
of the electromagnetic field. For detailed discussions and a derivation of the
equations modeling (i)-(vi), see, e.g. Folland [22] , Strauss [51] and Taylor
[52]. We should point out, however, that in most cases the derivation involves
making some simplifying assumptions. Hence, the wave equation gives only
an approximate description of the actual physical process, and the validity
of the approximation will depend on whether certain physical conditions are
satisfied. For instance, in example (i) the vibration should be small enough
so that the string is not stretched beyond its limits of elasticity. In exam-
ple (vi), it follows from Maxwell’s equations, the fundamental equations of
electromagnetism, that the wave equation is satisfied exactly in regions con-
taining no electrical charges or current, which of course cannot be guaranteed
under normal physical circumstances and can only be approximately justified
in the real world. So an attempt to derive the wave equation corresponding
to each of these examples from physical principles is beyond the scope of
these notes. Nevertheless, to give an idea, below we shall derive the wave
equation for a vibrating string which is, by the way, the most considered
model.

The vibrating string, derivation of the wave equation in 1D

Consider a perfectly elastic and flexible string stretched along the segment
[0, L] of the x-axis, moving perpendicular to its equilibrium position. Let
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ρ0(x) denote the density of the string in the equilibrium position and ρ(x, t)
the density at time t. In an arbitrary small interval [x, x+∆x] the mass will
satisfy, see Figure 1.2.

∫ x+∆x

x

ρ0(x) dx = m =

∫ x+∆x

x

ρ(x, t)
√

1 + u2
x dx. (1.2.14)

x x + ∆x

α(x, t)

α(x + ∆x, t)

•

•

1

ux

√
1 + u2

xT (x, t)

T (x + ∆x, t)

Figure 1.2: A vibrating string.

Thus, using Lemma 1.1, (1.2.14) gives the conservation of mass:

ρ0(x) = ρ(x, t)
√

1 + u2
x. (1.2.15)

Now we use the tensions T (x, t) and T (x + ∆x, t), at the endpoints of an
element of the string and determine the forces acting on the interval [x, x +
∆x]. Since we assumed that the string moves only vertically, the forces in
the horizontal direction should be in balance: i.e.,

T (x + ∆x, t) cos α(x + ∆x, t) − T (x, t) cos α(x, t) = 0. (1.2.16)

Dividing (1.2.16) by ∆x and letting ∆x → 0, we thus obtain

∂

∂x

(
T (x, t) cos α(x, t)

)
= 0, (1.2.17)

hence
T (x, t) cos α(x, t) = τ(t), (1.2.18)
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where τ(t) > 0 because it is the magnitude of the horizontal component of
the tension.

On the other hand the vertical motion is determined by the fact that the
time rate of change of linear momentum is given by the sum of the forces
acting in the vertical direction. Hence, using (1.2.15), the momentum of the
small element [x, x + ∆x] is given by

∫ x+∆x

x

ρ0(x)ut dx =

∫ x+∆x

x

ρ(x, t)
√

1 + u2
x ut dx, (1.2.19)

with the time rate of change:

d

dt

∫ x+∆x

x

ρ0ut dx =

∫ x+∆x

x

ρ0utt dx. (1.2.20)

There are two kinds of forces acting on the segment [x, x+∆x] of the string:
(i) the forces due to tension that keep the string taut and whose horizontal
components are in balance, and (ii) the forces acting along the whole length
of the string, such as weight. Thus, using (1.2.18), the net tension force
acting on the ends of the string element [x, x + ∆x] is

T (x + ∆x, t) sin α(x + ∆x, t) − T (x, t) sin α(x, t)

= τ
( sin α(x + ∆x, t)

cos α(x + ∆x, t)
− sin α(x, t)

cos α(x, t)

)

= τ
(

tan α(x + ∆x, t) − tan α(x, t)
)

= τ
(
ux(x + ∆x, t) − ux(x, t)

)
.

(1.2.21)

Further, the weight of the string acting downward is

−
∫

ρ g dS = −
∫ x+∆x

x

ρ g
√

1 + u2
x dx = −

∫ x+∆x

x

ρ0g dx. (1.2.22)

Next, for an external load, with density f(x, t), acting on the string (e.g.,
when a violin string is bowed), we have

∫
ρ f dS =

∫ x+∆x

x

ρ0f(x, t) dx. (1.2.23)
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Finally, one should model the friction forces acting on the string segment.
We shall assume a linear law of friction of the form:

−
∫

σ ρ ut dS = −
∫ x+∆x

x

σ ρ
√

1 + u2
x ut dx = −

∫ x+∆x

x

σ ρ0 ut dx. (1.2.24)

Now applying Newton’s second law yields

∫ x+∆x

x

ρ0utt dx = τ [ux(x + ∆x, t) − ux(x, t)]

−
∫ x+∆x

x

σ ρ0 ut dx +

∫ x+∆x

x

ρ0(f − g) dx.

(1.2.25)

Dividing (1.2.25) by ∆x and letting ∆x → 0 we obtain the equation

ρ0utt = τuxx − σ ρ0 ut + ρ0(f − g). (1.2.26)

Letting c2 = τ/ρ0 and F = f − g, we end up with the following concise form:

utt + σ ut = c2uxx + F. (1.2.27)

Equation (1.2.27) describes the vibration of the considered string once it
is set into motion. The smallness assumption here results in a single linear
equation for u. Due to the presence of the friction term σut, equation (1.2.27)
is often referred to as the damped one-dimensional wave equation. If friction
is negligible, then we can let σ = 0 and get the inhomogeneous wave equation

utt = c2uxx + F. (1.2.28)

In the absence of external forces and when the weight of the string is negli-
gible, we may take F ≡ 0 to get the one-dimensional wave equation:

utt = c2uxx. (1.2.29)

Note that since u has the unit of length ℓ, utt has the unit of acceleration
and uxx the unit of ℓ−1, hence c has the unit of velocity.
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1.2.1 Exercises

Problem 1.8. Show that u(x, y) = log(x2 + y2) satisfies Laplace’s equation
uxx + uyy = 0 for (x, y) 6= (0, 0).

Problem 1.9. Show that u(x, y, z) = (x2 + y2 + z2)−1/2 satisfies Laplace’s
equation uxx + uyy + uzz = 0, for (x, y, z) 6= (0, 0, 0).

Problem 1.10. Show that u(r, θ) = Brn sin(nθ) satisfies the Laplace equa-
tion in polar coordinates:

urr +
1

r
ur +

1

r2
uθθ = 0.

Problem 1.11. Verify that

u =
−2y

x2 + y2 + 2x + 1
, v =

x2 + y2 − 1

x2 + y2 + 2x + 1

both satisfy the Laplace equation, and sketch the curves u = constant and
v = constant. Show that

u + iv =
i(z − 1)

z + 1
, where z = x + iy.

Problem 1.12. Show that u(x, t) = t−1/2 exp(−x2/4kt) satisfies the heat
equation ut = kuxx, for t > 0.

Problem 1.13. Show that u(x, y, t) = t−1 exp[−(x2 + y2)/4kt] satisfies the
heat equation ut = k(uxx + uyy), for t > 0.

Problem 1.14. The spherically symmetric form of the heat conduction equa-
tion is given by

urr +
2

r
ur =

1

κ
ut.

Show that v = ru satisfies the standard one-dimensional heat equation.

Problem 1.15. Show that the equation

θt = κθxx − h(θ − θ0)

can be reduced to the standard heat conduction equation by writing u = eht(θ−
θ0). How do you interpret the term h(θ − θ0)?
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Problem 1.16. Use the substitution ξ = x − vt, η = t to transform the
one-dimensional convection-diffusion equation

ut = kuxx − vux,

into a heat equation for ũ(ξ, η) = u(ξ + vη, η).

Problem 1.17. If f ∈ C[0, 1], let u(x, t) satisfy




ut = uxx, 0 < x < 1, t > 0,

u(0, t) = u(1, t) = 0, t ≥ 0,

u(x, 0) = f(x), 0 ≤ x ≤ 1.

Derive the identity 2u(ut − uxx) = (u2)t − (2uux)x + 2u2
x.

Problem 1.18. Find the possible values of a and b in the expression u =
cos at sin bx, such that it satisfies the wave equation utt = c2uxx.

Problem 1.19. Taking u = f(x + αt), where f is any function, find the
values of α that will ensure u satisfies the wave equation utt = c2uxx.

Problem 1.20. The spherically symmetric version of the wave equation
utt = c2uxx takes the form

utt = c2(urr + 2ur/r).

Show, by putting v = ru, that it has a solution of the form

v = f(ct − r) + g(ct + r).

Problem 1.21. Let ξ = x − ct and η = x + ct. Use the chain rule to show
that

utt − c2uxx = −4uξη.

Problem 1.22. Show that the solution of the initial value problem

utt = c2uxx, u(x, 0) = f(x), ut(x, 0) = g(x),

satisfies d’Alembert’s formula:

u(x, t) =
1

2

[
f(x − ct) + f(x + ct)

]
+

1

2c

∫ x+ct

x−ct

g(y) dy.



Chapter 2

Polynomial Approximation in
1d

Our objective is to present the finite element method (FEM) as an approximation
technique for solution of differential equations using piecewise polynomials. This
chapter is devoted to some necessary mathematical environments and tools, as
well as a motivation for the unifying idea of using finite elements: A numerical
strategy arising from the need of changing a continuous problem into a discrete
one. The continuous problem will have infinitely many unknowns (if one asks for
u(x) at every x), and it cannot be solved exactly on a computer. Therefore it
has to be approximated by a discrete problem with a finite number of unknowns.
The more unknowns we keep, the better the accuracy of the approximation will
be, but at a greater computational expense.

2.1 Overture

Below we introduce a few standard examples of classical differential equations
and some regularity requirements. All vectors are denoted in boldface.

Ordinary differential equations (ODEs)
An initial value problem (IVP), for instance a model in population dynamics
where u(t) is the size of the population at time t, can be written as

u̇(t) = λu(t), 0 < t < T, u(0) = u0, (2.1.1)

where u̇(t) = du
dt

and λ is a positive constant. For u0 > 0 this problem has
the increasing analytic solution u(t) = u0e

λ·t, which blows up as t → ∞.

35
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Generally, we have u̇(t) = F (u(t), t), where u(t) ∈ Rn is a time dependent
vector in Rn, with u̇ = ∂u(t)/∂t ∈ Rn being its componentwise derivative
with respect to t ∈ R+. Thus u(t) = [u1(t), u2(t), . . . , un(t)]T , u̇(t) =
[u̇1(t), u̇2(t), . . . , u̇n(t)]T and

F : Rn × R+ → Rn.

Partial differential equations (PDEs) in bounded domains

A boundary value problem (BVP): Let Ω be a bounded, convex, subset of
the Euclidean space Rn. Below is an example of a general boundary value
problem in Ω ⊂ Rn with the
• Dirichlet boundary condition,





−∆u(x) + b · ∇u(x) + αu(x) = f(x), x ∈ Ω ⊂ Rn,

u(x) = 0, x ∈ ∂Ω,
(2.1.2)

where α ∈ R, b = (b1, b2, . . . , bn) ∈ Rn and u : Rn → R is a real-valued

function with ∇u :=
(

∂u
∂x1

, ∂u
∂x2

, . . . , ∂u
∂xn

)
, ∆u = ∂2u

∂x2
1

+ ∂2u
∂x2

2

+ . . . + ∂2u
∂x2

n
, and

b · ∇u = b1
∂u

∂x1

+ b2
∂u

∂x2

+ . . . + bn
∂u

∂xn

.

An initial boundary value problem (IBVP): The heat equation is an example
of an initial boundary value problem, here associated with an initial data and
• Neumann boundary condition





∂u
∂t

= ∆u, x ∈ Ω ⊂ Rk, t > 0,

∂u
∂n

= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(2.1.3)

where n = (n1, n2, . . . , nk) is the outward unit normal to the boundary ∂Ω
at the point x ∈ ∂Ω, and ∂u/∂n is the derivative in the direction of n:

∂u

∂n
= n · ∇u. (2.1.4)
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Regularity requirements for classical solutions
i) u ∈ C1 means that every component of u has a continuous first order
derivative.
ii) u ∈ C1 means all first order partial derivatives of u are continuous.
iii) u ∈ C2 means all second order partial derivatives of u are continuous.

iv) u ∈ C1
(
R+; C2(Ω)

)
means ∂u

∂t
and ∂2u

∂xi∂xj
, i, j = 1, . . . , n are continuous.

Remark 2.1. Above we mean that: u in i) is a vector-valued function of a
single variable as in the above example of general dynamical system, whereas
u in ii) − iv) is a scalar (real-valued) function of several variables.

• Numerical solutions of (IVP)

Example 2.1. Explicit (forward) Euler method (a finite difference method).
We discretize the IVP (2.1.1) with the forward Euler method based on a
partition of the interval [0, T ] into N subintervals, and an approximation of

t0 = 0 t1 t2 t3 tN = T

the derivative by a difference quotient at each subinterval [tk, tk+1] by u̇(t) ≈
u(tk+1)−u(tk)

tk+1−tk
. Then an approximation of (2.1.1) is given by

u(tk+1) − u(tk)

tk+1 − tk
= λ ·u(tk), k = 0, . . . , N −1, and u(0) = u0. (2.1.5)

Hence, letting ∆tk = tk+1 − tk, we get that

u(tk+1) = (1 + λ∆tk)u(tk). (2.1.6)

Starting with k = 0 and the data u(0) = u0, the solution u(tk) would, itera-
tively, be computed at the subsequent points: t1, t2, . . . , tN = T .
For a uniform partition, where all subintervals have the same length ∆t,
(2.1.6) would be of the form

u(tk+1) = (1 + λ∆t)u(tk), k = 0, 1, . . . , N − 1. (2.1.7)

Iterating we get

u(tk+1) = (1 + λ∆t)u(tk) = (1 + λ∆t)2u(tk−1) = . . . = (1 + λ∆t)k+1u0.
(2.1.8)
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Other finite difference methods for (2.1.1) are introduced in Chapter 6. There
are corresponding finite difference methods for PDE’s. Our goal, however, is
to study the Galerkin finite element methods. To this approach we need to
introduce some basic tools.

Finite dimensional linear space of functions defined on an interval
Below we give a list of some examples of finite dimensional linear spaces.
Some of these examples are studied in detail in Chapter 3: the polynomial
interpolation in 1D.

I. P(q)(a, b) := {The space of polynomials in x of degree ≤ q, a ≤ x ≤ b}.
A possible basis for P(q)(a, b) would be {xj}q

j=0 = {1, x, x2, x3, . . . , xq}.
These are, in general, non-orthogonal polynomials and may be orthog-
onalized by the Gram-Schmidt procedure. The dimension of P(q) is
therefore q + 1.

II. An example of orthogonal basis functions, on (0, 1) or (−1, 1), are the
Legendre polynomials:

P̃k(x) =
(−1)k

k!

dk

dxk
[xk(1 − x)k] or Pn(x) =

1

2nn!

dn

dxn
[(x2 − 1)n],

respectively. The first four Legendre orthogonal polynomials on (−1, 1)
are:

P0(x) = 1, P1(x) = x, P2(x) =
3

2
x2 − 1

2
, P3(x) =

5

2
x3 − 3

2
x.

III. Periodic orthogonal bases on [0, T ] are usually represented by trigono-
metric polynomials given by

TN :=
{

f(x)
∣∣∣f(x) =

N∑

n=0

[
an cos

(2π

T
nx

)
+ bn sin

(2π

T
nx

)]}
.

IV. A general form of basis functions on an interval is introduced in Chap-
ter 3: namely the Lagrange basis {λi}q

i=0 ⊂ P(q)(a, b), consisting of
continuous polynomials of degree ≤ q, associated to a set of (q + 1)
distinct points ξ0 < ξ1 < . . . < ξq in (a, b) and determined by the
requirement:

λi(ξj) =





1 i = j,

0 i 6= j,
or λi(x) =

q∏

j=0,(j 6=i)

x − ξj

ξi − ξj

.
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A polynomial P ∈ P(q)(a, b), that has the value pi = P (ξi) at the
nodes x = ξi for i = 0, 1, . . . , q, expressed in terms of the corresponding
Lagrange basis is then given by

P (x) = p0λ0(x) + p1λ1(x) + . . . + pqλq(x). (2.1.9)

Note that for each node point x = ξi we have associated a basis func-
tions λi(x), i = 0, 1, . . . , q. Thus we have q + 1 basis functions, each
being a polynomial of degree q.

Remark 2.2. Our goal is to approximate general functions by piece-
wise polynomials of Lagrange type. Then, for a given function f , the
Lagrange coefficients pi, 0 ≤ i ≤ q, in (2.1.9) will be replaced by f(ξi),
and f(x) will be approximated by its Lagrange interpolant defined by

f(x) ≈
q∑

i=0

f(ξi)λi(x) := πqf(x). (2.1.10)

We shall illustrate this in the next examples.

Example 2.2. The linear Lagrange basis functions, q = 1, are given
by (see Fig. 2.1.)

λ0(x) =
ξ1 − x

ξ1 − ξ0

and λ1(x) =
x − ξ0

ξ1 − ξ0

. (2.1.11)

1

a ξ0 ξ1 b
x

λ0(x) λ1(x)

Figure 2.1: Linear Lagrange basis functions for q = 1.
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Example 2.3. A typical application of the Lagrange basis is in finding
a polynomial interpolant πqf ∈ Pq(a, b) of a continuous function f(x)
on an interval [a, b]. The procedure is as follows:

Choose distinct interpolation nodes ξi : a = ξ0 < ξ1 < . . . < ξq = b
and let πqf(ξi) = f(ξi). Then πqf ∈ P(q)(a, b), defined as the sum in
(2.1.10), interpolates f(x) at the nodes {ξi}, i = 0, . . . , q, and using
Lagrange’s formula (2.1.9), with pi = f(ξi), i = 0, 1, . . . , q, yields

πqf(x) = f(ξ0)λ0(x) + f(ξ1)λ1(x) + . . . + f(ξq)λq(x), x ∈ [a, b].

For a linear interpolant, i.e. q = 1, we only need 2 nodes and 2 basis
functions. Choosing ξ0 = a and ξ1 = b in (2.1.11), we get the linear
interpolant

π1f(x) = f(a)λ0(x) + f(b)λ1(x),

where

λ0(x) =
b − x

b − a
and λ1(x) =

x − a

b − a
,

i.e.,

π1f(x) = f(a)
b − x

b − a
+ f(b)

x − a

b − a
.

a

π1f(x)

b
x

y

f(x)

Figure 2.2: The linear interpolant π1f(x) on a single interval.

V. We shall frequently use the space of continuous piecewise polynomials
on a partition of an interval into a collection of subintervals. For ex-
ample Th : 0 = x0 < x1 < . . . < xM < xM+1 = 1, with hj = xj − xj−1

and j = 1, . . . ,M + 1, is a partition of [0, 1] into M + 1 subintervals.
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Let V
(q)
h denote the space of all continuous piecewise polynomial func-

tions of degree ≤ q on Th. Let also

V
(q)
0,h = {v : v ∈ V

(q)
h , v(0) = v(1) = 0}.

Our motivation in introducing these function spaces is due to the fact
that these are function spaces, adequate in the numerical study of
boundary value problems, using finite element methods for approxi-
mating solutions with piecewise polynomials.

x0 x2x1
x

y

xj−1 xj xM xM+1 = 1
h2 hj hM+1

Figure 2.3: An example of a function in V
(1)
0,h .

The standard basis for piecewise linears: Vh := V
(1)
h is given by the so

called hat-functions ϕj(x) with the property that ϕj(x) is a continuous
piecewise linear function such that ϕj(xi) = δij, where

δij =





1 i = j,

0 i 6= j,
i.e. ϕj(x) =





x−xj−1

hj
xj−1 ≤ x ≤ xj

xj+1−x

hj+1
xj ≤ x ≤ xj+1

0 x /∈ [xj−1, xj+1],

with obvious modifications for j = 0 and j = M + 1 (see Remark 2.3
and Figure 2.6).
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x0 xj−2

1

x

y

xj−1 xj xj+1 xM xM+1
hj hj+1

ϕj(x)

Figure 2.4: A general piecewise linear basis function ϕj(x).

Vector spaces

To establish a framework we shall introduce some basic mathematical con-
cepts:

Definition 2.1. A set V of functions or vectors is called a linear space, or a
vector space, if for all u, v, w ∈ V and all α, β ∈ R (real numbers), we have

(i) u + αv ∈ V,

(ii) (u + v) + w = u + (v + w),

(iii) u + v = v + u,

(iv) ∃ 0 ∈ V such that u + 0 = 0 + u = u,

(v) ∀u ∈ V, ∃ (−u) ∈ V, such that u + (−u) = 0,

(vi) (α + β)u = αu + βu,

(vii) α(u + v) = αu + αv,

(viii) α(βu) = (αβ)u.

(2.1.12)

Observe that (iii) and (i), with α = 1 and v = (−u) implies that 0 (zero
vector) is an element of every vector space.

Definition 2.2 (Scalar product). A scalar product (inner product) is a real
valued operator on V ×V , viz 〈u, v〉 : V ×V → R such that for all u, v, w ∈ V
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and all α ∈ R,

(i) 〈u, v〉 = 〈v, u〉 (symmetry)

(ii) 〈u + αv,w〉 = 〈u,w〉 + α〈v, w〉 (bi-linearity)

(iii) 〈v, v〉 ≥ 0 ∀v ∈ V (positivity)

(iv) 〈v, v〉 = 0 ⇐⇒ v = 0.

(2.1.13)

Definition 2.3. A vector space W is called an inner product, or scalar prod-
uct, space if W is associated with a scalar product 〈·, ·〉, defined on W ×W .

The function spaces C([a, b]), Ck([a, b]), P(q)(a, b), T q and V
(q)
h are ex-

amples of inner product spaces associated with the usual scalar product de-
fined by

〈u, v〉 =

∫ b

a

u(x)v(x)dx. (2.1.14)

Definition 2.4 (Orthogonality). Two, real-valued, functions u(x) and v(x)
are called orthogonal if 〈u, v〉 = 0. This orthogonality is also denoted by
u ⊥ v.

Definition 2.5 (Norm). If u ∈ V then the norm of u, or the length of u,
associated with the above scalar product is defined by

‖u‖ =
√
〈u, u〉 = 〈u, u〉1/2 =

(∫ b

a

|u(x)|2dx
)1/2

. (2.1.15)

This norm is known as the L2-norm of u(x). There are other norms that we
will introduce later on.

We also recall one of the most useful tools that we shall frequently use
throughout this note: The Cauchy-Schwarz inequality,

|〈u, v〉| ≤ ‖u‖‖v‖. (2.1.16)

A simple proof of (2.1.16) is given by using

〈u − av, u − av〉 ≥ 0, with a = 〈u, v〉/‖v‖2.

Then by the definition of the L2-norm and the symmetry property of the
scalar product we get

0 ≤ 〈u − av, u − av〉 = ‖u‖2 − 2a〈u, v〉 + a2‖v‖2.
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Setting a = 〈u, v〉/‖v‖2 and rearranging the terms we get

0 ≤ ‖u‖2 − 〈u, v〉2
‖v‖4

‖v‖2, and consequently
〈u, v〉2
‖v‖2

≤ ‖u‖2,

which yields the desired result.
Now we shall return to approximate solution for (2.1.1) using polynomials.

To this approach we introduce the concept of weak formulation.

• Variational formulation for (IVP)
We multiply the initial value problem (2.1.1) with test functions v in a certain
vector space V and integrate over [0, T ],

∫ T

0

u̇(t)v(t) dt = λ

∫ T

0

u(t)v(t) dt, ∀v ∈ V, (2.1.17)

or equivalently

∫ T

0

(
u̇(t) − λu(t)

)
v(t)dt = 0, ∀v(t) ∈ V, (2.1.18)

which interpreted as inner product means that

(
u̇(t) − λu(t)

)
⊥ v(t), ∀v(t) ∈ V. (2.1.19)

We refer to (2.1.17) as the variational problem for (2.1.1).
For the variational problem (2.1.17) it is natural to seek a solution in

C([0, T ]), or in

V := H1(0, T ) :=
{

f :

∫ T

0

(
f(t)2 + ḟ(t)2

)
dt < ∞

}
.

H1 is consisting of all functions in L2(0, T ) having also their derivatives in
L2(0, T ).

Definition 2.6. If w is an approximation of u in the variational problem

(2.1.17), then R
(
w(t)

)
:= ẇ(t) − λw(t) is called the residual error of w(t).

In general for an approximate solution w we have ẇ(t) − λw(t) 6= 0,
otherwise w and u would satisfy the same equation and by uniqueness we
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would get the exact solution (w = u). Our requirement is instead that w
satisfies equation (2.1.1) in average, or in other words we require that w
satisfies (2.1.19):

R
(
w(t)

)
⊥ v(t), ∀v(t) ∈ V. (2.1.20)

We look for an approximate solution U(t), called a trial function for
(2.1.1), in a finite dimensional subspace of V , say P(q), the space of polyno-
mials of degree ≤ q:

V (q) := P(q) = {U : U(t) = ξ0 + ξ1t + ξ2t
2 + . . . + ξqt

q}. (2.1.21)

Hence, to determine U(t) we need to determine the coefficients ξ0, ξ1, . . . ξq.
We refer to V (q) as the trial space. Note that u(0) = u0 is given and therefore
we may take U(0) = ξ0 = u0. It remains to find the real numbers ξ1, . . . , ξq.
These are coefficients of the q linearly independent monomials t, t2, . . . , tq.
To this approach we define the test function space:

V
(q)
0 := P(q)

0 = {v ∈ P(q) : v(0) = 0}. (2.1.22)

Thus, v can be written as v(t) = c1t + c2t
2 + . . . + cqt

q. Note that

P(q)
0 = span[t, t2, . . . , tq]. (2.1.23)

For an approximate solution U we require its residual R(U) to satisfy the
orthogonality condition (2.1.20):

R
(
U(t)

)
⊥ v(t), ∀v(t) ∈ P(q)

0 .

2.2 Galerkin finite element method for (2.1.1)

Given u(0) = u0, find the approximate solution U(t) ∈ P(q)(0, T ), of (2.1.1)
satisfying

∫ T

0

R
(
U(t)

)
v(t)dt =

∫ T

0

(U̇(t) − λU(t))v(t)dt = 0, ∀v(t) ∈ P(q)
0 . (2.2.1)
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Formally this can be obtained writing a wrong! equation by replacing u by
U ∈ P(q) in (2.1.1),





U̇(t) = λU(t), 0 < t < T

U(0) = u0,
(2.2.2)

then, multiplying (2.2.2) by a function v(t) ∈ P(q)
0 from the test function

space and integrating over [0, T ].

Now since U ∈ P(q), we can write U(t) = u0 +
∑q

j=1 ξjt
j, then U̇(t) =

∑q
j=1 jξjt

j−1. Further we have that P(q)
0 is spanned by vi(t) = ti, i =

1, 2, . . . , q. Therefore, it suffices to use these ti:s as test functions. Inserting
these representations for U, U̇ and v = vi, i = 1, 2, . . . , q into (2.2.1) we get
(for simplicity we put T ≡ 1)

∫ 1

0

( q∑

j=1

jξjt
j−1 − λu0 − λ

q∑

j=1

ξjt
j
)
· tidt = 0, i = 1, 2, . . . , q. (2.2.3)

Moving the data to the right hand side, this relation can be rewritten as

∫ 1

0

( q∑

j=1

(jξjt
i+j−1 − λ ξjt

i+j)
)
dt = λu0

∫ 1

0

tidt, i = 1, 2, . . . , q. (2.2.4)

Performing the integration (ξj:s are constants independent of t) we get

q∑

j=1

ξj

[
j · ti+j

i + j
− λ

ti+j+1

i + j + 1

]t=1

t=0
=

[
λ · u0

ti+1

i + 1

]t=1

t=0
, (2.2.5)

or equivalently

q∑

j=1

( j

i + j
− λ

i + j + 1

)
ξj =

λ

i + 1
· u0 i = 1, 2, . . . , q, (2.2.6)

which is a linear system of equations with q equations and q unknowns
(ξ1, ξ2, . . . , ξq); in the coordinates form. In the matrix form (2.2.6) reads

AΞ = b, with A = (aij), Ξ = (ξj)
q
j=1, and b = (bi)

q
i=1. (2.2.7)
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But the matrix A although invertible, is ill-conditioned, i.e. difficult to invert
numerically with any accuracy. Mainly because {ti}q

i=1 does not form an
orthogonal basis. For large i and j the last two rows (columns) of A computed

from aij =
j

i + j
− λ

i + j + 1
, are very close to each other resulting in very

small value for the determinant of A.
If we insist to use polynomial basis up to certain order, then instead of
monomials, the use of Legendre orthogonal polynomials would yield a diago-
nal (sparse) coefficient matrix and make the problem well conditioned. This
however, is a rather tedious task. A better approach would be through the
use of piecewise polynomial approximations (see Chapter 6) on a partition of
of [0, T ] into subintervals, where we use low order polynomial approximations
on each subinterval.

Galerkin’s method and orthogonal projection: L2-projection
Let u = (u1, u2, u3) ∈ R3 and assume that for some reasons we only have u1

and u2 available. Letting x = (x1, x2, x3) ∈ R3, the objective, then is to find
U ∈ {x : x3 = 0}, such that (u − U) is as small as possible. Obviously in
this case U = (u1, u2, 0) and we have (u − U) ⊥ U, ∀U in the x1x2-plane,
see Figure 2.5.

x1

x2

x3

u = (u1, u2, u3)

U = (u1, u2, 0)

n||u − U

n:=a unit normal

Figure 2.5: Example of a projection onto R2.
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The L2-projection onto a space of polynomials

A polynomial πf interpolating a given function f(x) on an interval (a, b)
agrees with point values of f at a certain discrete set of points xi ∈ (a, b) :
πf(xi) = f(xi), i = 1, . . . , n, for some integer n. This concept can be gen-
eralized to determine a polynomial πf so that certain averages (a kind of
weighting) agree. These could include the usual average of f over [a, b] de-
fined by,

1

b − a

∫ b

a

f(x) dx,

or a generalized average of f with respect to a weight function w defined by

(f, w) =

∫ b

a

f(x)w(x) dx.

x0 x2x1
x

y

xM xM+1 = 1

f

Pf

Figure 2.6: An example of a function f and its L2 projection Pf in [0, 1].

Definition 2.7. The orthogonal projection, or L2-projection, of the function
f onto P(q)(a, b) is the polynomial Pf ∈ P(q)(a, b) such that

(f, w) = (Pf,w) ⇐⇒ (f − Pf,w) = 0 for all w ∈ P(q)(a, b). (2.2.8)

We see that Pf is defined so that certain average values of Pf are the
same as those of f . By the construction (2.2.8) is equivalent to a (q + 1) ×
(q + 1) system of equations.

We want to show that:
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Lemma 2.1. (i) Pf is uniquely defined by (2.2.8).
(ii) Pf is the best approximation of f in P(q)(a, b) in the L2(a, b)-norm, i.e.

||f − Pf ||L2(a,b) ≤ ||f − v||L2(a,b), for all v ∈ Pq(a, b). (2.2.9)

Proof. (i) Suppose that P1f and P2f are two polynomials in P(q)(a, b) such
that

(f − P1f, w) = 0 and (f − P2f, w) = 0 for all w ∈ P(q)(a, b).

Subtracting the two relations we conclude that

(P2f − P1f, w) = 0, for all w ∈ P(q)(a, b).

Now choosing w = P2f − P1f we get

∫ b

a

|P2f − P1f |2 dx = 0,

which yields P1f = P2f since |P2f −P1f | is a non-negative continuous func-
tions.
(ii) Using Cauchy-Schwarz’ inequality it follows that for all v ∈ P(q)(a, b),
since (v − Pf) ∈ P(q)(a, b) and (f − Pf) ⊥ P(q)(a, b),

||f − Pf ||2L2(a,b) = (f − Pf, f − Pf) = (f − Pf, f − v + v − Pf)

= (f − Pf, f − v) + (f − Pf, v − Pf)

= (f − Pf, f − v) ≤ ||f − Pf ||L2(a,b)||f − v||L2(a,b),

which gives the desired result.

2.3 A Galerkin method for (BVP)

We consider the Galerkin method for the following stationary (u̇ = du/dt =
0) heat equation in one dimension:





− d
dx

(
c(x) · d

dx
u(x)

)
= f(x), 0 < x < 1;

u(0) = u(1) = 0.
(2.3.1)
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For simplicity we let c(x) = 1, then we have

−u′′(x) = f(x), 0 < x < 1; u(0) = u(1) = 0. (2.3.2)

Now let Th : 0 = x0 < x1 < . . . < xM < xM+1 = 1 be a partition of the
interval (0, 1) into the subintervals Ij = (xj−1, xj), with length |Ij| = hj =
xj − xj−1, j = 1, 2, . . . ,M + 1. We define the finite dimensional space V 0

h by

V 0
h := {v ∈ C(0, 1) : v is a piecewise linear function on Th, v(0) = v(1) = 0},

with the basis functions {ϕj}M
j=1. More specifically we may write V 0

h := V
(1)
0,h

with the superscript (1) denoting the order of approximating polynomial.
Due to the fact that u is known at the boundary points 0 and 1; it is not
necessary to supply test functions corresponding to the values at x0 = 0 and
xM+1 = 1. However, in the case of given non-homogeneous boundary data
u(0) = u0 6= 0 and/or u(1) = u1 6= 0, to represent the trial function, one uses
the basis functions to all internal nodes as well as those corresponding to the
non-homogeneous data (i.e. at x = 0 and/or x = 1).

Remark 2.3. If the Dirichlet boundary condition is given at only one of the
boundary points; say x0 = 0 and the other one satisfies, e.g. a Neumann
condition as

−u′′(x) = f(x), 0 < x < 1; u(0) = b0, u′(1) = b1, (2.3.3)

then the corresponding test function ϕ0 will be unnecessary (no matter whether
b0 = 0 or b0 6= 0), whereas one needs to provide the half-base function ϕM+1

at xM+1 = 1 (dashed in Figure 2.7). Again, ϕ0 participates in representing
the trial function U .

Now we define the function space

V0 = H1
0 (0, 1) = {w :

∫ 1

0

(w(x)2 + w′(x)2) dx < ∞, w(0) = w(1) = 0}.

A variational formulation for problem (2.3.2), is based on multiply (2.3.2)
by a test function in V0 and integrating over [0, 1): Find u(x) ∈ V0 such that

∫ 1

0

(−u′′(x) − f(x))v(x)dx = 0, ∀v(x) ∈ V0. (2.3.4)
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x0 x1 x2

1

x

y

xj−1 xj xj+1 xM−1 xM xM+1

hj hj+1

ϕjϕ1 ϕM ϕM+1

Figure 2.7: Piecewise linear basis functions

Integrating by parts we get

−
∫ 1

0

u′′(x)v(x)dx =

∫ 1

0

u′(x)v′(x)dx − [u′(x)v(x)]10 (2.3.5)

and since v(x) ∈ V0; v(0) = v(1) = 0, we end up with

−
∫ 1

0

u′′(x)v(x)dx =

∫ 1

0

u′(x)v′(x) dx. (2.3.6)

Thus the variational formulation is: Find u ∈ V0 such that

∫ 1

0

u′(x)v′(x) dx =

∫ 1

0

f(x)v(x)dx, ∀v ∈ V0. (2.3.7)

This is a justification of the finite element formulation:

The Galerkin finite element method (FEM) for the problem (2.3.2):
Find U(x) ∈ V 0

h such that

∫ 1

0

U ′(x)v′(x) dx =

∫ 1

0

f(x)v(x)dx, ∀v(x) ∈ V 0
h . (2.3.8)

Thus the Galerkin approximation U of u and the L2-projection Pu of u
are differing only on the requirement that U should satisfy the boundary
conditions whereas Pu does not need to. We shall determine ξj = U(xj) the
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approximate values of u(x) at the node points xj, 1 ≤ j ≤ M . To this end
using basis functions ϕj(x), we may write

U(x) =
M∑

j=1

ξj ϕj(x) which implies that U ′(x) =
M∑

j=1

ξjϕ
′
j(x). (2.3.9)

Thus we can write (2.3.8) as

M∑

j=1

ξj

∫ 1

0

ϕ′
j(x) v′(x)dx =

∫ 1

0

f(x)v(x)dx, ∀v(x) ∈ V 0
h . (2.3.10)

Since every v(x) ∈ V 0
h is a linear combination of the basis functions ϕi(x),

it suffices to try with v(x) = ϕi(x), for i = 1, 2, . . . ,M : That is, to find ξj

(constants), 1 ≤ j ≤ M such that

M∑

j=1

( ∫ 1

0

ϕ′
i(x)ϕ′

j(x)dx
)
ξj =

∫ 1

0

f(x)ϕi(x)dx, i = 1, 2, . . . ,M. (2.3.11)

This M × M system of equations can be written in the matrix form as

Aξ = b. (2.3.12)

Here A is called the stiffness matrix and b the load vector:

A = {aij}M
i,j=1, aij =

∫ 1

0

ϕ′
i(x)ϕ′

j(x)dx, (2.3.13)

b =




b1

b2

. . .

bM




, with bi =

∫ 1

0

f(x)ϕi(x)dx, and ξ =




ξ1

ξ2

. . .

ξM




. (2.3.14)

To compute the entries aij of the stiffness matrix A, first we need to derive
ϕ′

i(x), viz

ϕi(x) =





x−xi−1

hi
xi−1 ≤ x ≤ xi

xi+1−x
hi+1

xi ≤ x ≤ xi+1

0 else

=⇒ ϕ′
i(x) =





1
hi

xi−1 < x < xi

− 1
hi+1

xi < x < xi+1

0 else
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Stiffness matrix A:
If |i − j| > 1, then ϕi and ϕj have disjoint support, see Figure 2.8., and

aij =

∫ 1

0

ϕ′
i(x)ϕ′

j(x)dx = 0.

1

x

y

xj−2 xj−1 xj xj+1 xj+2

ϕj−1 ϕj+1

Figure 2.8: ϕj−1 and ϕj+1.

As for i = j: we have that

aii =

∫ xi

xi−1

( 1

hi

)2

dx+

∫ xi+1

xi

(
− 1

hi+1

)2

dx =

hi︷ ︸︸ ︷
xi − xi−1

h2
i

+

hi+1︷ ︸︸ ︷
xi+1 − xi

h2
i+1

=
1

hi

+
1

hi+1

.

It remains to compute aij for the case of (applicable!) j = i± 1: A straight-
forward calculation (see the fig below) yields

ai,i+1 =

∫ xi+1

xi

(
− 1

hi+1

)
· 1

hi+1

dx = −xi+1 − xi

h2
i+1

= − 1

hi+1

. (2.3.15)

Obviously ai+1,i = ai,i+1 = − 1
hi+1

. To summarize, we have





aij = 0, if |i − j| > 1,

aii = 1
hi

+ 1
hi+1

, i = 1, 2, . . . ,M,

ai−1,i = ai,i−1 = − 1
hi

, i = 2, 3, . . . ,M.

(2.3.16)
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1

x

y

xj−1 xj xj+1 xj+2

ϕj ϕj+1

Figure 2.9: ϕj and ϕj+1.

By symmetry aij = aji, and we finally have the stiffness matrix for the
stationary heat conduction as:

A =




1
h1

+ 1
h2

− 1
h2

0 . . . 0

− 1
h2

1
h2

+ 1
h3

− 1
h3

0 0

0 . . . . . . . . . 0

. . . 0 . . . . . . − 1
hM

0 . . . 0 − 1
hM

1
hM

+ 1
hM+1




. (2.3.17)

With a uniform mesh, i.e. hi = h we get that

Aunif =
1

h
·




2 −1 0 . . . . . . 0

−1 2 −1 0 . . . . . .

0 −1 2 −1 0 . . .

. . . . . . . . . . . . . . . 0

. . . . . . 0 −1 2 −1

0 . . . . . . 0 −1 2




. (2.3.18)

As for the components of the load vector b we have

bi =

∫ 1

0

f(x)ϕi(x) dx =

∫ xi

xi−1

f(x)
x − xi−1

hi

dx +

∫ xi+1

xi

f(x)
xi+1 − x

hi+1

dx.
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• A finite difference approach To illustrate a finite difference approach
we reconsider the stationary heat equation (2.3.2):

−u′′(x) = f(x), 0 < x < 1; (2.3.19)

and motivate its boundary conditions. The equation (2.3.19) is linear in
the unknown function u, with inhomogeneous source term f . There is some
arbitrariness left in the problem, because any combination C + Dx could be
added to any solution. The sum would constitute another solution, since the
second derivative of C + Dx contributes nothing. Therefore the uncertainty
left by these two arbitrary constants C and D will be removed by adding a
boundary condition at each end point of the interval

u(0) = 0, u(1) = 0. (2.3.20)

The result is a two-point boundary-value problem, describing not a transient
but a steady-state phenomenon–the temperature distribution in a rod, for
example with ends fixed at 0◦ and with a heat source f(x).

As our goal is to solve a discrete problem, we cannot accept more than a
finite amount of information about f , say its values at equally spaced points
x1 = h, x2 = 2h, . . . , xn = nh. And what we compute will be approximate
values u1, u2, . . . , un for the true solution u at these same points. At the end
points x0 = 0 and xn+1 = 1 = (n + 1)h, we are already given the correct
boundary values u0 = 0, un+1 = 0.

The first question is: How do we replace the derivative d2u/dx2? Since
every derivative is a limit of difference quotients, it can be approximated by
stopping at a finite step size, and not permitting h (or ∆x) to approach zero.
For du/dx there are several alternatives:

du

dx
≈ u(x + h) − u(x)

h
or

u(x) − u(x − h)

h
or

u(x + h) − u(x − h)

2h
.

The last, because it is symmetric about x, is the most accurate. For the
second derivative we can write

d2u

dx2
≈ u′(x) − u′(x − h)

h
. (2.3.21)

Replacing the approximations u′(x) ≈ u(x+h)−u(x)
h

and u′(x−h) ≈ u(x)−u(x−h)
h
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in (2.3.21) we get

d2u

dx2
≈ (u(x + h) − u(x))/h − (u(x) − u(x − h))/h

h

=
u(x + h) − 2u(x) + u(x − h)

h2
,

(2.3.22)

which has the merit of being symmetric about x. To repeat the right side
approaches the true value of d2u/dx2 as h → 0, but we have to stop at a
positive h.

At a typical mesh point xj = jh, the differential equation −d2u/dx2 =
f(x) is now replaced by this discrete analogue (2.3.22); after multiplying by
h2,

−uj+1 + 2uj − uj−1 = h2f(jh). (2.3.23)

There are n equations of exactly this form, for every value j = 1, 2, . . . , n.
The first and last equations include the expressions u0 and un+1, which are
not unknowns. Their values are the boundary conditions, and they are shifted
to the right hand side of the equation and contribute to the inhomogeneous
terms (or at least, they might, if they were not known to be equal zero). It
is easy to understand (2.3.23) as a steady-state equation, in which the flows
(uj − uj+1) coming from the right and (uj − uj−1) coming from the left are
balanced by the source h2f(jh) at the center.

The structure of the n equations (2.3.23) can be better visualized in
matrix form Au = b viz




2 −1 0 . . . . . . 0

−1 2 −1 0 . . . . . .

0 −1 2 −1 0 . . .

. . . . . . . . . . . . . . . 0

. . . . . . 0 −1 2 −1

0 . . . . . . 0 −1 2







u1

u2

u3

·
·

un




= h2




f(h)

f(2h)

f(3h)

·
·

f(nh)




, (2.3.24)

which, once again, gives the structure of our uniform stiffness matrix Aunif

given in (2.3.18).
So we conclude that, for this problem,xxx the finite element and finite

difference approximations are two equivalent approaches.
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Remark 2.4. Returning back and comparing the discretizations made for the
initial value problem (IVP): (2.1.1) and the boundary value problem (BVP):
(2.3.2) we realize that, unlike the matrix A for polynomial approximation of
IVP in (2.2.6), A in (2.3.18) or (2.3.24) has a more desirable structure, e.g.
A is a sparse, tridiagonal and symmetric matrix. This is due to the fact
that the basis functions {ϕj}M

j=1 are nearly orthogonal. The most important
property of A is that it is positive definite.

Definition 2.8. An M × M matrix A is called positive definite if

∀η ∈ RM , η 6= 0, ηTAη > 0, i.e.
M∑

i,j=1

ηiaijηj > 0. (2.3.25)

We shall use the positive definiteness of A to argue that (2.3.12) is
uniquely solvable. To this approach we prove the following well-known result:

Proposition 2.1. If a square matrix A is positive definite then A is invert-
ible and hence Aξ = b has a unique solution.

Proof. Suppose Ax = 0 then xTAx = 0, and since A is positive definite,
then x ≡ 0. Thus A has full range and we conclude that A is invertible.
Since A is invertible Aξ = b has a unique solution: ξ = A−1b.

Note however, that it is a bad idea to invert a matrix to solve the linear system
of equations. Finally we illustrate an example of the positive-definiteness
argument for Aunif .

Example 2.4. Assume M = 2 and let η(x, y) =


 x

y


 , then

ηTAunifη = (x, y)


 2 −1

−1 2





 x

y


 = (x, y)


 2x − y

−x + 2y




= 2x2 − xy − xy + 2y2 = x2 + y2 + x2 − 2xy + y2

= x2 + y2 + (x − y)2 ≥ 0.

(2.3.26)

Thus Aunif is positive definite.
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Summary: Roughly speaking, a systematic procedure for approximate so-
lution for a differential equation would involve the following steps:

1. We need to approximate functions by polynomials agreeing with the
functional values at certain points (nodes). This is the matter of Inter-
polation techniques which we shall introduce in Chapter 3. We need to
construct approximate solutions that, in average in (weak sense), satis-
fies the differential equation. This is the finite element approximation
as being a discrete version of variational formulation. Throughout the
book we deal with the issue of Galerkin approximation, its efficiency,
reliability and its other qualitative properties.

2. In the final system of equations: Aξ = b, entries of the coefficient
matrix A as well as the components of the load vector b are integrals.
For a more involved data function f(x), and when approximating by
higher order polynomials and/or solving equations with variable coef-
ficients, these integrals are not easy to compute. Therefore we need to
approximate different integrals over subintervals of a partition. This
may be done using quadrature rules. In simple case one may use usual
or composite midpoint-, trapezoidal-, or Simpson’s-rules. In more in-
volved cases one may employ composite Gauss quadrature rules. We
shall briefly introduce the idea of quadrature rule in Chapter 3.

3. Finally we end up with linear systems of equations (LSE) of type
(2.3.12). To solve LSE efficiently we may use exact Gauss - elimi-
nation or the iteration procedures such as Gauss-Seidel, Gauss-Jacobi
or Over-relaxation methods. We discuss these concepts in Chapter 4.
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2.4 Exercises

Problem 2.1. Prove that V
(q)
0 := {v ∈ V (q) : v(0) = 0}, is a subspace of

P(q)(0, 1).

Problem 2.2. Consider the ODE

u̇(t) = u(t), 0 < t < 1; u(0) = 1.

Compute its Galerkin approximation in P(q)(0, 1), for q = 1, 2, 3, and 4.

Problem 2.3. Consider the ODE

u̇(t) = u(t), 0 < t < 1; u(0) = 1.

Compute the L2(0, 1) projection of the exact solution u into P3(0, 1).

Problem 2.4. Compute the stiffness matrix and load vector in a finite ele-
ment approximation of the boundary value problem

−u′′(x) = f(x), 0 < x < 1, u(0) = u(1) = 0,

with f(x) = x and h = 1/4.

Problem 2.5. We want to find a solution approximation U(x) to

−u′′(x) = 1, 0 < x < 1, u(0) = u(1) = 0,

using the ansatz U(x) = A sin πx + B sin 2πx.

a. Calculate the exact solution u(x).

b. Write down the residual R(x) = −U ′′(x) − 1

c. Use the orthogonality condition

∫ 1

0

R(x) sin πnx dx = 0, n = 1, 2,

to determine the constants A and B.

d. Plot the error e(x) = u(x) − U(x).



60 CHAPTER 2. POLYNOMIAL APPROXIMATION IN 1D

Problem 2.6. Consider the boundary value problem

−u′′(x) + u(x) = x, 0 < x < 1, u(0) = u(1) = 0.

a. Verify that the exact solution of the problem is given by

u(x) = x − sinh x

sinh 1
.

b. Let U(x) be a solution approximation defined by

U(x) = A sin πx + B sin 2πx + C sin 3πx,

where A, B, and C are unknown constants. Compute the residual function

R(x) = −U ′′(x) + U(x) − x.

c. Use the orthogonality condition
∫ 1

0

R(x) sin πnx dx = 0, n = 1, 2, 3,

to determine the constants A, B, and C.

Problem 2.7. Let U(x) = ξ0φ0(x) + ξ1φ1(x) be a solution approximation to

−u′′(x) = x − 1, 0 < x < π, u′(0) = u(π) = 0,

where ξi, i = 0, 1, are unknown coefficients and

φ0(x) = cos
x

2
, φ1(x) = cos

3x

2
.

a. Find the analytical solution u(x).

b. Define the approximate solution residual R(x).

c. Compute the constants ξi using the orthogonality condition
∫ π

0

R(x) φi(x) dx = 0, i = 0, 1,

i.e., by projecting R(x) onto the vector space spanned by φ0(x) and φ1(x).

Problem 2.8. Use the projection technique of the previous exercises to solve

−u′′(x) = 0, 0 < x < π, u(0) = 0, u(π) = 2,

assuming that U(x) = A sin x + B sin 2x + C sin 3x + 2
π2 x

2.

Problem 2.9. Show that (f − Phf, v) = 0, ∀v ∈ Vh, if and only if (f −
Phf, ϕi) = 0, i = 0, . . . , N ; where {ϕi}N

i=1 ⊂ Vh is the basis of hat-functions.



Chapter 3

Interpolation, Numerical
Integration in 1d

3.1 Preliminaries

In this chapter we give a detailed study of the interpolation concept, intro-
duced in Chapter 2. To this approach, we consider a real-valued function f ,
defined on an interval I = [a, b].

Definition 3.1. A polynomial interpolant πqf of a function f , defined on
an interval I = [a, b], is a polynomial of degree ≤ q having the nodal values
at q + 1 distinct points xj ∈ [a, b], j = 0, 1, . . . , q, coinciding with those of f ,
i.e., πqf ∈ Pq(a, b) and πqf(xj) = f(xj), j = 0, . . . , q.

Below we illustrate this definition through a simple example:

Example 3.1 (Linear interpolation on an interval). We start with the unit
interval I = [0, 1] and a continuous function f : [0, 1] → R. We let q = 1
and seek the linear, end-points, interpolant of f on I, i.e. π1f ∈ P1, such
that π1f(0) = f(0) and π1f(1) = f(1). Thus we seek the constants C0 and
C1 in the following representation of π1f ∈ P1,

π1f(x) = C0 + C1x, x ∈ I, (3.1.1)

where

π1f(0) = f(0) =⇒ C0 = f(0), and

π1f(1) = f(1) =⇒ C0 + C1 = f(1) =⇒ C1 = f(1) − f(0).
(3.1.2)

61
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Inserting C0 and C1 into (3.1.1) it follows that

π1f(x) = f(0)+
(
f(1)−f(0)

)
x = f(0)(1−x)+f(1)x := f(0)λ0(x)+f(1)λ1(x).

In other words π1f(x) is represented in two different bases:

π1f(x) = C0 · 1 + C1 · x, with {1, x} as the set of basis functions and

π1f(x) = f(0)(1−x)+f(1)x, with {1−x, x} as the set of basis functions.

The functions λ0(x) = 1− x and λ1(x) = x are linearly independent, since if

0 = α0(1 − x) + α1x = α0 + (α1 − α0)x, x ∈ I, (3.1.3)

then
x = 0 =⇒ α0 = 0

x = 1 =⇒ α1 = 0

}
=⇒ α0 = α1 = 0. (3.1.4)

1

f(x)

π1f(x)

1

λ0(x) = 1 − x1

λ1(x) = x

Figure 3.1: Linear interpolation and basis functions for q = 1.

Remark 3.1. Note that if we define a scalar product on Pk(a, b) by

(p, q) =

∫ b

a

p(x)q(x) dx, ∀p, q ∈ Pk(a, b), (3.1.5)

then we can easily verify that neither {1, x} nor {1 − x, x} is an orthogonal

basis for P1(0, 1), since (1, x) :=
∫ 1

0
1 · x dx = [x2

2
] = 1

2
6= 0 and (1 − x, x) :=∫ 1

0
(1 − x)x dx = 1

6
6= 0.
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With this background it is natural to pose the following question.

Question 3.1. How well does πqf approximate f? In other words how
large/small will the error be in approximating f(x) by πqf(x)?

To answer this question we need to estimate the difference between f(x) and
πqf(x). For instance for q = 1, geometrically, the deviation of f(x) from
π1f(x) (from being linear) depends on the curvature of f(x), i.e. on how
curved f(x) is. In other words, on how large f ′′(x) is, say, on an interval
(a, b). To quantify the relationship between the size of the error f −π1f and
the size of f ′′, we need to introduce some measuring instrument for vectors
and functions:

Definition 3.2. Let x = (x1, . . . , xn)T and y = (y1, . . . , yn)T ∈ Rn be two
column vectors (T stands for transpose). We define the scalar product of x
and y by

〈x,y〉 = xTy = x1y1 + · · · + xnyn,

and the vector norm for x as the Euclidean length of x:

‖x‖ :=
√
〈x,x〉 =

√
x2

1 + · · · + x2
n.

Lp(a, b)-norm: Assume that f is a real valued function defined on the in-
terval (a, b). Then we define the Lp-norm (1 ≤ p ≤ ∞) of f by

Lp-norm ‖f‖Lp(a,b) :=
(∫ b

a

|f(x)|pdx
)1/p

, 1 ≤ p < ∞,

L∞-norm ‖f‖L∞(a,b) := max
x∈[a,b]

|f(x)|.

For 1 ≤ p ≤ ∞ we define the space

Lp(a, b) := {f : ‖f‖Lp(a,b) < ∞}.

Below we shall answer Question 3.1, first in the L∞-norm, and then in the
Lp-norm, for p = 1, 2.

Theorem 3.1. (L∞-error estimates for linear interpolation in an interval)
Assume that f ′′ ∈ L∞(a, b). Then, for q = 1, i.e. with two interpolation
nodes (e.g. the end-points of the interval), there are interpolation constants,
ci, independent of the function f and the size of the interval [a, b], such that
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(1) ‖π1f − f‖L∞(a,b) ≤ ci(b − a)2‖f ′′‖L∞(a,b)

(2) ‖π1f − f‖L∞(a,b) ≤ ci(b − a)‖f ′‖L∞(a,b)

(3) ‖(π1f)′ − f ′‖L∞(a,b) ≤ ci(b − a)‖f ′′‖L∞(a,b).

Proof. Note that every linear function, p(x) on [a, b] can be written as a
linear combination of the basis functions λa(x) and λb(x) where

λa(x) =
b − x

b − a
and λb(x) =

x − a

b − a
: (3.1.6)

p(x) = p(a)λa(x) + p(b)λb(x). (3.1.7)

Recall that the linear combinations of λa(x) and λb(x) give the basis functions
{1, x} for P1:

λa(x) + λb(x) = 1, aλa(x) + bλb(x) = x. (3.1.8)

Here, π1f(x) being a linear function connecting the two points (a, f(a)) and
(b, f(b)),

1

a

π1f(x)

b

f(x)

a b
x

λa(x) = b−x
b−a

λb(x) = x−a
b−a

λa(x) + λb(x) = 1

Figure 3.2: Linear Lagrange basis functions for q = 1.

is represented by
π1f(x) = f(a)λa(x) + f(b)λb(x). (3.1.9)

By the Taylor expansion for f(a) and f(b) about x ∈ (a, b) we can write




f(a) = f(x) + (a − x)f ′(x) +
1

2
(a − x)2f ′′(ηa), ηa ∈ [a, x]

f(b) = f(x) + (b − x)f ′(x) +
1

2
(b − x)2f ′′(ηb), ηb ∈ [x, b].

(3.1.10)
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Inserting f(a) and f(b) from (3.1.10) into (3.1.9), it follows that

π1f(x) =[f(x) + (a − x)f ′(x) +
1

2
(a − x)2f ′′(ηa)]λa(x)+

+[f(x) + (b − x)f ′(x) +
1

2
(b − x)2f ′′(ηb)]λb(x).

Rearranging the terms, using (3.1.8) and the identity (which also follows
from (3.1.8)) (a − x)λa(x) + (b − x)λb(x) = 0 we get

π1f(x) = f(x)[λa(x) + λb(x)] + f ′(x)[(a − x)λa(x) + (b − x)λb(x)]+

+
1

2
(a − x)2f ′′(ηa)λa(x) +

1

2
(b − x)2f ′′(ηb)λb(x) =

= f(x) +
1

2
(a − x)2f ′′(ηa)λa(x) +

1

2
(b − x)2f ′′(ηb)λb(x).

Consequently

|π1f(x) − f(x)| =
∣∣∣
1

2
(a − x)2f ′′(ηa)λa(x) +

1

2
(b − x)2f ′′(ηb)λb(x)

∣∣∣. (3.1.11)

To proceed, we note that for a ≤ x ≤ b both (a − x)2 ≤ (a − b)2 and
(b − x)2 ≤ (a − b)2, furthermore λa(x) ≤ 1 and λb(x) ≤ 1, ∀x ∈ (a, b).
Moreover, by the definition of the maximum norm |f ′′(ηa)| ≤ ‖f ′′‖L∞(a,b),
|f ′′(ηb)| ≤ ‖f ′′‖L∞(a,b). Thus we may estimate (3.1.11) as

|π1f(x)−f(x)| ≤ 1

2
(a−b)2 ·1·‖f ′′‖L∞(a,b)+

1

2
(a−b)2 ·1·‖f ′′‖L∞(a,b), (3.1.12)

and hence

|π1f(x)−f(x)| ≤ (a−b)2‖f ′′‖L∞(a,b) corresponding to ci = 1. (3.1.13)

The other two estimates (2) and (3) are proved similarly.

Remark 3.2. We can be show that the optimal value of ci = 1
8

(cf Problem
3.10), i.e. the constant ci = 1 of the proof above is not the optimal one.

An analogue to Theorem 3.1 can be proved in the Lp-norm, p = 1, 2. This
general version (concisely stated below as Theorem 3.2) is the frequently used
Lp-error estimate for linear interpolation.
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Theorem 3.2. Let π1v(x) be the linear interpolant of the function v(x) on
(a, b). Then, assuming that v is twice continuously differetiable (v ∈ C2(a, b)),
there are interpolation constants ci such that for p = 1, 2, ∞,

‖π1v − v‖Lp(a,b) ≤ ci(b − a)2‖v′′‖Lp(a,b), (3.1.14)

‖(π1v)′ − v′‖Lp(a,b) ≤ ci(b − a)‖v′′‖Lp(a,b), (3.1.15)

‖π1v − v‖Lp(a,b) ≤ ci(b − a)‖v′‖Lp(a,b). (3.1.16)

For p = ∞ this is just the previous Theorem 3.1.

Proof. For p = 1, 2, the proof uses the integral form of the Taylor expansion
and is left as an exercise.

Below we review a simple piecewise linear interpolation procedure on a
partition of an interval:

Vector space of piecewise linear functions on an interval. Given
I = [a, b], let Th : a = x0 < x1 < x2 < . . . < xN−1 < xN = b be a
partition of I into subintervals Ij = [xj−1, xj] of length hj = |Ij| := xj −xj−1;
j = 1, 2, . . . , N . Let

Vh := {v|v is a continuous, piecewise linear function on Th}, (3.1.17)

then Vh is a vector space with the previously introduced hat functions:
{ϕj}N

j=0 as basis functions. Note that ϕ0(x) and ϕN(x) are left and right
half-hat functions, respectively. We now show that every function in Vh is a
linear combination of ϕj:s.

Lemma 3.1. We have that

∀v ∈ Vh; v(x) =
N∑

j=0

v(xj)ϕj(x), =⇒
(
dimVh = N + 1

)
. (3.1.18)

Proof. Both the left and right hand side are continuous piecewise linear func-
tions. Thus it suffices to show that they have the same nodal values: Let
x = xj, then since ϕi(xj) = δij,

RHS|xj
=v(x0)ϕ0(xj) + v(x1)ϕ1(xj) + . . . + v(xj−1)ϕj−1(xj)

+ v(xj)ϕj(xj) + v(xj+1)ϕj+1(xj) + . . . + v(xN)ϕN(xj)

=v(xj) = LHS|xj
.

(3.1.19)
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Definition 3.3. For a partition Th : a = x0 < x1 < x2 < . . . < xN = b of
the interval [a, b] we define the mesh function h(x) as the piecewise constant
function h(x) := hj = xj − xj−1 for x ∈ Ij = (xj−1, xj), j = 1, 2, . . . , N .

Definition 3.4. Assume that f is a continuous function in [a, b]. Then the
continuous piecewise linear interpolant of f is defined by

πhf(x) =
N∑

j=0

f(xj)ϕj(x), x ∈ [a, b],

where

πhf(xj) = f(xj), j = 0, 1, . . . , N. (3.1.20)

Here the sub-index h refers to the mesh function h(x).

Remark 3.3. Note that we denote the linear interpolant, defined for a single
interval [a, b], by π1f which is a polynomial of degree 1, whereas the piecewise
linear interpolant πhf is defined for a partition Th of [a, b] and is a continu-
ous, piecewise linear function. For the piecewise polynomial interpolants of
(higher) degree q we shall use the notation for Cardinal functions of Lagrange
interpolation (see Section 3.2).

Note that for each interval Ij, j = 1, . . . , N , we have that

(i) πhf(x) is linear on Ij =⇒ πhf(x) = c0 + c1x for x ∈ Ij.

(ii) πhf(xj−1) = f(xj−1) and πhf(xj) = f(xj).

Combining (i) and (ii) we get the equation system





πhf(xj−1) = c0 + c1xj−1 = f(xj−1)

πhf(xj) = c0 + c1xj = f(xj)
=⇒





c1 =
f(xj)−f(xj−1)

xj−xj−1

c0 =
−xj−1f(xj)+xjf(xj−1)

xj−xj−1
,

Thus, we may write





c0 = f(xj−1)
xj

xj−xj−1
+ f(xj)

−xj−1

xj−xj−1

c1x = f(xj−1)
−x

xj−xj−1
+ f(xj)

x
xj−xj−1

.
(3.1.21)
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x0 x1 x2

f(x)πhf(x)

xj xN−1 xN

x

Figure 3.3: Piecewise linear interpolant πhf(x) of f(x).

For xj−1 ≤ x ≤ xj, j = 1, 2, . . . , N , adding up the equations in (3.1.21)
yields

πhf(x) = c0 + c1x = f(xj−1)
xj − x

xj − xj−1

+ f(xj)
x − xj−1

xj − xj−1

= f(xj−1)λj−1(x) + f(xj)λj(x),

where λj−1(x) and λj(x) are the restrictions of the piecewise linear basis
functions ϕj−1(x) and ϕj(x) to Ij.

1

xj−1 xj

x

λj−1(x) =
xj−x

xj−xj−1

λj(x) =
x−xj−1

xj−xj−1

Figure 3.4: Linear Lagrange basis functions for q = 1 on the subinterval Ij.

In the next section we generalize the above procedure and introduce La-
grange interpolation basis functions.

The main result of this section can be stated as follows:
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Theorem 3.3. Let πhv(x) be the piecewise linear interpolant of the function
v(x) on the partition Th of [0, T ]. Then assuming that v is sufficiently regular
(v ∈ C2(a, b)), there are interpolation constants ci such that for p = 1, 2, ∞,

‖πhv − v‖Lp(a,b) ≤ ci‖h2v′′‖Lp(a,b), (3.1.22)

‖(πhv)′ − v′‖Lp(a,b) ≤ ci‖hv′′‖Lp(a,b), (3.1.23)

‖πhv − v‖Lp(a,b) ≤ ci‖hv′‖Lp(a,b). (3.1.24)

Proof. Recalling the definition of the partition Th, we may write

‖πhv − v‖p
Lp(a,b) =

N+1∑

j=0

‖πhv − v‖p
Lp(Ij)

≤
N+1∑

j=0

cp
i ‖h2

jv
′′‖Lp(Ij)

≤ cp
i ‖h2v′′‖Lp(a,b),

(3.1.25)

where in the first inequality we apply Theorem 3.2 to an arbitrary partition
interval Ij and them sum over j. The other two estimates are proved similarly.

3.2 Lagrange interpolation

Consider Pq(a, b); the vector space of all polynomials of degree ≤ q on the
interval (a, b), with the basis functions 1, x, x2, . . . , xq. We have seen, in
Chapter 2, that this is a non-orthogonal basis (with respect to the scalar
product (3.1.5) with, e.g. a = 0 and b = 1) that leads to ill-conditioned
coefficient matrices. We will now introduce a new set of basis functions,
which being almost orthogonal have some useful properties.

Definition 3.5 (Cardinal functions). Lagrange basis is the set of polynomials
{λi}q

i=0 ⊂ P q(a, b) associated with the (q + 1) distinct points, a = x0 < x1 <
. . . < xq = b in [a, b] and determined by the requirement that: at the nodes,
λi(xj) = 1 for i = j, and 0 otherwise (λi(xj) = 0 for i 6= j), i.e. for x ∈ [a, b],

λi(x) =
(x − x0)(x − x1) . . . (x − xi−1) ↓ (x − xi+1) . . . (x − xq)

(xi − x0)(xi − x1) . . . (xi − xi−1) ↑ (xi − xi+1) . . . (xi − xq)
. (3.2.1)

By the arrows ↓ , ↑ in (3.2.1) we want to emphasize that λi(x) =
∏

j 6=i

( x − xj

xi − xj

)
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does not contain the singular factor
x − xi

xi − xi

. Hence

λi(xj) =
(xj − x0)(xj − x1) . . . (xj − xi−1)(xj − xi+1) . . . (xj − xq)

(xi − x0)(xi − x1) . . . (xi − xi−1)(xi − xi+1) . . . (xi − xq)
= δij,

and λi(x), i = 0, 1, . . . , q, is a polynomial of degree q on (a, b) with

λi(xj) = δij =





1 i = j

0 i 6= j.
(3.2.2)

Example 3.2. Let q = 2, then we have a = x0 < x1 < x2 = b, where

i = 1, j = 2 ⇒ δ12 = λ1(x2) =
(x2 − x0)(x2 − x2)

(x1 − x0)(x1 − x2)
= 0

i = j = 1 ⇒ δ11 = λ1(x1) =
(x1 − x0)(x1 − x2)

(x1 − x0)(x1 − x2)
= 1.

A polynomial P (x) ∈ Pq(a, b) with the values pi = P (xi) at the nodes xi,
i = 0, 1, . . . , q, can be expressed in terms of the above Lagrange basis as

P (x) = p0λ0(x) + p1λ1(x) + . . . + pqλq(x). (3.2.3)

Using (3.2.2), P (xi) = p0λ0(xi)+p1λ1(xi)+. . .+piλi(xi)+. . .+pqλq(xi) = pi.
Recall that in the previous chapter, introducing examples of finite dimen-
sional linear spaces, we did construct Lagrange basis functions for q = 1:
λ0(x) = (x − ξ1)/(ξ0 − ξ1) and λ1(x) = (x − ξ0)/(ξ1 − ξ0), for an arbitrary
subinterval (ξ0, ξ1) ⊂ (a, b).

For a continuous function f(x) on (a, b), below we define the Lagrange
interpolation polynomial πqf ∈ P q(a, b).

Definition 3.6. Let a ≤ ξ0 < ξ1 < . . . < ξq ≤ b, be q + 1 distinct nodes on
[a, b]. Then, πqf ∈ Pq(a, b) interpolates f(x) at the nodes ξi, if

πqf(ξi) = f(ξi), i = 0, 1, . . . , q (3.2.4)

and the Lagrange formula (3.2.3) for πqf(x) reads as

πqf(x) = f(ξ0)λ0(x) + f(ξ1)λ1(x) + . . . + f(ξq)λq(x), a ≤ x ≤ b.
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Example 3.3. For q = 1, we have only the nodes a and b. Recall that

λa(x) =
b − x

b − a
and λb(x) =

x − a

b − a
, thus as in the introduction to this chapter

π1f(x) = f(a)λa(x) + f(b)λb(x). (3.2.5)

Example 3.4. To interpolate f(x) = x3 + 1 by piecewise polynomials of
degree 2, in the partition x0 = 0, x1 = 1, x2 = 2 of the interval [0, 2], we
have

π2f(x) = f(0)λ0(x) + f(1)λ1(x) + f(2)λ2(x),

where f(0) = 1, f(1) = 2, f(2) = 9, and we may compute Lagrange basis as

λ0(x) =
1

2
(x − 1)(x − 2), λ1(x) = −x(x − 2), λ2(x) =

1

2
x(x − 1).

This yields

π2f(x) = 1 · 1

2
(x − 1)(x − 2) − 2 · x(x − 2) + 9 · 1

2
x(x − 1) = 3x2 − 2x + 1.

Below we want to compare the Lagrange polynomial of degree q with
another well-known polynomial: namely the Taylor polynomial of degree q.

Definition 3.7 (Taylor’s Theorem). Suppose that the function f is q + 1-
times continuously differentiable at the point x0 ∈ (a, b). Then, f can be
expressed by a Taylor expansion about x0 as

f(x) = Tqf(x) + Rqf(x), (3.2.6)

where

Tqf(x) = f(x0)+f ′(x0)(x−x0)+
1

2
f ′′(x0)(x−x0)

2 + . . .+
1

q!
f (q)(x0)(x−x0)

q,

is the Taylor polynomial of degree q, approximating f and

Rqf(x) =
1

(q + 1)!
f (q+1)(ξ)(x − x0)

q+1, (3.2.7)

is the remainder term, where ξ is a point between x0 and x.
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Theorem 3.4. We have the following error estimates:
For the Taylor polynomial expansion Tqf(x) of f(x),

|f(x) − Tqf(x)| = |Rq(f)| ≤ 1

(q + 1)!
|x − x0|q+1 · max

x∈[a,b]
|f (q+1)(x)|,

which is of order q + 1 near x = x0.
Whereas for the Lagrange interpolant πqf(x) of f(x),

|f(x) − πqf(x)| ≤ 1

(q + 1)!

q∏

i=0

|x − xi| · max
x∈[a,b]

|f (q+1)(x)|,

which is of order 1 (the convergence rate is of order 1) at each interpolation
node x0, x1, . . . , xq.

Proof. The Taylor polynomial error follows immediately from (3.2.7). As for
the Lagrange interpolation error we note that at the node points xi we have
f(xi)−πqf(xi) = 0, for i = 0, 1, . . . , q. Thus, f(x)−πqf(x) has q+1 zeros in
[a, b] at the interpolation nodes xi and hence there is a function g(x) defined
on [a, b] such that

f(x) − πqf(x) = (x − x0)(x − x1) . . . (x − xq)g(x). (3.2.8)

To determine g(x) we define an auxiliary function ϕ by

ϕ(t) := f(t) − πqf(t) − (t − x0)(t − x1) . . . (t − xq)g(x). (3.2.9)

Note that g(x) is independent of t. ϕ(t) vanishes at the nodes xi, i = 0, . . . , q
as well as for t = x, i.e. ϕ(x0) = ϕ(x1) = . . . = ϕ(xq) = ϕ(x) = 0. Thus
ϕ(t) has (q + 2) roots in the interval [a, b]. Now by the Generalized Rolle’s
theorem (see below), there exists a point ξ ∈ (a, b) such that ϕ(q+1)(ξ) = 0.
Taking the (q + 1)-th derivative of the function ϕ(t), with respect to t, we
get using the fact that deg(πqf(x)) = q,

ϕ(q+1)(t) = f (q+1)(t) − 0 − (q + 1)!g(x), (3.2.10)

where the last term is due to (t − x0)(t − x1) . . . (t − xq) = tq+1 + αtq + . . .,
(for some constant α), and g(x) is independent of t. Thus

0 = ϕ(q+1)(ξ) = f (q+1)(ξ) − (q + 1)!g(x), (3.2.11)
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which yields

g(x) =
f (q+1)(ξ)

(q + 1)!
. (3.2.12)

Inserting g(x) in (3.2.8) we get the Lagrange interpolation error

E(x) = f(x) − πqf(x) =
f (q+1)(ξ)

(q + 1)!

q∏

i=0

(x − xi), (3.2.13)

and the proof is complete.

Theorem 3.5 (Generalized Rolle’s theorem). If a function u(x) ∈ Cq+1(a, b)
has (q + 2) roots, x0, x1, . . . , xq, x, in a closed interval [a, b], then there is a
point ξ ∈ (a, b), generated by x0, x1, . . . , xq, x, such that u(q+1)(ξ) = 0.

3.3 Numerical integration, Quadrature rule

In the finite element approximation procedure of solving differential equa-
tions, with a given source term (data) f(x), we need to evaluate, e.g. integrals

of the form
∫ b

a
f(x)ϕi(x), with ϕi(x) being a finite element basis function.

Such integrals are not easily computable for higher order approximations
(e.g. with ϕj:s being Lagrange basis of higher order) and more involved
data. Also, we encounter matrices with entries being the integrals of prod-
ucts of these higher order basis functions, their derivatives, as well as the
cases with equations having variable coefficients. Except some special cases
(see calculations for A and Aunif in the previous chapter), these integrals
may not be elementary and can only be computed approximately by using
numerical integration. Below we briefly review some of the most common
numerical integration techniques.

We approximate the integral I =
∫ b

a
f(x)dx using a partition of the in-

terval [a, b] into subintervals, where on each subinterval f is approximated
by polynomials of a certain degree d. We shall denote the approximate value
of the integral I by Id. To proceed we assume, without loss of generality,
that f(x) > 0 on [a, b] and that f is continuous on (a, b). Then the inte-

gral I =
∫ b

a
f(x)dx is interpreted as the area of the domain under the curve

y = f(x); limited by the x-axis and the lines x = a and x = b. We shall
approximate this area using the values of f at certain points as follows.

We start by approximating the integral over a single interval [a, b]. These
rules are referred to as simple rules.
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i) Simple midpoint rule uses the value of f at the midpoint x̄ := a+b
2

of [a, b],

i.e. f
(

a+b
2

)
. This means that f is approximated by the constant function

(polynomial of degree 0) P0(x) = f
(

a+b
2

)
and the area under the curve

y = f(x) by

I =

∫ b

a

f(x)dx ≈ (b − a)f
(a + b

2

)
. (3.3.1)

To prepare for generalizations, if we let x0 = a and x1 = b and assume that
the length of the interval is h, then

I ≈ I0 = hf
(
a +

h

2

)
= hf(x̄) (3.3.2)

a = x0

f(b)

a + h/2 b = x1

f(a)

P0(x)f(a + h/2)

x

Figure 3.5: Midpoint approximation I0 of the integral I =
∫ x1

x0
f(x)dx.

ii) Simple trapezoidal rule uses the values of f at two endpoints a and b, i.e.
f(a) and f(b). Here f is approximated by the linear function (polynomial

of degree 1) P1(x) passing through the two points
(
a, f(a)

)
and

(
b, f(b)

)
,

consequently, the area under the curve y = f(x) is approximated as

I =

∫ b

a

f(x)dx ≈ (b − a)
f(a) + f(b)

2
. (3.3.3)

This is the area of the trapezoidal between the lines y = 0, x = a and
x = b and under the graph of P1(x), and therefore is referred to as the simple
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trapezoidal rule. Once again, for the purpose of generalization, we let x0 = a,
x1 = b and assume that the length of the interval is h, then (3.3.3) can be
written as

I ≈ I1 =hf(a) +
h[f(a + h) − f(a)]

2
= h

f(a) + f(a + h)

2

=
h

2
[f(x0) + f(x1)].

(3.3.4)

a = x0

f(b)P1(x)

b = x1 = a + h

f(a)

x

Figure 3.6: Trapezoidal approximation I1 of the integral I =
∫ x1

x0
f(x)dx.

iii) Simple Simpson’s rule uses the values of f at the two endpoints a and b,

and the midpoint a+b
2

of the interval [a, b], i.e. f(a), f(b), and f
(

a+b
2

)
. In this

case the area under y = f(x) is approximated by the area under the graph of

the second degree polynomial P2(x); with P2(a) = f(a), P2

(
a+b
2

)
= f

(
a+b
2

)
,

and P2(b) = f(b). To determine P2(x) we may use Lagrange interpolation
for q = 2: let x0 = a, x1 = (a + b)/2 and x2 = b, then

P2(x) = f(x0)λ0(x) + f(x1)λ1(x) + f(x2)λ2(x), (3.3.5)

where 



λ0(x) = (x−x1)(x−x2)
(x0−x1)(x0−x2)

,

λ1(x) = (x−x0)(x−x2)
(x1−x0)(x1−x2)

,

λ2(x) = (x−x0)(x−x1)
(x2−x0)(x2−x1)

.

(3.3.6)
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Thus

I =

∫ b

a

f(x)dx ≈
∫ b

a

P2(x) dx =
2∑

i=0

f(xi)

∫ b

a

λi(x) dx. (3.3.7)

Now we can easily compute the integrals

∫ b

a

λ0(x) dx =

∫ b

a

λ2(x) dx =
b − a

6
,

∫ b

a

λ1(x) dx =
4(b − a)

6
. (3.3.8)

Hence

I =

∫ b

a

f(x)dx ≈ b − a

6
[f(x0) + 4f(x1) + f(x2)]. (3.3.9)

a = x0

f(b)

a + h/2 b = x1

f(x)

P2(x)

f(a)

x

Figure 3.7: Simpson’s rule approximation I2 of the integral I =
∫ x1

x0
f(x)dx.

Obviously these approximations are less accurate for large intervals, [a, b]
and/or oscillatory functions f . Following Riemann’s idea we can use these
rules, instead of on the whole interval [a, b], for the subintervals in an appro-
priate partition of [a, b]. Then we get the generalized versions.

3.3.1 Composite rules for uniform partitions

We shall use the following General algorithm to approximate the integral

I =

∫ b

a

f(x)dx.
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(1) Divide the interval [a, b], uniformly, into N subintervals

a = x0 < x1 < x2 < . . . < xN−1 < xN = b. (3.3.10)

(2) Write the integral as

∫ b

a

f(x)dx =

∫ x1

x0

f(x) dx + . . . +

∫ xN

xN−1

f(x) dx =
N∑

k=1

∫ xk

xk−1

f(x) dx.

(3.3.11)

(3) For each subinterval Ik := [xk−1, xk], k = 1, 2, . . . , N , apply the same
integration rule (i) − (iii). Then we get the following generalizations.

(M) Composite midpoint rule: approximates f by constants (the values of
f at the midpoint of the subinterval) on each subinterval. Let

h = |Ik| =
b − a

N
, and x̄k =

xk−1 + xk

2
, k = 1, 2, . . . , N.

Then, using the simple midpoint rule for the interval Ik := [xk−1, xk],
∫ xk

xk−1

f(x) dx ≈
∫ xk

xk−1

f(x̄k) dx = hf(x̄k). (3.3.12)

Summing over k, we get the Composite midpoint rule as:

∫ b

a

f(x)dx ≈
N∑

k=1

hf(x̄k) = h[f(x̄1) + . . . + f(x̄N)] := MN . (3.3.13)

(T) Composite trapezoidal rule: approximates f by simple trapezoidal rule
on each subinterval Ik,

∫ xk

xk−1

f(x) dx ≈ h

2
[f(xk−1) + f(xk)]. (3.3.14)

Summing over k yields the composite trapezoidal rule

∫ b

a

f(x)dx ≈
N∑

k=1

h

2
[f(xk−1) + f(xk)]

=
h

2
[f(x0) + 2f(x1) + . . . + 2f(xk−1) + f(xk)] := TN .

(3.3.15)
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(S) Composite Simpson’s rule: approximates f by simple Simpson’s rule
on each subinterval Ik,

∫ xk

xk−1

f(x) dx ≈ h

6

[
f(xk−1) + 4f

(xk−1 + xk

2

)
+ f(xk)

]
. (3.3.16)

To simplify, we introduce the following identification on each Ik:

z2k−2 = xk−1, z2k−1 =
xk−1 + xk

2
:= x̄k, z2k = xk, hz =

h

2
.

(3.3.17)

< >

a = z0

a = x0

z1

x̄1

z2

x1

z2k−2

xk−1

z2k−1

x̄k

z2k

xk

z2N = b

xN = b

hz

Figure 3.8: Identification of subintervals for composite Simpson’s rule

Then, summing (3.3.16) over k and using the above identification, we obtain
the composite Simpson’s rule viz,

∫ b

a

f(x)dx ≈
N∑

k=1

h

6

[
f(xk−1) + 4f

(xk−1 + xk

2

)
+ f(xk)

]

=
N∑

k=1

hz

3

[
f(z2k−2) + 4f(z2k−1) + f(z2k)

]

=
hz

3

[
f(z0) + 4f(z1) + 2f(z2) + 4f(z3) + 2f(z4)

+ . . . + 2f(z2N−2) + 4f(z2N−1) + f(z2N)
]

:= SN .

(3.3.18)
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The figure below illustrates the starting procedure for the composite Simp-
son’s rule. The numbers in the brackets indicate the actual coefficient on
each subinterval. For instance the end of the first interval : x1 = z2 coincides
with the start of the second one, resulting to the add-up [1] + [1] = 2 as the
coefficient of f(z2). This is the case for each interior node xk which are z2k:s;
for k = 1, . . . , N − 1.

z0

[1]

z1

[4]

z2

[1] + [1]

z3

[4]

z4

[1]

Figure 3.9: Coefficients for composite Simpson’s rule

Remark 3.4. One can verify that the errors of these integration rules are
depending on the regularity of the function and the size of interval (in simple
rules) and the mesh size (in the composite rules). These error estimates, for
both simple and composite quadrature rules, can be found in any elementary
text book in numerical linear algebra and/or numerical analysis are read as
follows:
Eroor in simple Midpoint rule

|
∫ xk

xk−1

f(x) dx − hf(x̄k)| =
h3

24
|f ′′(η)|, η ∈ (xk−1, xk).

Error in composite Midpoint rule

|
∫ b

a

f(x) dx − MN | =
h2(b − a)

24
|f ′′(ξ)|, ξ ∈ (a, b).

Eroor in simple trapezoidal rule

|
∫ xk

xk−1

f(x) dx − h

2
[f(x̄k−1 + f(xk)]| =

h3

12
|f ′′(η)|, η ∈ (xk−1, xk).
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Error in composite trapezoidal rule

|
∫ b

a

f(x) dx − TN | =
h2(b − a)

12
|f ′′(ξ)|, ξ ∈ (a, b).

Eroor in simple Simpson’s rule

|
∫ b

a

f(x) dx−b − a

6
[f(a)+4f((a+b)/2)+f(b)]| =

1

90

(b − a

2

)5

|f (4)(η)|, η ∈ (a, b).

Error in composite Simpson’s rule

|
∫ b

a

f(x) dx − SN | =
h4(b − a)

180
max
ξ∈[a,b]

|f 4(ξ)|, h = (b − a)/N.

Remark 3.5. The rules (M), (T) and (S) use values of the function at
equally spaced points. These are not always the best approximation methods.
Below we introduce a general and more optimal approach.

3.3.2 Gauss quadrature rule

This is an approximate integration rule aimed to choose the points of eval-
uation of an integrand f in an optimal manner, not necessarily at equally
spaced points. Here, first we illustrate this rule by an example and then
construct and prove a general approach.

Problem: Choose the nodes xi ∈ [a, b], and coefficients ci, 1 ≤ i ≤ n such
that, for an arbitrary integrable function f , the following error is minimal:

∫ b

a

f(x)dx −
n∑

i=1

cif(xi). (3.3.19)

Solution. The relation (3.3.19) contains 2n unknowns consisting of n nodes
xi and n coefficients ci. Therefore we need 2n equations. Thus if we replace
f by a polynomial, then an optimal choice of these 2n parameters yields a
quadrature rule (3.3.19) which is exact for polynomials, f , of degree ≤ 2n−1.

Example 3.5. Let n = 2 and [a, b] = [−1, 1]. Then the coefficients are c1 and
c2 and the nodes are x1 and x2. Thus optimal choice of these 4 parameters
should yield that the approximation

∫ 1

−1

f(x)dx ≈ c1f(x1) + c2f(x2), (3.3.20)
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is indeed exact for f(x) replaced by any polynomial of degree ≤ 3. So, we
replace f by a polynomial of the form f(x) = Ax3+Bx2+Cx+D and require
equality in (3.3.20). Thus, to determine the coefficients c1, c2 and the nodes
x1, x2, in an optimal way, it suffices to change the above approximation to
equality when f is replaced by the basis functions for polynomials of degree
≤ 3: i.e. 1, x, x2 and x3. Consequently we get the equation system

∫ 1

−1

1dx = c1 + c2 and we get [x]1−1 = 2 = c1 + c2

∫ 1

−1

xdx = c1 · x1 + c2 · x2 and
[x2

2

]1

−1
= 0 = c1 · x1 + c2 · x2

∫ 1

−1

x2dx = c1 · x2
1 + c2 · x2

2 and
[x3

3

]1

−1
=

2

3
= c1 · x2

1 + c2 · x2
2

∫ 1

−1

x3dx = c1 · x3
1 + c2 · x3

2 and
[x4

4

]1

−1
= 0 = c1 · x3

1 + c2 · x3
2,

(3.3.21)

which, although nonlinear, has the unique solution presented below:





c1 + c2 = 2

c1x1 + c2x2 = 0

c1x
2
1 + c2x

2
2 = 2

3

c1x
3
1 + c2x

3
2 = 0

=⇒





c1 = 1

c2 = 1

x1 = −
√

3
3

x2 =
√

3
3

.

(3.3.22)

Hence, the approximation

∫ 1

−1

f(x)dx ≈ c1f(x1) + c2f(x2) = f
(
−

√
3

3

)
+ f

(√3

3

)
, (3.3.23)

is exact for all polynomials of degree ≤ 3.

Example 3.6. Let f(x) = 3x2 + 2x + 1. Then
∫ 1

−1
(3x2 + 2x + 1)dx =

[x3 + x2 + x]1−1 = 4, and we can easily check that f(−
√

3/3) + f(
√

3/3) = 4.

Higher order Gauss quadrature. To generalize the Gauss quadrature
rule, on an interval and to n > 2, Legendre polynomials are used. To illus-
trate, we choose {Pn}∞n=0 such that



82CHAPTER 3. INTERPOLATION, NUMERICAL INTEGRATION IN 1D

(1) For each n, Pn is a polynomial of degree n.

(2) Pn ⊥ Pm if m 6= n ⇐⇒
∫ 1

−1
Pn(x)Pm(x)dx = 0.

The Legendre polynomials, on [−1, 1], can be obtained through the formula;
(see Chapter 2, Overture),

Pn(x) =
1

2nn!

dn

dxn

(
(x2 − 1)n

)
.

Here are the few first Legendre polynomials:

P0(x) = 1, P1(x) = x, P2(x) =
3

2
x2 − 1

2
, P3(x) =

5

2
x3 − 3

2
x, . . . ,

The roots of Legendre polynomials are distinct, symmetric, with respect to
x = 0, and the correct choices as quadrature points, i.e. the roots of the
Legendre polynomial Pn (P0 = 1 is an exception) are our optimal quadrature
points xi, 1 ≤ i ≤ n (viz, Theorem 3.5 below).

Example 3.7. Roots of the Legendre polynomial as quadrature points:

P1(x) = x = 0.

P2(x) =
3

2
x2−1

2
= 0, gives x1,2 = ±

√
3

3
. (compare with the result above).

P3(x) =
5

2
x3 − 3

2
x = 0, gives x1 = 0, x2,3 = ±

√
3

5
.

Theorem 3.6. Suppose that xi, i = 1, 2, . . . , n, are the roots of the n-th
Legendre polynomial Pn and that

ci =

∫ 1

−1

n∏

j=1
j 6=i

( x − xj

xi − xj

)
dx,

where

λi(x) =
n∏

j=1
j 6=i

( x − xj

xi − xj

)
,

are the Lagrange basis functions with interpolation nodes xi. If we choose the
above (xi, ci) as nodes and coefficients (weights) of a Gauss quadrature rule
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on [−1, 1], and if f(x) is a polynomial of degree < 2n, then

∫ 1

−1

f(x)dx ≡
n∑

i=1

cif(xi), i.e. this quadrature approximation is exact for polynomials of

degree < 2n.

Proof. Consider a polynomial R(x) of degree < n. We can rewrite R(x) as
a (n − 1)-th degree Lagrange interpolation polynomial with its nodes at the
roots of the n-th Legendre polynomial Pn:

R(x) =
n∑

i=1

n∏

j=1
j 6=i

( x − xj

xi − xj

)
R(xi).

This representation of R(x) is exact, since for the error

E(x) =
1

n!
(x − x1)(x − x2) . . . (x − xn)R(n)(ξ), we have R(n)(ξ) ≡ 0.

(3.3.24)
Integrating we get

∫ 1

−1

R(x)dx =

∫ 1

−1

[ n∑

i=1

n∏

j=1
j 6=i

( x − xj

xi − xj

)
R(xi)

]
dx

=
n∑

i=1

[ ∫ 1

−1

n∏

j=1
j 6=i

( x − xj

xi − xj

)
dx

]
R(xi).

(3.3.25)

Hence, ∫ 1

−1

R(x)dx =
n∑

i=1

ciR(xi), (3.3.26)

which shows the assertion of Theorem for polynomials of degree < n.
Now consider a polynomial, P (x), of degree < 2n. Dividing P (x) by the

n-th Legendre polynomial Pn(x), we get

P (x) = Q(x) × Pn(x) + R(x), deg Q(x) < n, deg R(x) < n, (3.3.27)

and ∫ 1

−1

P (x)dx =

∫ 1

−1

Q(x)Pn(x)dx +

∫ 1

−1

R(x)dx. (3.3.28)
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Since P0(x), P1(x), . . . , Pn−1(x) are basis functions for Pn−1(−1, 1), Q(x) ⊥
Pn(x), ∀Q(x) with deg Q < n. Using (3.3.27) it follows that

∫ 1

−1

Q(x)Pn(x)dx = 0 =⇒
∫ 1

−1

P (x)dx =

∫ 1

−1

R(x)dx. (3.3.29)

Recall that, the xi’s are the roots of Pn(x), i.e. Pn(xi) = 0. Thus, once again
using (3.3.27), we get

P (xi) = Q(xi)Pn(xi) + R(xi) = R(xi). (3.3.30)

Hence, by (3.3.29), (3.3.26) and (3.3.30),

∫ 1

−1

P (x)dx =

∫ 1

−1

R(x)dx =
n∑

i=1

ciR(xi) =
n∑

i=1

ciP (xi), (3.3.31)

and the proof is complete.

3.4 Exercises

Problem 3.1. Use the expressions λa(x) = b−x
b−a

and λb(x) = x−a
b−a

to show
that

λa(x) + λb(x) = 1, aλa(x) + bλb(x) = x.

Give a geometric interpretation by plotting, λa(x), λb(x), λa(x) + λb(x),
aλa(x), bλb(x) and aλa(x) + bλb(x).

Problem 3.2. Let f : [0.1] → R be a Lipschitz continuous function. De-
termine the linear interpolant πf ∈ P(0, 1) and plot f and πf in the same
figure, when

(a) f(x) = x2, (b) f(x) = sin(πx).

Problem 3.3. Determine the linear interpolation of the function

f(x) =
1

π2
(x − π)2 − cos2(x − π

2
), −π ≤ x ≤ π.

where the interval [−π, π] is divided into 4 equal subintervals.

Problem 3.4. Assume that w′ ∈ L1(I). Let x, x̄ ∈ I = [a, b] and w(x̄) = 0.
Show that

|w(x)| ≤
∫

I

|w′|dx. (3.4.1)
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h

v

ϕ

a
x

b

Problem 3.5. Assume that v interpolates ϕ, at the points a and b.

Show, using (3.4.1) that

(i) |(ϕ − v)(x)| ≤
∫

I

|(ϕ − v)′| dx,

(ii) |(ϕ − v)′(x)| ≤
∫

I

|(ϕ − v)′′| dx =

∫

I

|ϕ′′| dx,

(iii) max
I

|ϕ − v| ≤ max
I

|h2ϕ′′|,

(iv)

∫

I

|ϕ − v| dx ≤
∫

I

|h2ϕ′′| dx,

(v) ‖ϕ − v‖I ≤ ‖h2ϕ′′‖I and ‖h−2(ϕ − v)‖I ≤ ‖ϕ′′‖I ,

where ‖w‖I =
(∫

I

w2 dx
)1/2

is the L2(I)-norm.

Problem 3.6. Use, in the above problem

v′ =
ϕ(b) − ϕ(a)

h
=

1

h

∫ b

a

ϕ′dx (ϕ′ is constant on I),

and show that

(vi) |(ϕ − v)(x)| ≤ 2

∫

I

|ϕ′| dx,

(vii)

∫

I

h−1|ϕ − v| dx ≤ 2

∫

I

|ϕ′| dx and ‖h−1(ϕ − v)‖ ≤ 2‖ϕ′‖I .
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v

ϕ

xa b
-

Problem 3.7. Let now v(t) be the constant interpolant of ϕ on I.

Show that ∫

I

h−1|ϕ − v| dx ≤
∫

I

|ϕ′| dx. (3.4.2)

Problem 3.8. Show that

Pq(a, b) := {p(x)|p(x) is a polynomial of degree ≤ q},

is a vector space but

P q(a, b) := {p(x)|p(x) is a polynomial of degree = q},

is not! a vector space.

Problem 3.9. Compute formulas for the linear interpolant of a continuous
function f through the points a and (b+a)/2. Plot the corresponding Lagrange
basis functions.

Problem 3.10. Prove the following interpolation error estimate:

||π1f − f ||L∞(a,b) ≤
1

8
(b − a)2||f ′′||L∞(a,b).

Hint: Using an scaling argument, it suffices to prove the inequality for [a, b] ≡
[0, 1].

Problem 3.11. Prove that any value of f on the sub-intervals, in a partition
of (a, b), can be used to define πhf satisfying the error bound

||f − πhf ||L∞(a,b) ≤ max
1≤i≤m+1

hi||f ′||L∞(Ii) = ||hf ′||L∞(a,b).

Prove that choosing the midpoint improves the bound by an extra factor 1/2.
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Problem 3.12. Compute and graph π4

(
e−8x2

)
on [−2, 2], which interpolates

e−8x2

at 5 equally spaced points in [−2, 2].

Problem 3.13. Write down a basis for the set of piecewise quadratic poly-
nomials W

(2)
h on a partition a = x0 < x1 < x2 < . . . < xm+1 = b of (a, b)

into subintervals Ii = (xi−1, xi), where

W
(q)
h = {v : v|Ii

∈ Pq(Ii), i = 1, . . . ,m + 1}.

Problem 3.14. Determine a set of basis functions for the space of continuous
piecewise quadratic functions V

(2)
h on I = (a, b), where

V
(q)
h = {v ∈ W

(q)
h : v is continuous on I}.

Problem 3.15. Prove that
∫ x1

x0

f ′
(x1 + x0

2

)(
x − x1 + x0

2

)
dx = 0.

Problem 3.16. Prove that

∣∣∣
∫ x1

x0

f(x) dx − f
(x1 + x0

2

)
(x − x0)

∣∣∣

≤ 1

2
max
[x0,x1]

|f ′′|
∫ x1

x0

(
x − x1 + x0

2

)2

dx ≤ 1

24
(x1 − x0)

3 max
[x0,x1]

|f ′′|.

Hint: Use Taylor expansion of f about x = x1+x2

2
.
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Chapter 4

Linear Systems of Equations

We have seen that the numerical solution of a differential equation, e.g. using
the Galerkin finite element method, is an approximation of the exact solution
with a function in a finite dimensional vector space. If the differential equation is
linear (see the Definition 1.3), then the procedure ends solving a linear system of
equations of the form Ax = b, where the coefficient matrix A is a square matrix
of the same order as the dimension of the approximation space, and is related
to the differential operator in the equation, x is a vector in the approximation
space with entries consisting of certain nodal values of the approximate solution,
and the vector b is related to the data and basis functions of the approximation
space.

The criterion for the quality of a numerical method, to solve a certain prob-
lem, lies in its potential of convergence of the approximate solution to the exact
one in an adequate measuring environment (norm). Quantitatively, this is ex-
pressed by “how fast” the approximate solution would converge to the exact
solution by increasing the approximation degree (the dimension of the approxi-
mation space), which is a theoretical procedure. In computations however, with
an already justified convergence, it is important to have a numerical algorithm
that solves the approximate problem reasonably fast (takes shorter time which
may be achieved, e.g. by taking a fewer number of approximation points).

This chapter is devoted to the numerical solution of linear systems of
equations of type Ax = b. Throughout this chapter we assume that detA 6=
0, i.e. the matrix A is invertible. Then Ax = b ⇔ x = A−1b, but we
wish to circumvent inverting the matrix A. To this approach we shall review

89
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the well-known direct method of Gauss elimination and then continue with
some more efficient iterative methods. A thorough study of this type is in
the realm of numerical linear algebra where the solution of linear systems of
equations is undoubtedly one of the most applied tools.

4.1 Direct methods

Consider the general form of an n × n linear system of equations given by

Ax = b ⇔ ∑n
j=1 aijxj = bi,

i = 1, . . . , n,
or





a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = b2

. . .

an1x1 + an2x2 + . . . + annxn = bn.

We introduce the extended n × (n + 1) coefficient matrix E consisting of
the coefficient matrix A enlarged by putting the right hand side b as the
additional last column:

E :=




a11 a12 . . . a1n b1

a21 a22 . . . a2n b2

. . . . . . . . . . . . . . .

an1 an2 . . . ann bn




. (4.1.1)

Note that to solve the equation system Ax = b, it is a bad idea to calculate
A−1 and then multiply by b. However, if A is an upper (or lower) triangular
matrix, i.e., if aij = 0 for i > j (or i < j), and A is invertible, then we can
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solve x using the back substitution method:





a11x1 + a12x2 + . . . + a1nxn = b1

a22x2 + . . . + a2nxn = b2

. . . . . . . . .

. . . . . . . . .

an−1,n−1xn−1 + an−1,nxn = bn−1

annxn = bn,

(4.1.2)

which yields 



x1 =
1

a11

[b1 − a12x2 − . . . − a1nxn]

. . . . . . . . .

. . . . . . . . .

xn−1 =
1

an−1,n−1

[bn−1 − an−1,nxn]

xn =
bn

ann

.

(4.1.3)

Number of operations. The speed of convergence depends on the number
of operations performed during the computations. In the above procedure
additions and subtractions are not considered as time consuming operations,
therefore we shall count only the number of multiplications and divisions.
• The number of multiplications to solve for xn from (4.1.3) is zero and the
number of divisions is one.
• To solve for xn−1 we need one multiplication and one division.
• To solve for x1 we need (n − 1) multiplication and one division.
Thus to solve the triangular linear system of equations given by (4.1.2) we
shall need

1 + 2 + . . . + (n − 1) =
n(n − 1)

2
:=

n2

2
+ Q(n),

multiplications, where Q(n) is a remainder of order n, and n divisions.
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Gaussian elimination method. This method is based on the following
obvious facts expressing that: a solution to a linear system of equations is
not changed under elementary row operations. These are

(i) interchanging two equations

(ii) adding a multiple of one equation to another

(iii) multiplying an equation by a nonzero constant.

The Gauss elimination procedure is based on splitting the coefficient matrix
A to two factors, an upper triangular matrix U and a lower triangular matrix
L, known as LU factorization. Below are examples of 3×3 dimensional upper
triangular matrix U , lower triangular matrix L and diagonal matrix D,

U =




a b c

0 d e

0 0 f


 , L =




a 0 0

g d 0

h i f


 , D =




a 0 0

0 d 0

0 0 f


 .

Of course some of the entries a, b, . . . , i above may also be zero. To perform
the Gauss elimination procedure, we start from the first row of the coefficient
matrix of the equation system and use elementary row operations to eliminate
the elements ai1, i > 1, under a11 (make ai1 = 0).

Remark 4.1. If a11 = 0, then we interchange equations, and replace the first
equation by an equation in the system with ai1 6= 0.

The equation system corresponding to this newly obtained matrix Ã with
elements ãij, and where ãi1 = 0, i > 1, has the same solution as the original
one. We repeat the same procedure of elementary row operations to eliminate
the elements ãi2, i > 2, from the matrix Ã. Continuing in this way, we obtain
an upper triangular matrix U with a corresponding equation system which
is equivalent to the original system (has the same solution). Below we shall
illustrate this procedure through an example.

Example 4.1. Solve the linear system of equations




2x1 + x2 + x3 = 2

4x1 − x2 + 3x3 = 0

2x1 + 6x2 − 2x3 = 10.

(4.1.4)
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In the extended coefficient matrix:

E =




2 1 1 | 2

4 −1 3 | 0

2 6 −2 | 10


 , (4.1.5)

we have that a11 = 2, a21 = 4, and a31 = 2. We introduce the multipliers
mi1, i > 1 by letting

m21 =
a21

a11

=
4

2
= 2 m31 =

a31

a11

=
2

2
= 1. (4.1.6)

Now we multiply the first row by m21 and then subtract it from row 2 and
replace the result in row 2:




2 1 1 | 2

4 −1 3 | 0

2 6 −2 | 10




·(−2)

=⇒




2 1 1 | 2

0 −3 1 | −4

2 6 −2 | 10


 (4.1.7)

Similarly we multiply the first row by m31 = 1, subtract it from row 3, and
replace the result in row 3:

Ẽ :=




2 1 1 | 2

0 −3 1 | −4

0 5 −3 | 8


 . (4.1.8)

In this setting we have ã22 = −3 and ã32 = 5. Now we let m32 = ã32/ã22 =
−5/3, then multiplying the second row in Ẽ by m32 and subtracting the result
from row 3 yields 



2 1 1 | 2

0 −3 1 | −4

0 0 −4

3
| 4

3


 , (4.1.9)
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where we have obtained the upper triangular matrix

U =




2 1 1

0 −3 1

0 0 −4

3


 . (4.1.10)

The new equivalent equation system is





2x1 + x2 + x3 = 2

−3x2 + x3 = −4

−4

3
x3 = 4

3

(4.1.11)

with the solution x1 = 1, x2 = 1 and x3 = −1 which, as we can verify, is
also the solution of the original equation system (4.1.4).

Remark 4.2. For an n×n matrix A, the number of operation in the Gauss
elimination procedure, leading to an upper triangular matrix U , is of order
O(n3). Recall that the number of operations to solve an n×n upper triangular
system is O(n2). Therefore the total number of operations to solve an n × n
linear system of equations using the Gauss elimination is of order O(n3).

Definition 4.1. We define the lower triangular matrices:

L1 =




1 0 0

−m21 1 0

−m31 0 1


 , L2 =




1 0 0

0 1 0

0 −m32 1


 and L =




1 0 0

m21 1 0

m31 m32 1


 ,

where m21, m31 and m32 are the multipliers. The matrices L1, L2 and L are
unit (ones on the diagonal) lower triangular 3× 3-matrices with the property
that

L = (L2L1)
−1 = L−1

1 L−1
2 , and A = LU. (4.1.12)

Example 4.2. Continuing the previous example, we have m21 = 2,m31 = 1
and m32 = −5/3, consequently
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L1 =




1 0 0

−2 1 0

−1 0 1


 , L2 =




1 0 0

0 1 0

0
5

3
1


 and L =




1 0 0

2 1 0

1 −5

3
1


 .

Thus

L1A =




1 0 0

−2 1 0

−1 0 1







2 1 1

4 −1 3

2 6 −2


 =




2 1 1

0 −3 1

0 5 −3


 = Ã,

which corresponds to the first two elementary row operations in the Gaussian
elimination. Further

L2L1A =




1 0 0

0 1 0

0
5

3
1







2 1 1

0 −3 1

0 5 −3


 =




2 1 1

0 −3 1

0 0 −4

3


 = U,

which corresponds to the last (third) elementary row operation performed in
the previous example.

Note that, the last relation means also

A = (L2L1)
−1U = LU.

In the general setting we have the following result:

Proposition 4.1. The n × n unit lower triangular matrix L is given by

L = (Ln−1Ln−2 . . . L1)
−1,

where Li, i = 1, . . . , n−1 are the corresponding n×n row-operation matrices,
viz example above. For n = 3 we have (L2L1)

−1 = L, where

L =




1 0 0

m21 1 0

m31 m32 1


 ,

and mij are the multipliers defined above.
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LU factorization of an n × n matrix A

To generalize the above procedure from the 3 × 3 case, to an n × n linear
system of equations we use the factorization A = LU of the coefficient matrix
A, where L is a unit lower triangular matrix and U is an upper triangular
matrix obtained from A by Gaussian elimination.
To solve the system Ax = b, assuming we have an LU factorization, we let
y = Ux, and first solve Ly = b by forward substitution (from the first row
to the last) and obtain the vector y, then using y as the known right hand
side finally we solve Ux = y by backward substitution (from the last row to
the first) and get the solution x.

Thus

Ax = b ⇐⇒ (LU)x = b ⇐⇒ L(Ux) = b

⇐⇒ (Ly = b ∧ Ux = y).

Observe that, in the Gauss elimination procedure, Ly = b is solved “by
automatic”, viz

y = L−1b = L2L1b.

Then, we solve

Ux = L2L1Ax = L2L1b = L−1b = y,

by backward substitution.

Below we illustrate this procedure through an example.

Example 4.3. We return to the previous example where we have that

L =




1 0 0

2 1 0

1 −5

3
1


 and b =




2

0

10


 .

• Ly = b yields the system of equations




1 0 0

2 1 0

1 −5

3
1







y1

y2

y3


 =




2

0

10


 ⇐⇒





y1 = 2

2y1 + y2 = 0

y1 −
5

3
y2 + y3 = 10.
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Using forward substitution we get y1 = 2, y2 = −4, y3 = 4/3. Further with

U =




2 1 1

0 −3 1

0 0 −4

3


 and y =




2

−4
4

3


 .

• Ux = y yields




2 1 1

0 −3 1

0 0 −4

3







x1

x2

x3


 =




2

−4
4

3


 ⇐⇒





2x1 + x2 + x3 = 2

− 3x2 + x3 = −4

−4

3
x3 =

4

3
.

Using backward substitution, we get the solution: x1 = 1, x2 = 1, x3 = −1.

Remark 4.3. In some cases we can predict the solubility of an equation
system: Let A be an n × n matrix. Then we have the following properties:
• If det(A) 6= 0, then the system of equations Ax = b has a unique solution,
given by x = A−1b.
• A has an LU factorization if det(∆k) 6= 0, k = 1, . . . , n− 1, where ∆k is
Sylvester’s matrix:

∆k =




a11 . . . a1k

. . . . . . . . .

ak1 . . . akk


 .

• If the LU factorization exists and det(A) 6= 0, then the LU factorization is
unique and det(A) = U11 · . . . · Unn.

In particular for the “symmetric matrices” we have:

Theorem 4.1 (Cholesky’s method). Let A be a symmetric matrix, (aij =
aji), then the following statements are equivalent:

(i) A is positive definite.

(ii) The eigenvalues of A are positive.

(iii) Sylvester’s criterion: det(∆k) > 0 for k = 1, 2, . . . , n.
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(iv) A = LLT where L is lower triangular and has positive diagonal ele-
ments. (Cholesky factorization)

We do not give a proof of this theorem. The interested reader is referred
to literature in linear algebra and matrix theory, e.g. G. Golub [24].

4.2 Iterative methods

To speed up the solution procedure, instead of solving Ax = b directly,
for the exact solution x, we consider iterative solution methods based on
computing a sequence of approximations x(k), k = 1, 2, . . . such that

lim
k→∞

x(k) = x or lim
k→∞

‖x(k) − x‖ = 0, for some matrix norm.

Example 4.4. For an n×n matrix A, L1 and L∞ matrix norms are defined
by

||A||1 = max
j

n∑

i=1

|aij|,

||A||∞ = max
i

n∑

j=1

|aij|.

Thus consider the general n×n linear system of equations Ax = b, where
both the coefficient matrix A and the vector b have real entries,

Ax = b ⇐⇒





a11x1 +a12x2 + . . . +a1nxn = b1

a2,1x1 +a22x2 . . . +a2nxn = b2

. . . . . . + . . . . . . . . .

an1x1 + . . . + . . . +annxn = bn.

(4.2.1)

For the system (4.2.1) we shall introduce the two main iterative methods.
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Jacobi iteration: Assume that aii 6= 0, then (4.2.1) can be rewritten as:





x1 = − 1

a11

[a12x2 + a13x3 + . . . + a1nxn − b1]

x2 = − 1

a22

[a21x1 + a23x3 + . . . + a2nxn − b2]

. . .

xn = − 1

ann

[an1x1 + an2x2 + . . . + an,n−1xn−1 − bn].

We start with a given initial approximation for the solution, viz

x(0) = (x
(0)
1 = c1, x

(0)
2 = c2, . . . , x(0)

n = cn),

and, based on the above system, define a successive iteration procedure, for
k = 0, 1, 2, . . . , as:




x
(k+1)
1 = − 1

a11

[a12x
(k)
2 + a13x

(k)
3 + . . . + a1nx(k)

n − b1]

x
(k+1)
2 = − 1

a22

[a21x
(k)
1 + a23x

(k)
3 + . . . + a2nx(k)

n − b2]

. . . . . . . . .

x(k+1)
n = − 1

ann

[an1x
(k)
1 + an2x

(k)
2 + . . . + an,n−1x

(k)
n−1 − bn],

or in compact form in Jacobi coordinates, by





n∑

j=1

aijxj = bi ⇐⇒ aiixi = −
n∑

j=1
j 6=i

aijxj + bi,

aiix
(k+1)
i = −

n∑

j=1
j 6=i

aijx
(k)
j + bi.

(4.2.2)

If n is large and the number of iterations are small (< n), then the Jacobi
method requires less operations than the usual Gauss elimination method.
Below we state a convergence criterion (the proof is left as an exercise).



100 CHAPTER 4. LINEAR SYSTEMS OF EQUATIONS

Convergence criterion:
The Jacobi method gives convergence to the exact solution if the matrix A
is strictly diagonally dominant, i.e.

|aii| >

n∑

j=1
j 6=i

|aij| i = 1, 2, . . . , n. (4.2.3)

Problem 4.1. Show that A =




4 2 1

1 5 1

0 1 3


 is diagonally dominant.

Example 4.5. Solve Ax = b where A =


 2 −1

−1 2


 and b =


 1

1


.

A is diagonally dominant and the matrix equation Ax = b is equivalent to
the linear equation system





2x1 − x2 = 1

−x1 + 2x2 = 1.
(4.2.4)

We choose zero initial values for x1 and x2, i.e. x
(0)
1 = 0 and x

(0)
2 = 0 and

use (4.2.4) to build the Jacobi iteration system




2x
(k+1)
1 = x

(k)
2 + 1

2x
(k+1)
2 = x

(k)
1 + 1,

(4.2.5)

where k is the iteration step. Then we have




2x
(1)
1 = x

(0)
2 + 1

2x
(1)
2 = x

(0)
1 + 1

with the solution





x
(1)
1 = 1/2

x
(1)
2 = 1/2.

(4.2.6)

In the next iteration step:




2x
(2)
1 = x

(1)
2 + 1

2x
(2)
2 = x

(1)
1 + 1

⇒





2x
(2)
1 = 1/2 + 1

2x
(2)
2 = 1/2 + 1

⇒





x
(2)
1 = 3/4

x
(2)
2 = 3/4.

(4.2.7)
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Continuing we obviously have lim
k→∞

x
(k)
i = xi, i = 1, 2, where x1 = x2 = 1.

Below we show the first few iterations giving the corresponding x
(k)
1 and x

(k)
2

values

k x
(k)
1 x

(k)
2

0 0 0

1 1/2 1/2

2 3/4 3/4

3 7/8 7/8

Now if we use the maximum norm: ‖ek‖∞ := max
i=1,2

|x(k)
i − xi|, then

‖e0‖∞ = max(|x(0)
1 − x1|, |x(0)

2 − x2|) = max
(∣∣∣0 − 1

∣∣∣,
∣∣∣0 − 1

∣∣∣
)

= 1

‖e1‖∞ = max(|x(1)
1 − x1|, |x(1)

2 − x2|) = max
(∣∣∣

1

2
− 1

∣∣∣,
∣∣∣
1

2
− 1

∣∣∣
)

=
1

2

‖e2‖∞ = max(|x(2)
1 − x1|, |x(2)

2 − x2|) = max
(∣∣∣

3

4
− 1

∣∣∣,
∣∣∣
3

4
− 1

∣∣∣
)

=
1

4

‖e3‖∞ = max(|x(3)
1 − x1|, x(3)

2 − x2|) = max
(∣∣∣

7

8
− 1

∣∣∣,
∣∣∣
7

8
− 1

∣∣∣
)

=
1

8
.

In this way ‖ek+1‖∞ =
1

2
‖ek‖∞, where ek is the error in step k ≥ 0. Iterating,

we see that for the k-th Jacobi iteration the convergence rate is
(1

2

)k

:

‖ek‖∞ =
1

2
‖ek−1‖∞ =

(1

2

)2

‖ek−2‖∞ = . . . =
(1

2

)k

‖e0‖∞ =
(
1/2

)k

.

Gauss-Seidel iteration
We start again with an initial approximation of the solution of the form

x ≈
(
x

(0)
1 , x

(0)
2 , . . . , x(0)

n

)
.
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Here we use the fact that the first row in the k-th Jacobi iteration gives
x

(k+1)
1 and in the i+ 1-th row x

(k+1)
1 , . . . , x

(k+1)
i are already computed values

given on the left hand sides of the previous (first i) rows. Then, the idea
in the Gauss-Seidel procedure is: that, in the very same iteration step, one
simultaneously inserts these previously computed values. More specifically
the Gauss-Seidel iteration steps are given by:




x
(k+1)
1 =

−1

a11

[a12x
(k)
2 + a13x

(k)
3 + . . . + a1nx(k)

n − b1]

x
(k+1)
2 =

−1

a22

[a21x
(k+1)
1 + a23x

(k)
3 + . . . + a2nx

(k)
n − b2]

. . .

x
(k+1)
n−1 =

−1

an−1,n−1

[an−1,1x
(k+1)
1 + . . . + an−1,n−2x

(k+1)
n−2 + an−1,nx(k)

n − bn−1]

x(k+1)
n =

−1

ann

[an1x
(k+1)
1 + an2x

(k+1)
2 + . . . + an,n−1x

(k+1)
n−1 − bn],

or in a compact form in Gauss-Seidel coordinates, as

Ax = b ⇐⇒
n∑

j=1

aijxj = bi ⇐⇒
i∑

j=1

aijxj +
n∑

j=i+1

aijxj = bi. (4.2.8)

Therefore the iterative form for the Gauss-Seidel method is given by




∑i
j=1 aijx

(k+1)
j = −

∑n
j=i+1 aijx

(k)
j + bi ⇐⇒

aiix
(k+1)
i = −∑i−1

j=1 aijx
(k+1)
j − ∑n

j=i+1 aijx
(k)
j + bi.

(4.2.9)

Example 4.6. We consider the same example as above: Ax = b with

A =


 2 −1

−1 2


 , x =


 x1

x2


 , and b =


 1

1


 .

Recall the Jacobi iteration system




2x
(k+1)
1 = x

(k)
2 + 1,

2x
(k+1)
2 = x

(k)
1 + 1.

(4.2.10)
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The corresponding Gauss-Seidel iteration system reads as follows:




2x
(k+1)
1 = x

(k)
2 + 1,

2x
(k+1)
2 = x

(k+1)
1 + 1.

(4.2.11)

We choose the same initial values for x1 and x2 as in the Jacobi iterations,
i.e. x

(0)
1 = 0, and x

(0)
2 = 0. Now the first equation in (4.2.11):

2x
(1)
1 = x

(0)
2 + 1 =⇒ x

(1)
1 =

1

2
.

Inserting this value of x
(1)
1 = 1

2
into the second equation in (4.2.11) yields

2x
(1)
2 = x

(1)
1 + 1 =⇒ 2x

(1)
2 =

1

2
+ 1 =⇒ x

(1)
2 =

3

4
.

Below we list the first few iteration steps for this Gauss-Seidel approach:

k x
(k)
1 x

(k)
2

0 0 0

1 1/2 3/4

2 7/8 15/16

3 31/32 63/64

Obviously lim
k→∞

x
(k)
1 = lim

k→∞
x

(k)
2 = 1. Now with ‖ek‖∞ = max

i=1,2
|x(k)

i − xi|, we

get the successive iteration errors:

‖e1‖∞ = max(|x(1)
1 − x1|, |x(1)

2 − x2|) = max
(∣∣∣

1

2
− 1

∣∣∣,
∣∣∣
3

4
− 1

∣∣∣
)

=
1

2

‖e2‖∞ = max
(∣∣∣

7

8
− 1

∣∣∣,
∣∣∣
15

16
− 1

∣∣∣
)

=
1

8
, ‖e3‖∞ = max

( 1

32
,

1

64

)
=

1

32
.

Thus for the Gauss-Seidel iteration ‖ek+1‖∞ =
1

4
‖ek‖∞, where ek is the error

for step k, and hence we can conclude that the Gauss-Seidel method converges
faster than the Jacobi method:

‖ek‖∞ =
1

4
‖ek−1‖∞ =

(1

4

)2

‖ek−2‖∞ = · · · =
(1

4

)k

‖e0‖∞ =
(1

4

)k

.
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The successive over-relaxation method (S.O.R.).
The S.O.R. method is a modified version of the Gauss-Seidel iteration. The
iteration procedure is given by

x
(k+1)
i = (1 − ω)x

(k)
i +

ω

aii

[
bi −

i−1∑

j=1

aijx
(k+1)
j −

n∑

j=i+1

aijx
(k)
j

]
(4.2.12)

For ω > 1 the method is called an over-relaxation method and if 0 < ω < 1,
it is referred to as an under-relaxation method. In the S.O.R. coordinates
we have

aiix
(k+1)
i = aiix

(k)
i − ω

( i−1∑

j=1

aijx
(k+1)
j +

n∑

j=i

aijx
(k)
j − bi

)
. (4.2.13)

Remark 4.4. Note that for ω = 1, (4.2.13) gives the Gauss-Seidel method.

Abstraction of iterative methods
In our procedures we have considered Ax = b and x = Bx + c as equivalent
linear systems of equations, where B is the iteration matrix and xk+1 =
Bxk + c.

Some advantages of iterative methods over direct methods are:
(i) Iterative methods are faster (depends on B, accuracy is required)
(ii) Iterative methods require less memory (sparsity of A can be preserved).

By a spars matrix we mean a matrix with most zero elements, i.e. a
matrix that has very few non-zero elements.

Questions: For a qualitative study of an iteration procedure the following
questions are of vital interest;

(Q1) For a given A, what is a good choice for B?
(Q2) When does x(k) → x?
(Q3) What is the rate of convergence?

The error at step k is ek = x(k)−x and that of step (k+1) is ek+1 = x(k+1)−x.
Then we have ek+1 = x(k+1)−x = (Bx(k)+c)−(Bx+c) = B(x(k)−x) = Bek.
Iterating, we have

ek = Bek−1 = B · Bek−2 = B3ek−3 = . . . = Bkek−k = Bk e0.
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Thus we have shown that ek = Bke0. Let now

L =




0 . . . . . . 0

a21 0 . . . 0

. . . . . . . . . . . .

an1 . . . an,n−1 0




, U =




0 a12 . . . a1n

. . . . . . . . . . . .

. . . . . . 0 an−1,n

0 . . . . . . 0




and

D =




a11 0 . . . 0

0 a22 0 . . .

. . . . . . . . . . . .

0 . . . 0 ann




,

then A = L + D + U . We can rewrite Ax = b as (L + D + U)x = b then
Dx = −(L + U)x + b, and we may reformulate the iterative methods as
follows.

Jacobi’s method

Dx(k+1) = −(L + U)x(k) + b ⇒ BJ = −D−1(L + U),

where BJ is the Jacobi iteration matrix.

Example 4.7. We consider the previous example and write the linear system
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in matrix form as x = BJx + c, i.e.





2x1 − x2 = 1

−x1 + 2x2 = 1
⇒





x1 =
1

2
x2 +

1

2

x2 =
1

2
x1 +

1

2

which in matrix form is


 x1

x2


 =


 0 1

2

1
2

0





 x1

x2


 +




1
2

1
2


 , where

x =


 x1

x2


 , BJ =


 0 1

2

1
2

0


 and c =




1
2

1
2


 .

Example 4.8. Determine the same matrix BJ by the formula:
BJ = −D−1(L + U),

A =


 2 −1

−1 2


 , L =


 0 0

−1 0


 , U =


 0 −1

0 0


 , D =


 2 0

0 2


 .

We can easily see that

D−1 =
1

2


 1 0

0 1


 ,

and thus

BJ = −D−1(L + U) = −1

2


 1 0

0 1





 0 −1

−1 0


 =

1

2


 0 1

1 0


 .

Gauss-Seidel’s method
As in the Jacobi case, we may write Ax = b as (L + D + U)x = b but now
we choose (L + D)x = −Ux + b. Similar to the previous procedure we then
have (L + D)x(k+1) = −Ux(k) + b, and then BGS = −(L + D)−1U , where
BGS stands for the Gauss-Seidel iteration matrix.
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Relaxation
Gauss-Seidel corresponds to (L + D)x = −Ux + b, thus the iteration proce-
dure is:

Dx(k+1) = Dx(k) − [Lx(k+1) + (D + U)x(k) − b].

Now we define the general relaxation procedure

x(k+1) = (1 − ω)x(k) + ωD−1
(
b − Lx(k+1) − Ux(k)

)
, (4.2.14)

where the coefficient of ω, in the second term, is just the right hand side of
Gauss-Seidel’s method: the term in the bracket in (4.2.12). We may rewrite
(4.2.14) as

(ωL + D)x(k+1) = [(1 − ω)D − ωU ]x(k) + ωb,

where ω is the relaxation parameter, (ω = 1 gives the Gauss-Seidel iteration).
Thus the relaxation iteration matrix is:

Bω = (ωL + D)−1[(1 − ω)D − ωU ].

4.3 Exercises

Problem 4.2. Illustrate the LU factorization for the matrix

A =




1 3 2

−2 −6 1

2 5 7


 .

Problem 4.3. Solve A4x = b for

A =


 −1 2

2 −3


 b =


 144

−233




Problem 4.4. Find the unique LDŨ factorization for the matrix

A =




1 1 −3

0 1 1

3 −1 1


 .
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Hint: First find the LU factorization of A. Then D is a diagonal matrix
with its diagonal elements being those of U . Ũ is an upper triangular matrix
obtained from U by replacing the diagonal elements of U by ones.

Problem 4.5. Show that every orthogonal 2 × 2 matrix is of the form

A1 =


 c s

−s c


 or A2 =


 c s

s −c


 ,

where c2 + s2 = 1

Problem 4.6. Find the LU factorization for the matrix A

A =




1 1 0 0

1 3 1 0

0 2 4 1

0 0 3 5




.

Problem 4.7. Solve the following system of equations

 4 −1

−1 4





 u1

u2


 =


 1

−3




using the following iteration methods and a starting value of u0 = (0, 0)T .
(a) Jacobi Method.
(b) Gauss-Seidel Method.
(c) Optimal SOR (you must compute the optimal value of ω = ω0 first).

Problem 4.8. Prove strict diagonal dominance (4.2.3) implies convergence
of Jacobi and Gauss-Seidel methods.

Hint: One may use fix-point iterations.

Problem 4.9. A is an orthogonal matrix if AT A = I (I being the identity
matrix). Show that for any vector v with ||v||2 = 1, the matrix I − vvT is
orthogonal.

Problem 4.10. Suppose that det(aij) = 0, but aii 6= 0 for all i. Prove that
the Jacobi’s method does not converge.
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Problem 4.11. Consider the N × N matrix A = (aij) defined by

aij =





−1 |i − j| = 1

1 i = j = 1

1 i = j = N

2 1 < i = j < N

a) Show that A is positive semi-definite, i.e. xT Ax ≥ 0 for all x ∈ RN .
b) Show that xT Ax = 0 if and only if x is a constant multiple of the one
vector (1, 1, . . . , 1)T .

Problem 4.12. We define the Lp-norm (p = 1, 2,∞) of a vector v as

‖v‖1 =
n∑

i=1

|vi|

‖v‖2 =
( n∑

i=1

|vi|2
)1/2

‖v‖∞ = max{|vi|; i = 1, . . . , n}.

Show that
‖v‖∞ ≤ ‖v‖2 ≤ ‖v‖1.
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Chapter 5

Two-point boundary value
problems

In this chapter we focus on finite element approximation procedure for two-
point boundary value problems (BVPs). For each problem we formulate a
corresponding variational formulation (VF) and a minimization problem (MP)
and prove that the solution to either of BVP, its VF and MP satisfies the other
two as well.

(BV P ) ” ⇐⇒ ” (V F ) ⇐⇒ (MP ).

We also prove a priori and a posteriori error estimates. The ⇐= in the
equivalence ” ⇐⇒ ” is subject to a regularity requirement on the solution up to
the order of the underlying PDE.

5.1 A Dirichlet problem

Assume that a horizontal elastic bar which occupies the interval I := [0, 1],
is fixed at the end-points. Let u(x) denote the displacement of the bar at a
point x ∈ I, a(x) be the modulus of elasticity, and f(x) a given load function,
then one can show that u satisfies the following boundary value problem

(BV P )1





−
(
a(x)u′(x)

)′
= f(x), 0 < x < 1,

u(0) = u(1) = 0.
(5.1.1)

Equation (5.1.1) is of Poisson’s type modelling also the stationary heat flux
(1.2.6) derived in Chapter 1.

111
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We shall assume that a(x) is piecewise continuous in (0, 1), bounded for
0 ≤ x ≤ 1 and a(x) > 0 for 0 ≤ x ≤ 1.
Let v(x) and its derivative v′(x), x ∈ I, be square integrable functions, that
is: v, v′ ∈ L2(0, 1), and define the L2-based Sobolev space

H1
0 (0, 1) =

{
v(x) :

∫ 1

0

(v(x)2 + v′(x)2)dx < ∞, v(0) = v(1) = 0
}

. (5.1.2)

The variational formulation (VF). We multiply the equation in (BVP)1

by a so called test function v(x) ∈ H1
0 (0, 1) and integrate over (0, 1) to obtain

−
∫ 1

0

(a(x)u′(x))′v(x)dx =

∫ 1

0

f(x)v(x)dx. (5.1.3)

By integration by parts we get

−
[
a(x)u′(x)v(x)

]1

0
+

∫ 1

0

a(x)u′(x)v′(x)dx =

∫ 1

0

f(x)v(x)dx. (5.1.4)

Now since v(0) = v(1) = 0 we have thus obtained the variational formulation
for the problem (5.1.1) as follows: find u(x) ∈ H1

0 such that

(VF)1

∫ 1

0

a(x)u′(x)v′(x)dx =

∫ 1

0

f(x)v(x)dx, ∀v(x) ∈ H1
0 . (5.1.5)

In other words we have shown that if u satisfies (BVP)1, then u also satisfies
the (VF)1 above. We write this as (BVP)1 =⇒ (VF)1. Now the question
is whether the reverse implication is true, i.e. under which conditions can
we deduce the implication (VF)1 =⇒ (BVP)1? It appears that this question
has an affirmative answer, provided that the solution u to (VF)1 is twice
differentiable. Then, modulo this regularity requirement, the two problems
are indeed equivalent. We prove this in the following theorem.

Theorem 5.1. The following two properties are equivalent

i) u satisfies (BVP)1

ii) u is twice differentiable and satisfies (VF)1.

Proof. We have already shown (BVP)1 =⇒ (VF)1. It remains to show that
(VF)1 =⇒ (BVP)1. Integrating by parts on the left hand side in (5.1.5),
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assuming that u is twice differentiable, and using v(0) = v(1) = 0 we return
to the relation (5.1.3):

−
∫ 1

0

(a(x)u′(x))′v(x)dx =

∫ 1

0

f(x) v(x)dx, ∀v(x) ∈ H1
0 (5.1.6)

which can be rewritten as

∫ 1

0

{
−

(
a(x)u′(x)

)′
− f(x)

}
v(x)dx = 0, ∀v(x) ∈ H1

0 . (5.1.7)

To show that u satisfies (BVP)1 is equvalent to claim that (5.1.7) implies

−
(
a(x)u′(x)

)′
− f(x) ≡ 0, ∀x ∈ (0, 1). (5.1.8)

Suppose not. Then there exists at least one point ξ ∈ (0, 1), such that

−
(
a(ξ)u′(ξ)

)′
− f(ξ) 6= 0, (5.1.9)

where we may assume, without loss of generality, that

−
(
a(ξ)u′(ξ)

)′
− f(ξ) > 0 (or < 0). (5.1.10)

Thus, assuming that f ∈ C(0, 1) and a ∈ C1(0, 1), by continuity, ∃δ > 0,
such that in a δ-neighborhood of ξ,

g(x) := −
(
a(x)u′(x)

)′
− f(x) > 0, for all x ∈ (ξ − δ, ξ + δ). (5.1.11)

Now, take the test function v(x) in (5.1.7) as the hat-function v∗(x) > 0,
with v∗(ξ) = 1 and the support Iδ := (ξ − δ, ξ + δ), see Figure 5.1. Then
v∗(x) ∈ H1

0 and

∫ 1

0

{
−

(
a(x)u′(x)

)′
− f(x)

}
v∗(x)dx =

∫

Iδ

g(x)︸︷︷︸
>0

v∗(x)︸ ︷︷ ︸
>0

dx > 0.

This contradicts (5.1.7). Thus, our claim is true and the proof is complete.
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0

1

x

y

ξ − δ ξ ξ + δ

v∗(x)

1

g(x)

Figure 5.1: The hat function v∗(x) over the interval (ξ − δ, ξ + δ).

Corollary 5.1. (i) If f(x) is continuous and a(x) is continuously differen-
tiable, i.e. f ∈ C(0, 1) and a ∈ C1(0, 1), then (BV P )1 and (V F )1 have the
same solution.
(ii) If a(x) is discontinuous, then (BV P )1 is not always well-defined but
(V F )1 has still a meaning. Therefore (V F )1 covers a larger set of data than
(BV P )1.
(iii) More important: in (V F )1, u ∈ C1(0, 1),while (BV P )1 is formulated
for u having two derivatives, e.g. u ∈ C2(0, 1).

The minimization problem. For the problem (5.1.1), we may formulate
yet another equivalent problem, viz:

Find u ∈ H1
0 such that F (u) ≤ F (w), ∀w ∈ H1

0 , where F (w) is the total
potential energy of the displacement w(x), given by

(MP)1 F (w) =
1

2

∫ 1

0

a(w′)2dx

Internal (elastic) energy

−
∫ 1

0

fwdx.

Load potential

(5.1.12)

This means that the solution u minimizes the energy functional F (w).
Below we show that the above minimization problem is equivalent to the

variational formulation (VF)1 and hence also to the boundary value problem
(BVP)1.

Theorem 5.2. The following two properties are equivalent

a) u satisfies the variational formulation (VF)1
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b) u is the solution for the minimization problem (MP)1

i.e.

∫ 1

0

au′v′dx =

∫ 1

0

fvdx, ∀v ∈ H1
0 ⇐⇒ F (u) ≤ F (w), ∀w ∈ H1

0 . (5.1.13)

Proof. (=⇒): First we show that the variational formulation (VF)1 implies
the minimization problem (MP)1. To this end, for w ∈ H1

0 we let v = w− u,
then, since H1

0 is a vector space and u ∈ H1
0 , hence v ∈ H1

0 and

F (w) = F (u + v) =
1

2

∫ 1

0

a
(
(u + v)′

)2

dx −
∫ 1

0

f(u + v)dx =

=
1

2

∫ 1

0

2au′v′dx

︸ ︷︷ ︸
(i)

+
1

2

∫ 1

0

a(u′)2dx

︸ ︷︷ ︸
(ii)

+
1

2

∫ 1

0

a(v′)2dx

−
∫ 1

0

fudx

︸ ︷︷ ︸
(iii)

−
∫ 1

0

fvdx.

︸ ︷︷ ︸
(iv)

Now using (VF)1 we have (i) − (iv) = 0. Further by the definition of the
functional F , (ii) − (iii) = F (u). Thus

F (w) = F (u) +
1

2

∫ 1

0

a(x)(v′(x))2dx, (5.1.14)

and since a(x) > 0 we get F (w) ≥ F (u), thus we have proved “=⇒” part.

(⇐=): Next we show that the minimization problem (MP)1 implies the vari-
ational formulation (VF)1. To this end, assume that F (u) ≤ F (w) ∀w ∈ H1

0 ,
and for an arbitrary function v ∈ H1

0 , set gv(ε) = F (u+εv), then by (MP)1, g

(as a function of ε) has a minimum at ε = 0. In other words ∂
∂ε

gv(ε)
∣∣∣
ε=0

= 0.

We have that

gv(ε) = F (u + εv) =
1

2

∫ 1

0

a
(
(u + εv)′

)2

dx −
∫ 1

0

f(u + εv)dx =

=
1

2

∫ 1

0

{a(u′)2 + aε2(v′)2 + 2aεu′v′}dx −
∫ 1

0

fudx − ε

∫ 1

0

fvdx.
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The derivative dgv(ε)
dε

, of gv(ε) is

dgv(ε)

dε
g =

1

2

∫ 1

0

{2aε(v′)2 + 2au′v′}dx −
∫ 1

0

fvdx, (5.1.15)

where dgv(ε)
dε

∣∣∣
(ε=0)

= 0, yields

∫ 1

0

au′v′dx −
∫ 1

0

fvdx = 0, (5.1.16)

which is our desired variational formulation (VF)1. Hence, we conclude that
F (u) ≤ F (w), ∀w ∈ H1

0 =⇒ (VF)1, and the proof is complete.

We summarize the two theorems in short as

Corollary 5.2.

(BV P )1 ” ⇐⇒ ” (V F )1 ⇐⇒ (MP )1.

Recall that ” ⇐⇒ ” is a conditional equivalence, requiring u to be twice
differentiable, for the reverse implication.

5.2 A mixed Boundary Value Problem

Obviously changing the boundary conditions would require changes in the
variational formulation. This can be seen, e.g. in deriving the variational
formulation corresponding to the following mixed boundary value problem:
find u such that

(BVP)2





−
(
a(x)u′(x)

)′
= f(x), 0 < x < 1

u(0) = 0, a(1)u′(1) = g1.
(5.2.1)

As usual, we multiply the equation by a suitable test function v(x), and
integrate over the interval (0, 1). Note that here the test function should
satisfy only one boundary condition: v(0) = 0. This is due to the fact that
now u(1) is not given, and to get an approximate value of u at x = 1, we
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need to supply a test function (a half-hat-function) at x = 1. Therefore the
proper choice for a function space is now

H̃1
0 = {v(x) :

∫ 1

0

(v(x)2 + v′(x)2)dx < ∞, such that v(0) = 0}. (5.2.2)

So v(1) 6= 0 and we have multiplying the equation by such a v and integrating
over I = (0, 1) that

−
∫ 1

0

(a(x)u′(x))′v(x)dx =

∫ 1

0

f(x)v(x)dx, ∀v ∈ H̃1
0 . (5.2.3)

Integrating by parts

−
[
a(x)u′(x)v(x)

]1

0
+

∫ 1

0

a(x)u′(x)v′(x)dx =

∫ 1

0

f(x)v(x)dx, (5.2.4)

and using the boundary data a(1)u′(1) = g1 and v(0) = 0 we get

∫ 1

0

a(x)u′(x)v′(x)dx =

∫ 1

0

f(x)v(x)dx + g1v(1), ∀v ∈ H̃1
0 . (5.2.5)

Hence, (5.2.5) yields the variational formulation: find u ∈ H̃1
0 such that

(VF)2

∫ 1

0

a(x)u′(x)v′(x)dx =

∫ 1

0

f(x)v(x)dx + g1v(1), ∀v ∈ H̃1
0 .

Now, as in the case of Dirichlet problem (BVP)1, we want to show that

Theorem 5.3. (BVP)2 ⇐⇒ (VF)2, in the sense that the two problems have
the same solution (also here, with the smoothness requirement in ⇐= part).

Proof. That (BVP)2 =⇒ (VF)2, is already shown by (5.2.3)-(5.2.5). To prove
(VF)2 =⇒ (BVP)2: that a solution of the variational problem (VF)2 is also a
solution of the two-point boundary value problem (BVP)2, we have to prove
the following claims:

(i) the solution of (VF)2 satisfies the differential equation

(ii) the solution of (VF)2 satisfies the boundary conditions
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A reversed integration by parts on the left hand side of (V F )2 yields

∫ 1

0

a(x)u′(x)v′(x)dx = [a(x)u′(x)v(x)]10 −
∫ 1

0

(a(x)u′(x))′v(x) dx, (5.2.6)

and since v(0) = 0, we get

∫ 1

0

a(x)u′(x)v′(x)dx = a(1)u′(1)v(1) −
∫ 1

0

(a(x)u′(x))′v(x)dx. (5.2.7)

Thus the variational formulation (VF)2 can be rewritten as

−
∫ 1

0

(a(x)u′(x))′v(x)dx + a(1)u′(1)v(1) =

∫ 1

0

f(x)v(x)dx + g1v(1). (5.2.8)

The equation (5.2.8) is valid for every v(x) ∈ H̃1
0 (0, 1), including the special

class of test functions v(x) that satisfies, in addition to v(0) = 0, also v(1) =
0, i.e. as in the Dirichlet case: −(au′)′ = f, u(0) = u(1) = 0. This is simply

because H1
0 (0, 1) ⊂ H̃1

0 (0, 1). Consequently choosing v(1) = 0, (5.2.8) is
reduced to

−
∫ 1

0

(a(x)u′(x))′v(x)dx =

∫ 1

0

f(x)v(x)dx, ∀v(x) ∈ H1
0 . (5.2.9)

Now, as in the Dirichlet case, the variational formulation (5.2.9) gives the
differential equation in (5.2.1) and hence the claim (i) is true. Inserting
(au′)′ = f into (5.2.8) we get g1v(1) = a(1)u′(1)v(1). Choosing v(1) 6= 0,
e.g. v(1) = 1, gives the boundary condition g1 = a(1)u′(1). The boundary

condition u(0) = 0 follows directly from the definition of H̃1
0 (0, 1), and the

proof is complete.

Remark 5.1. i) The Dirichlet boundary condition is called an essential
boundary condition and is “strongly imposed” in the trial/test function
space: Enforced explicitly to the trial and test functions in (VF).

ii) Neumann and Robin boundary conditions are called natural bound-
ary conditions. These boundary conditions are automatically satisfied,
within the corresponding variational formulations, and are therefore
weakly imposed.
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5.3 The finite element method (FEM)

We now formulate the finite element procedure for boundary value problems.
To this end we let Th = {0 = x0 < x1 < . . . < xM < xM+1 = 1} be a
partition of the interval I = [0, 1] into subintervals Ik = [xk−1, xk] and set
hk = xk−xk−1. Define the piecewise constant function h(x) := xk−xk−1 = hk

x0 = 0 x1 x2 xk−1 xk xM xM+1 = 1
x

hk

for x ∈ Ik. Let C(I, P1(Ik)) denote the set of all continuous piecewise linear
functions on Th (continuous in the whole interval I, linear on each subinterval
Ik), and define

V
(0)
h = {v : v ∈ C(I, P1(Ik)), v(0) = v(1) = 0}. (5.3.1)

Note that V
(0)
h is a finite dimensional (dim(V

(0)
h = M) subspace of

H1
0 =

{
v(x) :

∫ 1

0

(v(x)2 + v′(x)2)dx < ∞, and v(0) = v(1) = 0
}

.

(5.3.2)
Continuous Galerkin of degree 1, cG(1). A finite element formulation

for our Dirichlet boundary value problem (BVP)1 is given by: find uh ∈ V
(0)
h

such that the following discrete variational formulation holds true

(FEM)

∫ 1

0

a(x)u′
h(x)v′(x)dx =

∫ 1

0

f(x)v(x)dx, ∀v ∈ V
(0)
h . (5.3.3)

The finite element method (FEM) is a finite dimensional version of the
variational formulation (VF)1, where the test (also trial) functions are in

a finite dimensional subspace V
(0)
h , of H1

0 , spanned by the hat-functions,

ϕj(x), j = 1, . . . ,M. Thus, if in (VF)1 we restrict v to V
(0)
h (rather than

H1
0 ) and subtract FEM from it, we get the Galerkin orthogonality:

∫ 1

0

a(x)(u′(x) − u′
h(x))v′(x)dx = 0, ∀v ∈ V

(0)
h . (5.3.4)

Now the purpose is to estimate the error arising in approximating the solution
for (BV P )1 (a similar procedure is applied for (BV P )2) by functions in V

(0)
h .
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To this end we need some measuring environment for the error. We recall
the definition of Lp-norms:

Lp-norm ‖v‖Lp
=

( ∫ 1

0

|v(x)|pdx
)1/p

, 1 ≤ p < ∞

L∞-norm ‖v‖L∞
= sup

x∈[0,1]

|v(x)|,

Weighted L2-norm ‖v‖a =
( ∫ 1

0

a(x)|v(x)|2dx
)1/2

, a(x) > 0

Energy-norm ‖v‖E =
(∫ 1

0

a(x)|v′(x)|2dx
)1/2

,

Note that ‖v‖E = ‖v′‖a.

Here ‖v‖E describes the internal elastic energy of the elastic bar modeled by
our Dirichlet boundary value problem (BV P )1.

5.4 Error estimates in the energy norm

We shall study two type of error estimates:

i) An a priori error estimate; where a certain norm of the error is esti-
mated by some norm of the exact solution u. Here, the error analysis
gives information about the size of the error, depending on the (un-
known) exact solution u, before any computational steps.

ii) An a posteriori error estimate; where a certain norm of the error is
estimated by some norm of the residual of the approximate solution.
Recall that the residual is the difference between the left and right
hand side of the equation when the exact solution u(x) is replaced by
its approximate uh(x). Hence, a posteriori error estimates give quanti-
tative information about the size of the error after that the approximate
solution uh(x) has been computed.

Below, first we shall prove a qualitative result which shows that the
finite element solution is the best approximate solution to the Dirichlet
problem in the energy norm.

Theorem 5.4. Let u(x) be the solution to the Dirichlet boundary value prob-
lem (5.1.1) and uh(x) its finite element approximation given by (5.3.3), then

‖u − uh‖E ≤ ‖u − v‖E, ∀v(x) ∈ V
(0)
h . (5.4.1)
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This means that the finite element solution uh ∈ V
(0)
h is the best approxima-

tion of the solution u, in the energy norm, by functions in V
(0)
h .

Proof. We take an arbitrary v ∈ V
(0)
h , then using the energy norm

‖u − uh‖2
E =

∫ 1

0

a(x)(u′(x) − u′
h(x))2 dx

=

∫ 1

0

a(x)(u′(x) − u′
h(x))(u′(x) − v′(x) + v′(x) − u′

h(x))dx

=

∫ 1

0

a(x)(u′(x) − u′
h(x))(u′(x) − v′(x))dx

+

∫ 1

0

a(x)(u′(x) − u′
h(x))(v′(x) − u′

h(x)) dx

(5.4.2)

Since v−uh ∈ V
(0)
h ⊂ H1

0 , by Galerkin orthogonality (5.3.4), the last integral
is zero. Thus,

‖u − uh‖2
E =

∫ 1

0

a(x)(u′(x) − u′
h(x))(u′(x) − v′(x))dx

=

∫ 1

0

a(x)
1

2 (u′(x) − u′
h(x))a(x)

1

2 (u′(x) − v′(x))dx

≤
(∫ 1

0

a(x)(u′(x) − u′
h(x))2dx

) 1

2
( ∫ 1

0

a(x)(u′(x) − v′(x))2dx
) 1

2

= ‖u − uh‖E · ‖u − v‖E,

(5.4.3)

where, in the last estimate, we used Cauchy-Schwarz inequality. Thus

‖u − uh‖E ≤ ‖u − v‖E, ∀v ∈ V
(0)
h , (5.4.4)

and the proof is complete.

The next step is to show that there exists a function v(x) ∈ V
(0)
h such

that ‖u− v‖E is not too large. The function that we have in mind is πhu(x):
the piecewise linear interpolant of u(x), introduced in Chapter 3.



122 CHAPTER 5. TWO-POINT BOUNDARY VALUE PROBLEMS

Theorem 5.5. [An a priori error estimate] Let u and uh be the solutions
of the Dirichlet problem (BV P )1 and the finite element problem (FEM), re-
spectively. Then there exists an interpolation constant Ci, depending only on
a(x), such that

‖u − uh‖E ≤ Ci‖hu′′‖a. (5.4.5)

Proof. Since πhu(x) ∈ V
(0)
h , we may take v = πhu(x) in (5.4.1) and use, e.g.

the second estimate in the interpolation Theorem 3.3 (slightly generalized to
the weighted norm ‖ · ‖a, see remak below) to get

‖u − uh‖E ≤ ‖u − πhu‖E = ‖u′ − (πhu)′‖a

≤ Ci‖hu′′‖a = Ci

( ∫ 1

0

a(x)h2(x)u′′(x)2 dx
)1/2

,
(5.4.6)

which is the desired result and the proof is complete.

Remark 5.2. The interpolation theorem is not in the weighted norm. The
a(x) dependence of the interpolation constant Ci can be shown as follows:

‖u′ − (πhu)′‖a =
( ∫ 1

0

a(x)(u′(x) − (πhu)′(x))2 dx
)1/2

≤
(

max
x∈[0,1]

a(x)1/2
)
· ‖u′ − (πhu)′‖L2

≤ ci

(
max
x∈[0,1]

a(x)1/2
)
‖hu′′‖L2

= ci

(
max
x∈[0,1]

a(x)1/2
)(∫ 1

0

h(x)2u′′(x)2 dx
)1/2

≤ ci

(maxx∈[0,1] a(x)1/2)

(minx∈[0,1] a(x)1/2)
·
(∫ 1

0

a(x)h(x)2u′′(x)2 dx
)1/2

.

Thus

Ci = ci

(maxx∈[0,1] a(x)1/2)

(minx∈[0,1] a(x)1/2)
, (5.4.7)

where ci is the interpolation constant in the second estimate in Theorem 3.3.

Remark 5.3. If the objective is to divide (0,1) into a finite number of subin-
tervals, then one can use the result of Theorem 5.5: to obtain an optimal
partition of (0,1), where whenever a(x)u′′(x)2 gets large we compensate by
making h(x) smaller. This, however, “requires that the exact solution u(x)
is known” 1. Now we shall study a posteriori error analysis, which instead of
the unknown solution u(x), uses the residual of the computed solution uh(x).

1Note that when a is a given constant then, −u′′(x) = (1/a)f(x) is known.
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Theorem 5.6 (An a posteriori error estimate). There is an interpolation
constant ci depending only on a(x) such that the error in the finite element
approximation of the Dirichlet boundary value problem (5.4.1), satisfies

‖e(x)‖E ≤ ci

( ∫ 1

0

1

a(x)
h2(x)R2(uh(x))dx

)1/2

, (5.4.8)

where R(uh(x)) = f +(a(x)u′
h(x))′ is the residual, and e(x) := u(x)−uh(x) ∈

H1
0 .

Proof. By the definition of the energy norm we have

‖e(x)‖2
E =

∫ 1

0

a(x)(e′(x))2dx =

∫ 1

0

a(x)(u′(x) − u′
h(x))e′(x)dx

=

∫ 1

0

a(x)u′(x)e′(x)dx −
∫ 1

0

a(x)u′
h(x)e′(x)dx

(5.4.9)

Since e ∈ H1
0 the variational formulation (V F )1 gives that

∫ 1

0

a(x)u′(x)e′(x)dx =

∫ 1

0

f(x)e(x)dx. (5.4.10)

Hence, we can write

‖e(x)‖2
E =

∫ 1

0

f(x)e(x)dx −
∫ 1

0

a(x)u′
h(x)e′(x)dx. (5.4.11)

Adding and subtracting the interpolant πhe(x) and its derivative (πhe)
′(x)

to e and e′ in the integrands above yields

‖e(x)‖2
E =

∫ 1

0

f(x)(e(x) − πhe(x))dx +

∫ 1

0

f(x)πhe(x)dx

︸ ︷︷ ︸
(i)

−
∫ 1

0

a(x)u′
h(x)(e′(x) − (πhe)

′(x))dx −
∫ 1

0

a(x)u′
h(x)(πhe)

′(x)dx

︸ ︷︷ ︸
(ii)

.

Since uh(x) is the solution of the (FEM) given by (5.3.3) and πhe(x) ∈ V
(0)
h

we have that −(ii) + (i) = 0. Hence

‖e(x)‖2
E =

∫ 1

0

f(x)(e(x) − πhe(x))dx −
∫ 1

0

a(x)u′
h(x)(e′(x) − (πhe)

′(x))dx

=

∫ 1

0

f(x)(e(x) − πhe(x))dx −
M+1∑

k=1

∫ xk

xk−1

a(x)u′
h(x)(e′(x) − (πhe)

′(x))dx.
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To continue we integrate by parts in the integrals in the summation above

−
∫ xk

xk−1

a(x)u′
h(x)(e′(x) − (πhe)

′(x))dx

= −
[
a(x)u′

h(x)(e(x) − πhe(x))
]xk

xk−1

+

∫ xk

xk−1

(a(x)u′
h(x))′(e(x) − πhe(x)) dx.

Now, using e(xk) = πhe(xk), k = 0, 1 . . . ,M + 1, where the xk:s are the
interpolation nodes, the boundary terms vanish and thus we end up with

−
∫ xk

xk−1

a(x)u′
h(x)(e′(x)− (πhe)

′(x))dx =

∫ xk

xk−1

(a(x)u′
h(x))′(e(x)−πhe(x))dx.

Thus, summing over k, we have

−
∫ 1

0

a(x)u′
h(x)(e′(x) − (πhe(x))′dx =

∫ 1

0

(a(x)u′
h(x))′(e(x) − πhe(x))dx,

where (a(x)u′
h(x))′ should be interpreted locally on each subinterval [xk−1, xk].

(Since u′
h(x) in general is discontinuous, u′′

h(x) does not exist globally on
[0, 1].) Therefore

‖e(x)‖2
E =

∫ 1

0

f(x)(e(x) − πhe(x))dx +

∫ 1

0

(a(x)u′
h(x))′(e(x) − πhe(x))dx

=

∫ 1

0

{f(x) + (a(x)u′
h(x))′}(e(x) − πhe(x))dx.

Now let R(uh(x)) = f(x) + (a(x)u′
h(x))′, i.e. R(uh(x)) is the residual error,

which is a well-defined function except in the set {xk}, k = 1, . . . ,M ; where
(a(xk)u

′
h(xk))

′ is not defined. Then, using Cauchy-Schwarz’ inequality we get
the following estimate

‖e(x)‖2
E =

∫ 1

0

R(uh(x))(e(x) − πhe(x))dx =

=

∫ 1

0

1√
a(x)

h(x)R(uh(x)) ·
√

a(x)
(e(x) − πhe(x)

h(x)

)
dx

≤
( ∫ 1

0

1

a(x)
h2(x)R2(uh(x))dx

)1/2( ∫ 1

0

a(x)
(e(x) − πhe(x)

h(x)

)2

dx
)1/2

.
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Further, by the definition of the weighted L2-norm we have,

∥∥∥
e(x) − πhe(x)

h(x)

∥∥∥
a

=
( ∫ 1

0

a(x)
(e(x) − πhe(x)

h(x)

)2

dx
)1/2

. (5.4.12)

To estimate (5.4.12) we can use the third interpolation estimate (in Theorem
3.3) for e(x) in each subinterval and get

∥∥∥
e(x) − πhe(x)

h(x)

∥∥∥
a
≤ Ci‖e′(x)‖a = Ci‖e(x)‖E, (5.4.13)

where Ci as before depends on a(x). Thus

‖e(x)‖2
E ≤

(∫ 1

0

1

a(x)
h2(x)R2(uh(x))dx

)1/2

· Ci‖e(x)‖E, (5.4.14)

and the proof is complete.

Remark 5.4. The detailed derivation of (5.4.13) is as follows:

∥∥∥
e(x) − πhe(x)

h(x)

∥∥∥
a

=
( M+1∑

j=1

∫

Ij

a(x)
(e(x) − πhe(x)

hj

)2

dx
)1/2

≤ max
x∈]0,1]

a(x)1/2
( M+1∑

j=1

1

h2
j

∫

Ij

(e(x) − πhe(x))2 dx
)1/2

≤ max
x∈]0,1]

a(x)1/2
( M+1∑

j=1

1

h2
j

· c2
i ·

∫

Ij

(hje
′(x))2dx

)1/2

≤ ci

maxx∈]0,1] a(x)1/2

minx∈]0,1] a(x)1/2
‖e′‖a.

Adaptivity
Below we briefly outline the adaptivity procedure based on the a posteriori
error estimate which uses the approximate solution and which can be used
for mesh-refinements. Loosely speaking, the estimate (5.4.8) predicts local
mesh refinement, i.e. indicates the regions (subintervals) which should be
subdivided further. More specifically the idea is as follows: assume that one
seeks an error less than a given error tolerance TOL > 0:

‖e(x)‖E ≤ TOL. (5.4.15)

Then, one may use the following steps as a mesh refinement strategy:
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(i) Make an initial partition of the interval.

(ii) Compute the corresponding FEM solution uh(x) and residual R(uh(x)).

(iii) If ‖e(x)‖E > TOL, refine the mesh in the places where
1

a(x)
R2(uh(x))

is large and perform the steps (ii) and (iii) again.

5.5 FEM for convection–diffusion–absorption

BVPs

We now return to the Galerkin approximation of a solution to boundary
value problems and give a framework for the cG(1) (continuous Galerkin of
degree 1) finite element procedure leading to a linear system of equations of
the form Aξ = b. More specifically, we shall extend the approach in Chapter
2, for the stationary heat equation, to cases involving absorption and/or
convection terms. We also consider non-homogeneous Dirichlet boundary
conditions. We illustrate this procedure through the following two examples.

Example 5.1. Determine the coefficient matrix and load vector for the cG(1)
finite element approximation of the boundary value problem

−u′′(x) + 4u(x) = 0, 0 < x < 1; u(0) = α 6= 0, u(1) = β 6= 0,

on a uniform partition Th of the interval [0, 1] into n + 1 subintervals.
Solution: The problem is to construct an approximate solution uh in a finite
dimensional space spanned by the continuous, piecewise linear basis functions
(hat-functions) ϕj(x), j = 0, 1, . . . , n + 1 on the partition Th. This results in
a discrete problem represented by a linear system of equations Aξ = b, for
the unknown ξ = {cj}n

j=1, (c0 = α and cn+1 = β are given in boundary data.)
The continuous solution is assumed to be in the Hilbert space

H1 =

{
w :

∫ 1

0

(
w(x)2 + w′(x)2

)
dx < ∞

}
.

Since both u(0) = α och u(1) = β are given, we need to take the trial functions
in

V := {w : w ∈ H1, w(0) = α, w(1) = β},



5.5. FEM FOR CONVECTION–DIFFUSION–ABSORPTION BVPS 127

and the test functions in

V 0 := H1
0 = {w : w ∈ H1, w(0) = w(1) = 0}.

We multiply the PDE by a test function v ∈ V 0 and integrate over (0, 1).
Integrating by parts we get

− u′(1)v(1) + u′(0)v(0) +

∫ 1

0

u′v′ dx + 4

∫ 1

0

uv dx = 0 ⇐⇒

(V F ) : Find u ∈ V so that

∫ 1

0

u′v′ dx + 4

∫ 1

0

uv dx = 0, ∀v ∈ V 0.

The partition Th, of [0, 1] into n + 1 uniform subintervals I1 = [0, h], I2 =
[h, 2h], . . ., and In+1 = [nh, (n + 1)h], is also described by the nodes x0 =
0, x1 = h, . . . , xn = nh and xn+1 = (n + 1)h = 1. The corresponding discrete
function spaces are (varying with h and hence with n),

Vh := {wh : wh is piecewise linear, continuous on T h, wh(0) = α, wh(1) = β},

and

V 0
h := {vh : vh is piecewise linear and continuous on T h, vh(0) = vh(1) = 0}.

Note that here, the basis functions needed to represent functions in Vh are the
hat-functions ϕj, j = 0, . . . , n+1 (including the two half-hat-functions ϕ0 and
ϕn+1), whereas the basis functions describing V 0

h are ϕi:s for i = 1, . . . , n,
i.e. all full-hat-functions but not ϕ0 and ϕn+1. This is due to the fact that
the values u(0) = α och u(1) = β are given and therefore we do not need to
determine those two nodal values approximately.

ϕ0 ϕ2 ϕn+1
ϕn

x0 = 0 x1 = h xn xn+1 = 1xj−1 xj xj+1

ϕj

Now the finite element formulation (the discrete variational formulation)
is: find uh ∈ Vh such that
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(FEM)

∫ 1

0

u′
hv

′ dx + 4

∫ 1

0

uhv dx = 0, ∀v ∈ V 0
h .

We have that uh(x) = c0ϕ0(x) +
∑n

j=1 cjϕj(x) + cn+1ϕj+1(x), where c0 = α,
cn+1 = β and

ϕ0(x) =
1

h





h − x 0 ≤ x ≤ h

0, else
, ϕj(x) =

1

h





x − xj−1, xj−1 ≤ x ≤ xj

xj+1 − x xj ≤ x ≤ xj+1

0 x /∈ [xj−1, xj+1].

and

ϕn+1(x) =
1

h





x − xn nh ≤ x ≤ (n + 1)h

0, else.
.

Inserting uh into (FEM), and choosing v = ϕi(x), i = 1, . . . , n we get

n∑

j=1

( ∫ 1

0

ϕ′
j(x)ϕ′

i(x) dx + 4

∫ 1

0

ϕj(x)ϕi(x) dx
)
cj

= −
(∫ 1

0

ϕ′
0(x)ϕ′

i(x) dx + 4

∫ 1

0

ϕ0(x)ϕi(x) dx
)
c0

−
(∫ 1

0

ϕ′
n+1(x)ϕ′

i(x) dx + 4

∫ 1

0

ϕn+1(x)ϕi(x) dx
)
cn+1.

In matrix form this corresponds to Aξ = b with A = S+4M , where S = Aunif

is the, previously computed, stiffness matrix:

S =
1

h




2 −1 0 0 . . . 0

−1 2 −1 0 . . . 0

0 −1 2 −1 . . . 0

. . . . . . . . . . . . . . . . . .

0 . . . . . . −1 2 −1

0 . . . . . . . . . −1 2




, (5.5.1)
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and M is the mass-matrix: given by

M =




∫ 1

0
ϕ1ϕ1

∫ 1

0
ϕ2ϕ1 . . .

∫ 1

0
ϕnϕ1

∫ 1

0
ϕ1ϕ2

∫ 1

0
ϕ2ϕ2 . . .

∫ 1

0
ϕnϕ2

. . . . . . . . . . . .
∫ 1

0
ϕ1ϕn

∫ 1

0
ϕ2ϕn . . .

∫ 1

0
ϕnϕn




. (5.5.2)

Note the index locations in the matrices S and M :

sij =

∫ 1

0

ϕ′
j(x)ϕ′

i(x) dx, mij =

∫ 1

0

ϕj(x)ϕi(x) dx

This, however, does not make any difference in the current example, since
as seen, both S and M are symmetric. To compute the entries of M , we
follow the same procedure as in Chapter 2, and notice that, as S, also M is
symmetric and its elements mij are

mij = mji =





∫ 1

0
ϕiϕj dx = 0, ∀i, j with |i − j| > 1

∫ 1

0
ϕ2

j(x) dx, for i = j
∫ 1

0
ϕj(x)ϕj+1(x), for i = j + 1.

(5.5.3)

1

x

y

xj−1 xj xj+1 xj+2

ϕj−1 ϕj ϕj+1 ϕj+2

Figure 5.2: ϕj and ϕj+1.
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The diagonal elements are

mjj =

∫ 1

0

ϕj(x)2 dx =
1

h2

(∫ xj

xj−1

(x − xj−1)
2 dx +

∫ xj+1

xj

(xj+1 − x)2
)

=
1

h2

[(x − xj−1)
3

3

]xj

xj−1

− 1

h2

[(xj+1 − x)3

3

]xj+1

xj

=
1

h2
· h3

3
+

1

h2
· h3

3
=

2

3
h, j = 1, . . . , n,

(5.5.4)

and the two super- and sub-diagonals can be computed as

mj,j+1 = mj+1,j =

∫ 1

0

ϕjϕj+1 dx =
1

h2

∫ xj+1

xj

(xj+1 − x)(x − xj) = [PI]

=
1

h2

[
(xj+1 − x)

(x − xj)
2

2

]xj+1

xj

− 1

h2

∫ xj+1

xj

−(x − xj)
2

2
dx

=
1

h2

[(x − xj)
3

6

]xj+1

xj

=
1

6
h, j = 1, . . . , n − 1.

Thus the mass matrix in this case is

M = h




2
3

1
6

0 0 . . . 0

1
6

2
3

1
6

0 . . . 0

0 1
6

2
3

1
6

. . . 0

. . . . . . . . . . . . . . . . . .

0 . . . . . . 1
6

2
3

1
6

0 . . . . . . . . . 1
6

2
3




=
h

6




4 1 0 0 . . . 0

1 4 1 0 . . . 0

0 1 4 1 . . . 0

. . . . . . . . . . . . . . . . . .

0 . . . . . . 1 4 1

0 . . . . . . . . . 1 4




.

Hence, for i, j = 1, . . . , n, the coefficient matrix A = S + 4M is given by

[A]ij =

∫ 1

0

ϕ′
iϕ

′
j dx + 4

∫ 1

0

ϕiϕj(x) dx =





2
h

+ 8h
3
, i = j,

− 1
h

+ 2h
3
, |i − j| = 1,

0 else.
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Finally, with c0 = α och cn+1 = β, we get the load vector viz,

b1 = −(−1

h
+

2h

3
)c0 = α(

1

h
− 2h

3
),

b2 = . . . = bn−1 = 0,

bn = −(−1

h
+

2h

3
)cn+1 = β(

1

h
− 2h

3
).

Now, for each particular choice of h (i.e. n), α and β we may solve Aξ =
b to obtain the nodal values of the approximate solution uh at the inner
nodes xj, j = 1, . . . , n. That is: ξ = (c1, . . . , cn)T := (uh(x1), . . . , uh(xn))T .
Connecting the points (xj, uh(xj)), j = 0, . . . , n+1 by straight lines we obtain
the desired piecewise linear approximation of the solution.

Remark 5.5. An easier way to compute the above integrals mj,j+1 (as well
as mjj) is through Simpson’s rule, which is exact for polynomials of degree
≤ 2. Since ϕj(x)ϕj+1(x) = 0 at x = xj and x = xj+1, we need to evaluate
only the midterm of the Simpson’s formula, i.e.
∫ 1

0

ϕjϕj+1 dx = 4
h

6
ϕj

(xj + xj+1

2

)
· ϕj+1

(xj + xj+1

2

)
· = 4 · h

6
· 1

2
· 1

2
=

h

6
.

For a uniform partition one may use ϕ0 = 1 − x/h and ϕ1 = x/h on (0, h) :

∫ 1

0

ϕ0ϕ1 dx =

∫ h

0

(1 − x

h
)
x

h
dx =

[
(1 − x

h
)
x2

2h

]h

0
−

∫ h

0

(−1)

h
· x2

2h
dx =

h

6
.

Example 5.2. Below we consider a convection-diffusion problem:

−εu′′(x) + pu′(x) = r, 0 < x < 1; u(0) = 0, u′(1) = β 6= 0,

where ε and p are positive real numbers and r ∈ R. Here −εu′′ is the diffusion
term, pu′ corresponds to convection, and r is a given (here for simplicity a
constant) source (r > 0) or sink (r < 0). We would like to answer the same
question as in the previous example. This time with c0 = u(0) = 0. Then,
the test function at x = 0; ϕ0 will not be necessary. But since u(1) is not
given, we shall need the test function at x = 1: ϕn+1. The function space for
the continuous solution: the trial function space, and the test function space
are both the same:

V :=

{
w :

∫ 1

0

(
w(x)2 + w′(x)2

)
dx < ∞, and w(0) = 0

}
.



132 CHAPTER 5. TWO-POINT BOUNDARY VALUE PROBLEMS

We multiply the PDE by a test function v ∈ V and integrate over (0, 1).
Then, integration by parts yields

−εu′(1)v(1) + εu′(0)v(0) + ε

∫ 1

0

u′v′dx + p

∫ 1

0

u′vdx = r

∫ 1

0

v dx.

Hence, we end up with the variational formulation: find u ∈ V such that

(VF) ε

∫ 1

0

u′v′ dx + p

∫ 1

0

u′v dx = r

∫ 1

0

v dx + εβv(1), ∀v ∈ V.

The corresponding discrete test and trial function space is

V 0
h := {wh : wh is piecewise linear and continuous on T h, and wh(0) = 0}.

Thus, the basis functions for V 0
h are the hat-functions ϕj, j = 1, . . . , n + 1

(including the half-hat-function ϕn+1), and hence dim(V 0
h ) = n + 1.

ϕ0 ϕ2 ϕn+1
ϕn

x0 = 0 x1 = h xn xn+1 = 1xj−1 xj xj+1

ϕj

Now the finite element formulation reads as follows: find uh ∈ V 0
h such that

(FEM) ε

∫ 1

0

u′
hv

′ dx + p

∫ 1

0

u′
hv dx = r

∫ 1

0

v dx + εβv(1), ∀v ∈ V 0
h .

Inserting the ansatz uh(x) =
∑n+1

j=1 ξjϕj(x) into (FEM), and choosing v =
ϕi(x), i = 1, . . . , n + 1, we get

n+1∑

j=1

(
ε

∫ 1

0

ϕ′
j(x)ϕ′

i(x) dx + p

∫ 1

0

ϕ′
j(x)ϕi(x) dx

)
ξj

= r

∫ 1

0

ϕi(x) dx + εβϕi(1), i = 1, . . . , n + 1.
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In matrix form this corresponds to the linear system of equations Aξ = b with
A = ε S̃ + p C, where S̃ is computed as Aunif and is the (n + 1) × (n + 1)-
stiffness matrix with its last diagonal element, corresponding to the half-hat-
function ϕn+1, i.e. as s̃n+1,n+1 =

∫ 1

0
ϕ′

n+1(x)ϕ′
n+1(x) dx = 1/h, and C is the

convection matrix with the elements

cij =

∫ 1

0

ϕ′
j(x)ϕi(x) dx.

Hence we have, evidently,

S̃ =
1

h




2 −1 0 0 . . . 0

−1 2 −1 0 . . . 0

0 −1 2 −1 . . . 0

. . . . . . . . . . . . . . . . . .

0 . . . . . . −1 2 −1

0 . . . . . . . . . −1 1




.

To compute the entries for C, we note that like, S,M and S̃, also C is a
tridiagonal matrix. But C is anti-symmetric. Its entries are





cij = 0, for |i − j| > 1

cii =
∫ 1

0
ϕi(x)ϕ′

i(x) dx = 0, for i = 1, . . . , n

cn+1,n+1 =
∫ 1

0
ϕn+1(x)ϕ′

n+1(x) dx = 1/2,

ci,i+1 =
∫ 1

0
ϕi(x)ϕ′

i+1(x) dx = 1/2, for i = 1, . . . , n

ci+1,i =
∫ 1

0
ϕi+1(x)ϕ′

i(x) dx = −1/2, for i = 1, . . . , n.

(5.5.5)

Finally, we have the entries bi of the load vector b as

b1 = . . . = bn = rh, bn+1 = rh/2 + εβ.
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Thus,

C =
1

2




0 1 0 0 . . . 0

−1 0 1 0 . . . 0

0 −1 0 1 . . . 0

. . . . . . . . . . . . . . . . . .

0 . . . . . . −1 0 1

0 . . . . . . . . . −1 1




, b = rh




1

1

1

·
1

1/2




+ εβ




0

0

0

·
0

1




.

Remark 5.6. In the convection dominated case ε
p

<< 1 this standard FEM
will not work. Spurious oscillations in the approximate solution will appear.
The standard FEM has to be modified in this case.

5.6 Exercises

Problem 5.1. Consider the two-point boundary value problem

−u′′ = f, 0 < x < 1; u(0) = u(1) = 0. (5.6.1)

Let V = {v : ‖v‖ + ‖v′‖ < ∞, v(0) = v(1) = 0}.
a. Use V to derive a variational formulation of (5.6.1).

b. Discuss why V is valid as a vector space of test functions.

c. Classify whether the following functions are admissible test functions or
not:

sin πx, x2, x ln x, ex − 1, x(1 − x).

Problem 5.2. Assume that u(0) = u(1) = 0, and that u satisfies

∫ 1

0

u′v′ dx =

∫ 1

0

fv dx,

for all v ∈ V = {v : ‖v‖ + ‖v′‖ < ∞, v(0) = v(1) = 0}.
a. Show that u minimizes the functional

F (v) =
1

2

∫ 1

0

(v′)2 dx −
∫ 1

0

fv dx. (5.6.2)
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Hint: F (v) = F (u + w) = F (u) + . . . ≥ F (u).

b. Prove that the above minimization problem is equivalent to

−u′′ = f, 0 < x < 1; u(0) = u(1) = 0.

Problem 5.3. Consider the two-point boundary value problem

−u′′ = 1, 0 < x < 1; u(0) = u(1) = 0. (5.6.3)

Let Th : xj = j
4
, j = 0, 1, . . . , 4, denote a partition of the interval 0 < x < 1

into four subintervals of equal length h = 1/4 and let Vh be the corresponding
space of continuous piecewise linear functions vanishing at x = 0 and x = 1.

a. Compute a finite element approximation U ∈ Vh to (5.6.3).

b. Prove that U ∈ Vh is unique.

Problem 5.4. Consider once again the two-point boundary value problem

−u′′ = f, 0 < x < 1; u(0) = u(1) = 0.

a. Prove that the finite element approximation U ∈ Vh to u satisfies

‖(u − U)′‖ ≤ ‖(u − v)′‖,

for all v ∈ Vh.

b. Use this result to deduce that

‖(u − πhu)′‖ ≤ C‖hu′′‖, (5.6.4)

where C is a constant and πhu a piecewise linear interpolant to u.

Problem 5.5. Consider the two-point boundary value problem

−(au′)′ = f, 0 < x < 1,

u(0) = 0, a(1)u′(1) = g1,
(5.6.5)

where a > 0 is a positive function and g1 is a constant.

a. Derive the variational formulation of (5.6.5).

b. Discuss how the boundary conditions are implemented.
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Problem 5.6. Consider the two-point boundary value problem

−u′′ = 0, 0 < x < 1; u(0) = 0, u′(1) = 7. (5.6.6)

Divide the interval 0 ≤ x ≤ 1 into two subintervals of length h = 1
2

and let Vh

be the corresponding space of continuous piecewise linear functions vanishing
at x = 0.

a. Formulate a finite element method for (5.6.6).

b. Calculate by hand the finite element approximation U ∈ Vh to (5.6.6).

Study how the boundary condition at x = 1 is approximated.

Problem 5.7. Consider the two-point boundary value problem

−u′′ = 0, 0 < x < 1; u′(0) = 5, u(1) = 0. (5.6.7)

Let Th : xj = jh, j = 0, 1, . . . , N, h = 1/N be a uniform partition of the
interval 0 < x < 1 into N subintervals and let Vh be the corresponding space
of continuous piecewise linear functions.

a. Use Vh to formulate a finite element method for (5.6.7).

b. Compute the finite element approximation U ∈ Vh assuming N = 3.

Problem 5.8. Consider the problem of finding a solution approximation to

−u′′ = 1, 0 < x < 1; u′(0) = u′(1) = 0. (5.6.8)

Let Th be a partition of the interval 0 < x < 1 into two subintervals of equal
length h = 1

2
and let Vh be the corresponding space of continuous piecewise

linear functions.

a. Find the exact solution to (5.6.8) by integrating twice.

b.Compute a finite element approximation U ∈ Vh to u if possible.

Problem 5.9. Consider the two-point boundary value problem

−((1 + x)u′)′ = 0, 0 < x < 1; u(0) = 0, u′(1) = 1. (5.6.9)

Divide the interval 0 < x < 1 into 3 subintervals of equal length h = 1
3

and
let Vh be the corresponding space of continuous piecewise linear functions
vanishing at x = 0.
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a. Use Vh to formulate a finite element method for (5.6.9).

b. Verify that the stiffness matrix A and the load vector b are given by

A =
1

2




16 −9 0

−9 20 −11

0 −11 11


 , b =




0

0

1


 .

c. Show that A is symmetric tridiagonal, and positive definite.

d. Derive a simple way to compute the energy norm ‖U‖2
E, defined by

‖U‖2
E =

∫ 1

0

(1 + x)U ′(x)2 dx,

where U ∈ Vh is the finite element solution approximation.

Problem 5.10. Consider the two-point boundary value problem

−u′′ = 0, 0 < x < 1; u(0) = 0, u′(1) = k(u(1) − 1). (5.6.10)

Let Th : 0 = x0 < x1 < x2 < x3 = 1, where x1 = 1
3

and x2 = 2
3

be a partition
of the interval 0 ≤ x ≤ 1 and let Vh be the corresponding space of continuous
piecewise linear functions, which vanish at x = 0.

a. Compute a solution approximation U ∈ Vh to (5.6.10) assuming k = 1.

b. Discuss how the parameter k influence the boundary condition at x = 1.

Problem 5.11. Consider the finite element method applied to

−u′′ = 0, 0 < x < 1; u(0) = α, u′(1) = β,

where α and β are given constants. Assume that the interval 0 ≤ x ≤ 1
is divided into three subintervals of equal length h = 1/3 and that {ϕj}3

0 is
a nodal basis of Vh, the corresponding space of continuous piecewise linear
functions.

a. Verify that the ansatz

U(x) = αϕ0(x) + ξ1ϕ1(x) + ξ2ϕ2(x) + ξ3ϕ3(x),
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yields the following system of equations

1

h




−1 2 −1 0

0 −1 2 −1

0 0 −1 1







α

ξ1

ξ2

ξ3




=




0

0

β


 . (5.6.11)

b. If α = 2 and β = 3 show that (5.6.11) can be reduced to

1

h




2 −1 0

−1 2 −1

0 −1 1







ξ1

ξ2

ξ3


 =




−2h−1

0

3


 .

c. Solve the above system of equations to find U(x).

Problem 5.12. Compute a finite element solution approximation to

−u′′ + u = 1; 0 ≤ x ≤ 1, u(0) = u(1) = 0, (5.6.12)

using the continuous piecewise linear ansatz U = ξ1ϕ1(x) + ξ2ϕ2(x) where

ϕ1(x) =





3x, 0 < x < 1
3

2 − 3x, 1
3

< x < 2
3
,

0, 2
3

< x < 1

ϕ2(x) =





0, 0 < x < 1
3

3x − 1, 1
3

< x < 2
3
.

3 − 3x, 2
3

< x < 1

Problem 5.13. Consider the following eigenvalue problem

−au′′ + bu = 0; 0 ≤ x ≤ 1, u(0) = u′(1) = 0, (5.6.13)

where a, b > 0 are constants. Let Th : 0 = x0 < x1 < . . . < xN = 1,
be a non-uniform partition of the interval 0 ≤ x ≤ 1 into N intervals of
length hi = xi − xi−1, i = 1, 2, . . . , N and let Vh be the corresponding space
of continuous piecewise linear functions. Compute the stiffness and mass
matrices.
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Problem 5.14. Show that the FEM with the mesh size h for the problem:




−u′′ = 1 0 < x < 1

u(0) = 1 u′(1) = 0,
(5.6.14)

with
U(x) = 7ϕ0(x) + U1ϕ1(x) + . . . + Umϕm(x). (5.6.15)

leads to the linear system of equations: Ã · Ũ = b̃, where

Ã =
1

h




−1 2 −1 0

0 −1 2 −1 . . .

. . . . . . . . . . . .

0 . . . 0 . . .




,

m × (m + 1)

Ũ =




7

U1

. . .

Um




,

(m + 1) × 1

b̃ =




h

. . .

h

h/2




,

m × 1

. which is reduced to AU = b, with

A =
1

h




2 −1 0 . . . 0

−1 2 −1 0 . . .

. . . . . . . . . . . . . . .

. . . 0 −1 2 −1

0 0 0 −1 2




, U =




U1

U2

. . .

Um




, b =




h + 7
h

h

. . .

h

h/2




.

Problem 5.15. Prove an a priori and an a posteriori error estimate for a
finite element method (for example cG(1)) for the problem

−u′′ + αu = f, in I = (0, 1), u(0) = u(1) = 0,

where the coefficient α = α(x) is a bounded positive function on I, (0 ≤
α(x) ≤ K, x ∈ I).

Problem 5.16. a) Formulate a cG(1) method for the problem




(a(x)u′(x))′ = 0, 0 < x < 1,

a(0)u′(0) = u0, u(1) = 0.
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and give an a posteriori error estimate.

b) Let u0 = 3 and compute the approximate solution in a) for a uniform
partition of I = [0, 1] into 4 intervals and

a(x) =





1/4, x < 1/2,

1/2, x > 1/2.

c) Show that, with these special choices, the computed solution is equal to the
exact one, i.e. the error is equal to 0.

Problem 5.17. Prove an a priori error estimate for the finite element
method for the problem

−u′′(x) + u′(x) = f(x), 0 < x < 1, u(0) = u(1) = 0.

Problem 5.18. (a) Prove an a priori error estimate for the cG(1) approxi-
mation of the boundary value problem

−u′′ + cu′ + u = f in I = (0, 1), u(0) = u(1) = 0,

where c ≥ 0 is constant.

(b) For which value of c is the a priori error estimate optimal?

Problem 5.19. Let U be the piecewise linear finite element approximation
for

−u′′(x) + 2xu′(x) + 2u(x) = f(x), x ∈ (0, 1), u(0) = u(1) = 0,

in a partition Th of the interval [0, 1]. Set e = u−U and derive a priori and
a posteriori error estimates in the energy-norm:

||e||2E = ||e′||2 + ||e||2, where ||w||2 =

∫ 1

0

w(x)2 dx.



Chapter 6

Scalar Initial Value Problems

This chapter is devoted to finite element methods for time discretizations. Here,
we shall consider problems depending on the time variable, only. The approxima-
tion techniques developed in this chapter, combined with those of the previous
chapter for boundary value problems, can be used for the numerical study of
initial boundary value problems; such as, e.g. the heat and wave equations, by
finite element methods.

As a model problem we shall consider the classical example of population
dynamics described by the following ordinary differential equation (ODE)

(DE)

(IV)





u̇(t) + a(t)u(t) = f(t), 0 < t ≤ T,

u(0) = u0,
(6.0.1)

where f(t) is the source term and u̇(t) =
du

dt
. The coefficient a(t) is a bounded

function. If a(t) ≥ 0 the problem (6.0.1) is called parabolic, while a(t) ≥ α > 0
yields a dissipative problem, in the sense that, with increasing t, perturbations
of solutions to (6.0.1), e.g. introduced by numerical discretization, will decay.
In general, in numerical approximations for (6.0.1), the error accumulates when
advancing in time, i.e. the error of previous time steps adds up to the error of
the present time step. The different types of error accumulation/perturbation
growth are referred to as stability properties of the initial value problem.

141
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6.1 Solution formula and stability

Theorem 6.1. The solution of the problem (6.0.1) is given by

u(t) = u0 e−A(t) +

∫ t

0

e−(A(t)−A(s))f(s)ds, (6.1.1)

where A(t) =
∫ t

0
a(s)ds and eA(t) is the integrating factor.

Proof. Multiplying the (DE) by the integrating factor eA(t) we have

u̇(t)eA(t) + Ȧ(t)eA(t)u(t) = eA(t)f(t), (6.1.2)

where we used that a(t) = Ȧ(t). Equation (6.1.2) can be rewritten as

d

dt

(
u(t)eA(t)

)
= eA(t)f(t).

We denote the variable by s and integrate from 0 to t to get

∫ t

0

d

ds

(
u(s)eA(s)

)
ds =

∫ t

0

eA(s)f(s)ds,

i.e.

u(t)eA(t) − u(0)eA(0) =

∫ t

0

eA(s)f(s)ds.

Now since A(0) = 0 and u(0) = u0 we get the desired result

u(t) = u0e
−A(t) +

∫ t

0

e−(A(t)−A(s))f(s)ds. (6.1.3)

This representation for u(t) is also referred to as the Variation of constants
formula.

Theorem 6.2 (Stability estimates). Using the solution formula, we can de-
rive the following stability estimates:

(i) If a(t) ≥ α > 0, then |u(t)| ≤ e−αt|u0| +
1

α
(1 − e−αt) max

0≤s≤t
|f(s)|,
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(ii) If a(t) ≥ 0 (i.e. α = 0; the parabolic case), then

|u(t)| ≤ |u0| +
∫ t

0

|f(s)|ds or |u(t)| ≤ |u0| + ‖f‖L1(0,t). (6.1.4)

Proof. (i) For a(t) ≥ α > 0 we have that A(t) =

∫ t

0

a(s)ds is an increasing

function of t, A(t) ≥ αt and

A(t) − A(s) =

∫ t

0

a(r) dr −
∫ s

0

a(r) dr =

∫ t

s

a(r) dr ≥ α(t − s). (6.1.5)

Thus e−A(t) ≤ e−αt and e−(A(t)−A(s)) ≤ e−α(t−s). Hence, using (6.1.3) we get

|u(t)| ≤ |u0|e−αt +

∫ t

0

e−α(t−s)|f(s)|ds, (6.1.6)

which after integration yields

|u(t)| ≤ e−αt|u0| + max
0≤s≤t

|f(s)|
[ 1

α
e−α(t−s)

]s=t

s=0
, i.e.

|u(t)| ≤ e−αt|u0| +
1

α
(1 − e−αt) max

0≤s≤t
|f(s)|.

(ii) Let α = 0 in (6.1.6) (which is true also in this case), then |u(t)| ≤
|u0| +

∫ t

0

|f(s)|ds, and the proof is complete.

Remark 6.1. (i) expresses that the effect of the initial data u0 decays ex-
ponentially with time, and that the effect of the source term f on the right
hand side does not depend on the length of the time interval, only on the
maximum value of f , and on the value of α. Regarding (ii): in this case the
influence of u0 remains bounded in time, and the integral of f indicates an
accumulation in time.

6.2 Galerkin finite element methods for IVP

Recall that we refer to the set of functions where we seek the approximate so-
lution as the trial space and the space of functions used for the orthogonality
condition (multipliers), as the test space.
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The polynomial approximation procedure introduced in Chapter 2, along
(2.1.21)-(2.2.6), for the initial value problem (2.1.1), and consequently also
for (6.0.1), being over the whole time interval (0, T ) is known as the global
Galerkin method. In this section, first we shall introduce two versions of the
global Galerkin method and then extend them to partitions of the interval
(0, T ) using piecewise polynomial test and trial functions. However, in most
practical applications, if suffices to consider the following two simple, low
degree polynomial, approximation cases that are studied in detail in this
chapter:
The continuous Galerkin method of degree 1; cG(1). In this case the trial
functions are piecewise linear and continuous while the test functions are
piecewise constant and discontinuous, i.e. unlike the cG(1) for BVP, here
the trial and test functions belong to polynomial spaces of different degree.

The discontinuous Galerkin method of degree 0; dG(0). Here both the trial
and test functions are piecewise constant and discontinuous.

Below we introduce the global versions of the above two cases formulated
for the whole time interval (0, T ) and then derive the local versions formulated
for a partition of (0, T ).

6.2.1 The continuous Galerkin method

Recall the global Galerkin method of degree q for the initial value problem
(6.0.1): find U ∈ Pq(0, T ), with U(0) = u0 such that

∫ T

0

(U̇ + aU)vdt =

∫ T

0

fv dt, ∀v ∈ Pq(0, T ), with v(0) = 0, (6.2.1)

where v ∈ span{t, t2, . . . , tq}.

We now formulate a variation of the above global method: Find U ∈
Pq(0, T ) with U(0) = u0 such that

∫ T

0

(U̇ + aU)vdt =

∫ T

0

fvdt, ∀v ∈ Pq−1(0, T ), (6.2.2)

where now the test functions v ∈ span{1, t, t2, . . . , tq−1}. Hence, the difference
between these two methods is in the choice of their test function spaces. We
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shall focus on (6.2.2), due to the fact that this method yields a more accurate
approximation of degree q than the original method (6.2.1).

Before generalizing (6.2.2) to approximation by piecewise polynomials of
degree q, which is the cG(q) method, we consider an example.

Example 6.1. Consider (6.2.2) with q = 1, then we may choose v ≡ 1, thus

∫ T

0

(U̇ + aU)vdt =

∫ T

0

(U̇ + aU)dt = U(T ) − U(0) +

∫ T

0

aU(t)dt (6.2.3)

But U(t) being a linear function on [0, T ] is given by

U(t) = U(0)
T − t

T
+ U(T )

t

T
. (6.2.4)

Inserting into (6.2.3) we get

U(T ) − U(0) +

∫ T

0

a
(
U(0)

T − t

T
+ U(T )

t

T

)
dt =

∫ T

0

f dt, (6.2.5)

which gives an equation for the unknown quantity U(T ). Consequently, using
(6.2.4) with a given U(0), we get the linear approximation U(t) for all t ∈
[0, T ]. We shall now generalize this example to piecewise linear approximation
and demonstrate the iteration procedure for the cG(1) scheme.

The cG(1) Algorithm
For a partition Tk of the interval [0, T ] into subintervals Ik = (tk−1, tk], k =
1, 2, . . . , n, we perform the following steps:

(1) Given U(0) = U0 = u0 and a source term f , apply (6.2.5) to the first
subinterval (0, t1] and compute U(t1). Then, using (6.2.4) one gets
U(t),∀t ∈ [0, t1].

(2) Assume that U(t) is computed for t in all the successive subintervals
(tk−1, tk] for k = 1, 2, . . . , n − 1, where Uk−1 := U(tk−1) and f are
considered as the data and the unknown Uk := U(tk) has been computed
using

Uk − Uk−1 +

∫ tk

tk−1

a
( tk − t

tk − tk−1

Uk−1 +
t − tk−1

tk − tk−1

Uk

)
dt =

∫ tk

tk−1

fdt.
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(3) Compute U(t) for t ∈ (tn−1, tn], n = 1, . . . , N . This is step 2 with k
replaced by n. Now, since Un−1 is assumed to be known we can calculate
Un and then U(t), for all t ∈ (tn−1, tn].

The cG(q) method
The global continuous Galerkin method of degree q formulated for test and
trial functions defined on a partition Tk, 0 = t0 < t1 < . . . < tN = T of the
interval (0, T ), is referred to as the cG(q) method. Whence the method reads

as follows: find U(t) ∈ V
(q)
k , such that U(0) = u0, and

∫ tN

0

(U̇ + aU)wdt =

∫ tN

0

fwdt, ∀w ∈ W
(q−1)
k , (6.2.6)

where

V
(q)
k = {v : v continuous, piecewise polynomials of degree ≤ q on Tk},

W
(q−1)
k = {w : w discontinuous, piecewise polynomials of degree ≤ q−1 on Tk}.

So, the difference between the global continuous Galerkin method and cG(q)
is that now we have piecewise polynomials on a partition rather than global
polynomials in the whole interval (0, T ).

6.2.2 The discontinuous Galerkin method

We start presenting the global discontinuous Galerkin method of degree q:
find U(t) ∈ Pq(0, T ) such that

∫ T

0

(U̇ + aU)vdt + β(U(0)− u(0))v(0) =

∫ T

0

fvdt, ∀v ∈ Pq(0, T ), (6.2.7)

where β is a coefficient that weights the relative importance of the resid-
ual error for the initial value U(0) − u(0), against the conventional residual
R(U) := U̇ + aU − f of the differential equation. This approach gives up
the requirement that U(t) satisfies the initial condition. Instead, the initial
condition is imposed in a variational sence by the term (U(0) − u(0))v(0).
As in the cG(q) case, the above strategy can be localized (formulated for the
subintervals in a partition Tk) to derive the discontinuous Galerkin method
of degree q, i.e. the dG(q) scheme below. To this approach, we recall first the
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following standard notation for the right/left limits: v±
n = lim

s→0+
v(tn ± s) and

the corresponding jump term [vn] = v+
n − v−

n at the time level t = tn. Then,
the dG(q) method (with β ≡ 1) for (6.0.1) reads as follows: for n = 1, . . . , N ;
find U(t) ∈ Pq(tn−1, tn) such that

tn−1 tn tn+1
t

kn

v−
n

[vn]

v+
n

◦ •

◦ •

Figure 6.1: The jump [vn] and the right and left limits v±
n

∫ tn

tn−1

(U̇ + aU)vdt + U+
n−1v

+
n−1 =

∫ tn

tn−1

fvdt + U−
n−1v

+
n−1, ∀v ∈ Pq(tn−1, tn).

(6.2.8)

Example 6.2 (dG(0)). Let q = 0, then v is constant generated by the single
basis function: v ≡ 1. Further, we have U(t) = Un = U+

n−1 = U−
n on

In = (tn−1, tn], and U̇ ≡ 0. Thus, for q = 0 (6.2.8) yields the following dG(0)
formulation: for n = 1, . . . , N ; find piecewise constants Un such that

∫ tn

tn−1

aUndt + Un =

∫ tn

tn−1

fdt + Un−1. (6.2.9)

Remark 6.2. To compare the cG(1) and dG(0) methods, one can show that
(see Johnson et al [20]) cG(1) converges faster than dG(0), whereas dG(0)
has better stability properties than cG(1): More specifically, in the parabolic
case when a > 0 is constant and (f ≡ 0) we can easily verify that (see
Exercise 6.10 at the end of this chapter) the dG(0) solution Un corresponds
to the Backward Euler scheme

Un =
( 1

1 + ak

)n

u0,
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and the cG(1) solution Ũn is given by the Crank-Nicolson scheme:

Ũn =
(1 − 1

2
ak

1 + 1
2
ak

)n

u0,

where k is the constant time step.

The dG(q) Method
We return to (6.2.8) and sum over n to get the following general dG(q)

formulation: Find U(t) ∈ W
(q)
k , with U−

0 = u0 such that

N∑

n=1

∫ tn

tn−1

(U̇ + aU)wdt +
N∑

n=1

[Un−1]w
+
n−1 =

∫ tN

0

fwdt, ∀w ∈ W
(q)
k . (6.2.10)

6.3 A posteriori error estimates

In this section we derive a posteriori error estimates for the most considered
Galerkin approaches for time discretization, namely the cG(1) and dG(0)
methods. These estimates can be extended to the general cG(q) and dG(q)
methods. The details are, however, “much too” involved. Some lower degree
polynomial case (e.g. cG(2)) are left as exercise.

6.3.1 A posteriori error estimate for cG(1)

Recall the initial value problem (6.0.1) of finding the function u such that

u̇(t) + a(t)u(t) = f(t), ∀t ∈ (0, T ], u(0) = u0. (6.3.1)

A general variational form reads as: find u such that

∫ T

0

(u̇ + au)vdt =

∫ T

0

fvdt, for all test functions v.

Integrating by parts we get the equivalent equation

u(T )v(T ) − u(0)v(0) +

∫ T

0

u(t)(−v̇(t) + av(t))dt =

∫ T

0

fvdt. (6.3.2)
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If we now choose the test function v(t) to be the solution of the dual problem:

−v̇(t) + av(t) = 0, for t ∈ (0, T ), (6.3.3)

then (6.3.2) is simplified to

u(T )v(T ) = u(0)v(0) +

∫ T

0

fvdt, ∀v(t). (6.3.4)

In other words, choosing v to be the solution of the dual problem (6.3.3) we
may get the final value u(T ) of the solution directly coupled to the initial
value u(0) and the data f . This type of representation will be crucial in the
a posteriori error analysis in the proof of the next theorem. Let us state the
dual problem explicitly:

The dual problem
The dual problem for (6.3.1) is formulated as follows: find ϕ(t) such that





−ϕ̇(t) + a(t)ϕ(t) = 0, tN > t ≥ 0,

ϕ(tN) = eN , eN = uN − UN = u(tN) − U(tN).
(6.3.5)

u, ϕ

t

u(t) problem

ϕ(t) problem

•T
◭

Figure 6.2: Time directions in forward and dual solutions

Note that (6.3.5) runs backward in time starting at time tN = T .

Theorem 6.3 (A posteriori error estimate for cG(1)). For N = 1, 2, . . ., the
cG(1) solution U(t) satisfies

|eN | ≤ S(tN) · max
t∈[0,tN ]

|k r(U)|, (6.3.6)
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where k(t) is the time step function: k(t) = kn = |In| for t ∈ In = (tn−1, tn],
and r(U) = U̇ + aU − f is the residual error for U . Further S(tN), specified
below, is the stability factor satisfying the quantitative bound

S(tN) :=

∫ tN
0

|ϕ̇|dt

|eN |
≤





eλ tN , if |a(t)| ≤ λ, for 0 ≤ t ≤ tN ,

1, if a(t) ≥ 0, for 0 ≤ t ≤ tN .

(6.3.7)

Proof. Let e(t) = u(t) − U(t). Using the dual problem −ϕ̇(t) + a(t)ϕ(t) = 0
we may write

e2
N = e2

N + 0 = e2
N +

∫ tN

0

e(−ϕ̇ + aϕ) dt, (6.3.8)

and by integration by parts we get

∫ tN

0

e(−ϕ̇ + aϕ)dt = [−e(t)ϕ(t)]tNt=0 +

∫ tN

0

ėϕ dt +

∫ tN

0

eaϕ dt

= −e(tN)ϕ(tN) +

∫ tN

0

(ė + ae)ϕdt = −e2
N +

∫ tN

0

(ė + ae)ϕdt,

where we used that e(0) = 0 and ϕ(tN) = eN when evaluating the boundary
terms. Note that

ė(t) + a(t)e(t) = u̇(t) − U̇(t) + a(t)u(t) − a(t)U(t)

= f(t) − U̇(t) − a(t)U(t) := −r(U),
(6.3.9)

where we used that f(t) = u̇(t)+a(t)u(t) and the residual r(U) := U̇+aU−f .
Consequently, we get the following error representation formula:

e2
N = −

∫ tN

0

r(U(t))ϕ(t)dt. (6.3.10)

To continue we use the L2-projection πkϕ = 1
kn

∫
In

ϕ(s)ds of ϕ onto the space

of piecewise constant polynomials W
(0)
k and write

e2
N = −

∫ tN

0

r(U)(ϕ(t) − πkϕ(t))dt −
∫ tN

0

r(U)πkϕ(t)dt. (6.3.11)

Now, by the cG(1) method (6.2.6),
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∫ tN

0

(U̇ + aU)v dt =

∫ tN

0

fv dt, ∀v ∈ W
(0)
k , (6.3.12)

where W
(0)
k is the space of discontinuous, piecewise constant test functions.

This gives the orthogonality relation, r(U) ⊥ v, ∀v ∈ W
(0)
k , and implies that

∫ tN

0

r(U)πkϕ(t)dt = 0, (6.3.13)

since πkϕ ∈ W
(0)
k . Thus, the final error representation formula becomes

e2
N = −

∫ tN

0

r(U)(ϕ(t) − πkϕ(t))dt. (6.3.14)

Next, we shall need the L2-projection error estimate (proved as the interpo-
lation error estimate) for the function ϕ in the interval In, with |In| = kn:

∫ tN

0

|ϕ − πkϕ|dt ≤
N∑

n=1

kn

∫

In

|ϕ̇|dt. (6.3.15)

To show (6.3.15) let ϕ̄ = 1
kn

∫
In

ϕ(s)ds be the mean value of ϕ over In, then
∫

In

|ϕ − πkϕ|dt =

∫

In

|ϕ − ϕ̄|dt

=

∫

In

|ϕ(t) − ϕ(ξ)|dt =

∫

In

|
∫ t

ξ

ϕ̇(s) ds|dt

≤
∫

In

|
∫

In

ϕ̇(s) ds|dt = kn ·
∫

In

|ϕ̇|dt,

where we have used the mean value theorem for integrals, with ξ ∈ In.
Summing over n, yields the global estimate

∫ tN

0

|ϕ − πkϕ|dt =
N∑

n=1

∫

In

|ϕ − πkϕ|dt ≤
N∑

n=1

kn

∫

In

|ϕ̇|dt. (6.3.16)

Now let |v|J := max
t∈J

|v(t)|, then using (6.3.16) and the final form of the error

representation formula (6.3.14) we have that

|eN |2 ≤
N∑

n=1

(
|r(U)|In

kn

∫

In

|ϕ̇|dt
)
≤ max

1≤n≤N
(kn|r(U)|In

)

∫ tN

0

|ϕ̇|dt.
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Since, by the definition of S(tN),
∫ tN
0

|ϕ̇|dt = |eN | · S(tN), we finally get

|eN |2 ≤ |eN |S(tN) max
t∈[0,tN ]

(|kr(U)|). (6.3.17)

This completes the proof of the first assertion of the theorem.

To prove the second assertion, we transform the dual problem (6.3.5) to a
forward problem, using the change of variables, viz s = tN − t, (t = tN − s).
Thus for ψ(s) := ϕ(tN − s), using the chain rule we get

dψ

ds
=

dϕ

dt
· dt

ds
= −ϕ̇(tN − s). (6.3.18)

The dual problem (6.3.5) is now reformulated as: find ϕ(t) such that

−ϕ̇(tN − s) + a(tN − s)ϕ(tN − s) = 0. (6.3.19)

The corresponding forward problem for ψ reads as follows: find ψ(s) such
that





dψ(s)

ds
+ a(tN − s)ψ(s) = 0, 0 < s ≤ tN

ψ(0) = ϕ(tN) = eN , eN = uN − UN = u(tN) − U(tN).

By the solution formula (6.1.1) this problem has the solution ψ(s) given by

ψ(s) = ψ(0) · e−
R s

0
a(tN−u) du = [tN − u = v, −du = dv]

= eN · e−
R tN−s

tN
a(v) dv = eN · eA(tN−s)−A(tN ).

Inserting back into the relation ϕ(t) = ψ(s), with t = tN − s, we end up with

ϕ(t) = eNeA(t)−A(tN ), and ϕ̇(t) = eNa(t)eA(t)−A(tN ). (6.3.20)

To estimate S(tN) we note that for a(t) ≥ 0, the second relation in (6.3.20)
yields

∫ tN

0

|ϕ̇(t)|dt = |eN |
∫ tN

0

a(t)eA(t)−A(tN )dt = |eN |[eA(t)−A(tN )]tNt=0

= |eN |
(
1 − eA(0)−A(tN )

)
= |eN |

(
1 − e−A(tN )

)
≤ |eN |,
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which gives S(tN) =

∫ tN
0

|ϕ̇(t)|dt

|eN |
≤ 1.

As for the case |a(t)| ≤ λ, we use again (6.3.20): ϕ̇(t) = a(t)eNeA(t)−A(tN )

and write

|ϕ̇(t)| ≤ λ|eN |eA(t)−A(tN ) = λ|eN |e
R t

tN
a(s)ds ≤ λ|eN |eλ(tN−t). (6.3.21)

Integrating over (0, tN) we get

∫ tN

0

|ϕ̇(t)|dt ≤ |eN |
∫ tN

0

λeλ(tN−t)dt = |eN |
[
− eλ(tN−t)

]tN

0
= |eN |(−1 + eλtN ),

which gives that S(tN) ≤ (−1+ eλtN ) ≤ eλtN , and completes the proof of the
second assertion.

The convergence rate in (6.3.6) appears to be of order O(k), but is actually
of order O(k2) since |r(U)| ≤ Ck if f is a smooth function. To see this
convergence of order O(k2), we use some further orthogonality observations
in the following theorem.

Theorem 6.4 ( Convergence order O(k2)). For N = 1, 2, . . ., and with SN

as in the previous theorem, the error for the cG(1) solution U(t) satisfies

|eN | ≤ S(tN) max
t∈[0,tN ]

∣∣∣k2 d

dt
(aU − f)

∣∣∣. (6.3.22)

W
(0)
k

πkg(t)

g(t) g(t) − πkg(t)

Figure 6.3: Orthogonality: (g(t) − πkg(t)) ⊥ (constants) ∀g(t).



154 CHAPTER 6. SCALAR INITIAL VALUE PROBLEMS

Proof. Let πkg be the L2-projection of g onto the space W
(0)
k of piecewise

constant polynomials. Then, by the orthogonality relation
(
g(t)−πkg(t)

)
⊥

(constants) ∀g(t), since U̇(t) is constant on each subinterval In we have that∫ tN
0

U̇(ϕ− πkϕ)dt = 0. Thus using the error representation formula (6.3.14),
we may write

e2
N = −

∫ tN

0

r(U)
(
ϕ(t) − πkϕ(t)

)
dt =

∫ tN

0

(f − aU − U̇)(ϕ − πkϕ)dt

=

∫ tN

0

(f − aU)(ϕ − πkϕ)dt −
∫ tN

0

U̇(ϕ − πkϕ)dt

= −
∫ tN

0

(aU − f)(ϕ − πkϕ)dt.

Similarly, using the fact that πk(aU − f) is constant on each subinterval In,
we have ∫ tN

0

πk(aU − f)(ϕ − πkϕ)dt = 0. (6.3.23)

Consequently we can write

e2
N = −

∫ tN

0

(
(aU − f) − πk(aU − f)

)
(ϕ − πkϕ)dt. (6.3.24)

(compare (6.3.24) with (6.3.14)). To proceed recall that for t ∈ In:

g(t) − πkg(t) = g(t) − ḡ(t) = g(t) − g(ξ) =

∫ t

ξ

ġ(s) ds,

where ḡ is the mean value of g over In, ξ ∈ In and we have used the mean
value theorem for the integrals. This implies

|g(t) − πkg(t)| ≤
∫

In

|ġ(t)| dt ≤ max
t∈In

|ġ(t)| · kn, (6.3.25)

Now we apply (6.3.6) with r(U) replaced by (aU − f)− πk(aU − f), (6.3.25)
with g := aU − f , and the L2-projection error estimate to get

|eN | ≤ S(tN)
∣∣∣k|(aU − f) − πk(aU − f)|

∣∣∣
[0,tN ]

≤ S(tN)
∣∣∣k2 d

dt
(aU − f)

∣∣
[0,tN ]

,

which is the desired result.

Remark 6.3. Note that the estimate (6.3.22) is less practical than the es-
timate (6.3.6) in the sense that: it requires the cumbersome procedure of
computing the time derivative of the residual.
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6.3.2 A posteriori error estimate for dG(0)

We shall now derive an a posteriori error estimate for the dG(0) method. In
this case, the residual contains jump discontinuities.

Theorem 6.5. For N = 1, 2, . . ., the dG(0) solution U(t) satisfies

|u(tN) − UN | ≤ S(tN)|kR(U)|[0,tN ], UN = U(tN) (6.3.26)

where

R(U) = |f − aU | + |Un − Un−1|
kn

for tn−1 < t ≤ tn. (6.3.27)

Proof. The proof is similar to that of the cG(1) approach of Theorem 6.3,
but we have to take the discontinuities of U(t) at the time nodes tj into
account. Below we shall first demonstrate how to rearrange the contribution
from these jumps, and in this way derive a corresponding error representation
formula. To this end, recalling the dual problem −ϕ̇(t) + a(t)ϕ(t) = 0, with
ϕ(tN) = eN , we may write, using integration by parts on each subinterval

e2
N = e2

N +
N∑

n=1

∫ tn

tn−1

e(−ϕ̇(t) + a(t)ϕ(t))dt

= e2
N +

N∑

n=1

( ∫ tn

tn−1

(ė + ae)ϕ(t)dt − [eϕ]tntn−1

)

= e2
N +

N∑

n=1

∫ tn

tn−1

(f − aU)ϕdt −
N∑

n=1

[eϕ]tntn−1
,

(6.3.28)

where in the last step we have used ė+ae = u̇− U̇ +au−aU = f −aU since
U̇ = 0 on each subinterval (where U is constant). For a given function g we
use the notation g(t−n ) = g−

n and g(t+n−1) = g+
n−1, and rewrite the last sum as

N∑

n=1

[eϕ]tntn−1
=

N∑

n=1

(
e(t−n )ϕ(t−n ) − e(t+n−1)ϕ(t+n−1)

)

=
N∑

n=1

(e−n ϕ−
n − e+

n−1ϕ
+
n−1) = (e−1 ϕ−

1 − e+
0 ϕ+

0 ) + (e−2 ϕ−
2 − e+

1 ϕ+
1 )

+ . . . + (e−N−1ϕ
−
N−1 − e+

N−2ϕ
+
N−2) + (e−Nϕ−

N − e+
N−1ϕ

+
N−1).
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We use the identity ϕ−
i = (ϕ−

i − ϕ+
i + ϕ+

i ), i = 1, . . . N − 1, and rewrite the
contribution from the jumps as

−
N∑

n=1

[eϕ]tntn−1
= −e−Nϕ−

N + e+
0 ϕ+

0 − e−1 (ϕ−
1 − ϕ+

1 + ϕ+
1 ) + e+

1 ϕ+
1

− e−2 (ϕ−
2 − ϕ+

2 + ϕ+
2 ) + e+

2 ϕ+
2 − . . .

− e−N−1(ϕ
−
N−1 − ϕ+

N−1 + ϕ+
N−1) + e+

N−1ϕ
+
N−1.

Here the general i-th term is written as

− e−i (ϕ−
i − ϕ+

i + ϕ+
i ) + e+

i ϕ+
i = −e−i ϕ−

i + e−i ϕ+
i − e−i ϕ+

i + e+
i ϕ+

i

= e−i (ϕ+
i − ϕ−

i ) + ϕ+
i (e+

i − e−i ) = e−i [ϕi] + ϕ+
i [ei],

with [g] = g+ − g− representing the jump. Hence we have

−
N∑

n=1

[eϕ]tntn−1
= −e2

N + e+
0 ϕ+

0 +
N−1∑

n=1

[en]ϕ+
n +

N−1∑

n=1

e−n [ϕn]. (6.3.29)

Inserting into (6.3.28) and using the fact that ϕ and u are smooth, i.e. [ϕn] =
[un] = 0 and [en] = [−Un], we get the following error representation formula

e2
N = e2

N +
N∑

n=1

∫ tn

tn−1

(f − aU)ϕdt − e2
N + e+

0 ϕ+
0 +

N−1∑

n=1

[en]ϕ+
n +

N−1∑

n=1

[ϕn]e−n

= e+
0 ϕ+

0 +
N∑

n=1

∫ tn

tn−1

(f − aU)ϕdt −
N−1∑

n=1

[Un]ϕ+
n

=
N∑

n=1

(∫ tn

tn−1

(f − aU)ϕdt − [Un−1]ϕ
+
n−1

)

=
N∑

n=1

∫ tn

tn−1

(f − aU)(ϕ − πkϕ) dt − [Un−1](ϕ − πkϕ)+
n−1,

where we have used e+
0 = u+

0 − U+
0 = u0 − U+

0 = U−
0 − U+

0 = −[U0], and in
the last step, once again, we use definition (6.2.10) of dG(q) with q = 0 and

the L2 projection w = πkϕ ∈ W
(0)
k (space of piecewise constenats) of ϕ. The

remaining part is not substantially different from the proof of Theorem 6.3,
and is therefore omitted.
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6.3.3 Adaptivity for dG(0)

To guarantee a desired local bound for the error of the dG(0) approximation
U(t), such as

|en| = |u(tn) − U(tn)| ≤ TOL, (6.3.30)

where TOL is a given tolerance, we seek to determine the time step kn =
tn − tn−1 so that, using (6.3.26), locally, we have

S(tN) max
t∈In

|knR(U)| ≤ TOL, n = 1, 2, . . . , N. (6.3.31)

Adaptivite algorithm

(i) Compute Un from Un−1 using a predicted step kn, and the relation

∫ tn

tn−1

aUndt + Un =

∫ tn

tn−1

fdt + Un−1. (6.3.32)

(ii) Compute |kR(U)|In
:= max

t∈In

|knR(U)|, where R(U) = |f−aU |+ |Un−Un−1|
kn

in In, and follow chart:

Is (6.3.31) valid
for this choice of kn?

yes
−→

Accept the solution Un

and go to the next time stepx no
y

Recompute (6.3.32)
with a smaller kn
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6.4 A priori error analysis

In this section we shall derive a priori error estimates for the dG(0) method.
First we consider the case of general a(t) (but we simplify, the analysis by
assuming that a is a constant) and then we study the parabolic case a(t) ≥
0, where we perform a refined analysis. The corresponding a priori error
estimate for the cG(1) method is obtained similarly. The weaker stability
properties of cG(1), however, do not allow a refined analysis in the parabolic
case.

6.4.1 A priori error estimates for the dG(0) method

The dG(0) method for u̇ + au = f , with a constant a, is formulated as: find
U = U(t), t ∈ In, such that

∫ tn

tn−1

U̇dt + a

∫ tn

tn−1

Udt =

∫

In

fdt, n = 1, 2, . . . (6.4.1)

Note that U(t) = Un is constant for t ∈ In. Let Un = U(tn), Un−1 = U(tn−1)
and kn = tn − tn−1, then

∫ tn

tn−1

U̇dt + a

∫ tn

tn−1

Udt = Un − Un−1 + aknUn.

Hence with a given initial data u(0) = u0, the equation (6.4.1) is written as

Un − Un−1 + aknUn =

∫

In

fdt. n = 1, 2, . . . U0 = u0. (6.4.2)

For the exact solution u(t) of u̇ + au = f , the same procedure yields

u(tn) − u(tn−1) + aknu(tn) =

∫

In

fdt + aknu(tn) − a

∫ tn

tn−1

u(t)dt, (6.4.3)

where we have moved the term a
∫ tn

tn−1
u(t)dt to the right hand side and added

aknu(tn) to both sides. Thus from (6.4.2) and (6.4.3) we have that, denoting
un = u(tn),





(1 + kna)Un = Un−1 +

∫

In

fdt,

(1 + kna)un = un−1 +

∫

In

fdt + aknun − a

∫ tn

tn−1

u(t)dt.

(6.4.4)
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Now let en = un − Un, then en−1 = un−1 − Un−1, and subtracting the first
equation in (6.4.4) from the second one yields

en = (1+kna)−1(en−1+ρn), where ρn := aknun−a

∫ tn

tn−1

u(t)dt. (6.4.5)

Thus, to estimate en we use an iteration procedure combined with an estimate
for ρn.

Lemma 6.1. We have that

|ρn| ≤
1

2
|a|k2

n max
In

|u̇(t)| (6.4.6)

Proof. Evidently,

|ρn| =
∣∣∣aknun − a

∫ tn

tn−1

u(t) dt
∣∣∣ = |a|kn

∣∣∣un − 1

kn

∫

In

u(t) dt
∣∣∣

= |a|
∣∣∣
∫ tn

tn−1

(un − u(t)) dt
∣∣∣ = |a|

∣∣∣
∫ tn

tn−1

∫ tn

t

u̇(s) ds dt
∣∣∣

≤ |a|max
In

|u̇(t)| ·
∫ tn

tn−1

(tn − t) dt =
1

2
|a|k2

n · max
In

|u̇(t)|.

(6.4.7)

To simplify the estimate for en we split, and gather, the proof of technical
details in the following lemma:

Lemma 6.2. For kn|a| ≤ 1/2, and n ≥ 1 we have that

(i) (1 − kn|a|)−1 ≤ e2kn|a|,

(ii) |eN | ≤
1

2

N∑

n=1

(e2|a|τn|a|kn)
(

max
1≤n≤N

kn|u̇|In

)
, τn = tN − tn−1.

(iii)
N∑

n=1

e2|a|τn|a|kn ≤ e

∫ tN

0

|a|e2|a|τdτ .

We postpone the proof of this lemma and first show that using (i)− (iii)
we can prove the following a priori error estimate.
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Theorem 6.6. If kn|a| ≤ 1
2
, n ≥ 1 then the error for the dG(0) approxima-

tion U satisfies

|u(tN) − U(tN)| = |eN | ≤
e

4

(
e2|a|tN − 1

)
max

1≤n≤N
kn|u̇(t)|In

. (6.4.8)

Proof. Using estimates (ii) and (iii) of the above lemma we have that

|eN | ≤
1

2

N∑

n=1

(e2|a|τn|a|kn) max
1≤n≤N

kn|u̇|In
≤ 1

2

(
e

∫ tN

0

|a|e2|a|τdτ
)

max
1≤n≤N

kn|u̇|In

=
1

2
e
[e2|a|τ

2

]tN

0
max

1≤n≤N
kn|u̇(t)|In

=
e

4

(
e2|a|tN − 1

)
max

1≤n≤N
kn|u̇(t)|In

,

and the proof is complete.

Note that the stability factor
e

4

(
e2|a|tN−1

)
grows exponentially depending

on |a| and tN , hence this result may not be satisfactory at all. We deal with
this question below in the parabolic case a(t) ≥ 0.

Remark 6.4. The a priori error estimate for the cG(1) method is similar
to that of Theorem 6.6, with kn|u̇| replaced by k2

n|ü|.

We now return to the proof of our technical results (i) − (iii):

Proof of Lemma 6.3. (i) For 0 < x := kn|a| ≤ 1/2, we have that 1/2 ≤
1−x < 1 implies 0 ≤ 1−2x < 1. We may multiply both sides of

1

1 − x
< e2x

(which is the result we want to prove) by 1 − x ≥ 1/2 > 0 to obtain the
equivalent relation

f(x) := (1 − x)e2x − 1 > 0. (6.4.9)

Note that since f(0) = 0 and f ′(x) = (1 − 2x)e2x ≥ 0 (equality for x = 1
2
),

thus (6.4.9), and hence the relation (i) is valid.
To prove (ii) we recall that en = (1+kna)−1(en−1 +ρn). To deal with the

factor (1+kna)−1 we use kn|a| ≤
1

2
, then by (i) (1+kna)−1 ≤ (1−kn|a|)−1 ≤

e2kn|a|, n ≥ 1. Thus

|eN | ≤
1

1 − kN |a|
|eN−1| +

1

1 − kN |a|
|ρN | ≤ |eN−1|e2kN |a| + |ρN |e2kN |a|.

(6.4.10)
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Relabeling, N to N − 1,

|eN−1| ≤ |eN−2|e2kN−1|a| + |ρN−1|e2kN−1|a| = e2kN−1|a|
(
|eN−2| + |ρN−1|

)
,

and inserting into (6.4.10) yields

|eN | ≤ e2kN |a|e2kN−1|a|
(
|eN−2| + |ρN−1|

)
+ |ρN |e2kN |a|. (6.4.11)

Similarly we have |eN−2| ≤ e2kN−2|a|
(
|eN−3|+ |ρN−2|

)
. Now iterating (6.4.11)

and using the fact that e0 = 0 we get,

|eN | ≤e2kN |a|e2kN−1|a|e2kN−2|a||eN−3| + e2kN |a|e2kN−1|a|e2kN−2|a||ρN−2|
+ e2kN |a|e2kN−1|a||ρN−1| + |ρN |e2kN |a| ≤ · · · ≤

≤e2|a|PN
n=1

kn|e0| +
N∑

n=1

e2|a|PN
m=n km|ρn| =

N∑

n=1

e2|a|PN
m=n km|ρn|.

Recalling (6.4.6): |ρn| ≤
1

2
|a|k2

n max
In

|u̇(t)|, we have the error estimate

|eN | ≤
( N∑

n=1

e2|a|PN
m=n km

)1

2
|a|k2

n max
In

|u̇(t)|. (6.4.12)

Note that

N∑

m=n

km = (tn−tn−1)+(tn+1−tn)+(tn+2−tn+1)+. . .+(tN−tN−1) = tN −tn−1.

Hence, since τn = tN − tn−1, we have shown assertion (ii), i.e.

|eN | ≤
N∑

n=1

e2|a|(tN−tn−1) 1

2
|a|k2

n max
In

|u̇(t)| ≤ 1

2

N∑

n=1

(e2|a|τn|a|kn)
(

max
1≤n≤N

kn|u̇|In

)
.

(iii) To prove this part we note that

τn = tN − tn−1 = (tN − tn) + (tn − tn−1) = τn+1 + kn, (6.4.13)
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and since |a|kn ≤ 1/2 we have 2|a|τn = 2|a|τn+1 + 2|a|kn ≤ 2|a|τn+1 + 1.
Further for τn+1 ≤ τ ≤ τn, we can write

e2|a|τn kn =

∫ τn

τn+1

e2|a|τndτ ≤
∫ τn

τn+1

e(2|a|τn+1+1)dτ

=

∫ τn

τn+1

e1 · e2|a|τn+1dτ ≤ e

∫ τn

τn+1

e2|a|τdτ.

(6.4.14)

Multiplying (6.4.14) by |a| and summing over n we get

N∑

n=1

e2|a|τn |a|kn ≤ e
( N∑

n=1

∫ τn

τn+1

e2|a|τdτ
)
|a|

= e

∫ τ1

τN+1

e2|a|τ |a|dτ = e

∫ tN

0

|a|e2|a|τdτ,

(6.4.15)

which is the desired result and the proof of (iii) is complete.

6.5 The parabolic case (a(t) ≥ 0)

The interest in parabolic case is due to the fact that it does not accumulate
the error. This can be seen from the solution formula (6.1.1) with the pres-
ence of the deceasing multiplicative factor e−A(t). Below we state and proof
some basic estimate for this case:

Theorem 6.7. Consider the dG(0) approximation U , of u̇ + au = f , with

a(t) ≥ 0. Assume that kj|a|Ij
≤ 1

2
; ∀j, then we have the error estimates

|u(tN) − UN | ≤





3e2λtN max
0≤t≤tN

|ku̇|, for |a(t)| ≤ λ,

3 max
0≤t≤tN

|ku̇|, for a(t) ≥ 0.
(6.5.1)

Sketch of the proof. Let e = u−U = (u−πku)+ (πku−U) := ẽ+ ē, where ẽ

is the projection error with πku being the L2-projection of u into W
(0)
k . Since

the L2-projection error is of the form (6.5.1), hence it suffices to estimate the
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discrete error ē. To this end we shall use the following discrete dual problem
(DDP):

Find Φ ∈ W
(0)
k , such that for n = N,N − 1, . . . , 1,

(DDP )





∫ tn

tn−1

(−Φ̇ + a(t)Φ)vdt − [Φn]vn = 0, ∀v ∈ W
(0)
k

Φ+
N = ΦN+1 = (πku − U)N :≡ ēN .

(6.5.2)

Let now v = ē, then

|ēN |2 =
N∑

n=1

∫ tn

tn−1

(−Φ̇ + a(t)Φ)ēdt −
N−1∑

n=1

[Φn]ēn + ΦN ēN . (6.5.3)

We use ē = (πku − U) = (πku − u + u − U) and rewrite (6.5.3) as

|ēN |2 =
N∑

n=1

∫ tn

tn−1

(−Φ̇ + a(t)Φ)(πku − u + u − U) dt

−
N−1∑

n=1

[Φn](πku − u + u − U)n + ΦN(πku − u + u − U)N .

By Galerkin orthogonality, the total contribution from u−U terms vanishes,
and we end up with the error terms involving only πku−u. Hence, due to the
fact that Φ̇ = 0 on each subinterval we have the following error representation
formula

|ēN |2 =
N∑

n=1

∫ tn

tn−1

(−Φ̇ + a(t)Φ)(πku − u)dt −
N−1∑

n=1

[Φn](πku − u)n + ΦN(πku − u)N

= −
∫ tN

0

(a(t)Φ)(u − πku) dt +
N−1∑

n=1

[Φn](u − πku)n − ΦN(u − πku)N .

To continue we shall need the following results:

Lemma 6.3. If |a(t)| ≤ λ,∀t ∈ (0, tN) and kj|a|Ij
≤ 1

2
, for j = 1, . . . , N ,

then the solution of the discrete dual problem satisfies

(i) |Φn| ≤ e2λ(tN−tn−1)|ēN |,
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(ii)
N−1∑

n=1

|[Φn]| ≤ e2λtN |ēN |,

(iii)
N∑

n=1

∫ tn

tn−1

|a(t)Φn|dt ≤ e2λtN |ēN |,

(iv) Max
(
|Φn|,

N−1∑

n=1

|[Φn]|,
N∑

n=1

∫ tn

tn−1

a(t)|Φn| dt
)
≤ |ēN |, a(t) ≥ 0.

Proof. We show the last estimate (iv), (the proofs of (i)− (iii) are similar to
that of the stability factor in the previous theorem). Consider the discrete,
local dual problem with v ≡ 1:





∫ tn

tn−1

(−Φ̇ + a(t)Φ)dt − [Φn] = 0,

ΦN+1 = (πku − U)N :≡ ēN .

(6.5.4)

For dG(0) and for a constant Φ, this becomes





−Φn+1 + Φn + Φn

∫ tn

tn−1

a(t) dt = 0, n = N,N − 1, . . . , 1

ΦN+1 = ēN , Φn = Φ|In
.

(6.5.5)

By iterating we get

Φn =
N∏

j=n

(
1 +

∫

Ij

a(t)dt
)−1

ΦN+1. (6.5.6)

For a(t) ≥ 0 we have
(
1 +

∫
Ij

a(t)dt
)−1

≤ 1, thus (6.5.6) implies that

|Φn| ≤ ΦN+1 = |ēN |. (6.5.7)

Further we have using (6.5.6) that

Φn−1 =
N∏

j=n−1

(
1 +

∫

Ij

a(t)dt
)−1

ΦN+1 =
(
1 +

∫

In−1

a(t)dt
)−1

Φn ≤ Φn
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which implies that

[Φn] = Φ+
n − Φ−

n = Φn+1 − Φn ≥ 0. (6.5.8)

Now, since by (6.5.6), Φ1 ≤ ΦN+1, thus

N∑

n=1

|[Φn]| = ΦN+1 − ΦN + ΦN − ΦN−1 + . . . + Φ2 − Φ1

= ΦN+1 − Φ1 ≤ ΦN+1 = |ēN |.
(6.5.9)

Finally in the discrete equation:

∫ tn

tn−1

(−Φ̇ + a(t)Φ)vdt − [Φn]vn = 0, ∀v ∈ W
(0)
k , (6.5.10)

we have v ≡ 1 and Φ̇ ≡ 0 for the dG(0). Hence (6.5.10) can be rewritten as

∫ tn

tn−1

a(t)Φndt = [Φn]. (6.5.11)

Summing over n, this gives that

N∑

n=1

∫ tn

tn−1

a(t)Φndt =
N∑

n=1

[Φn] ≤ |ēN |. (6.5.12)

Combining (6.5.7), (6.5.9), and (6.5.12) completes the proof of (iv).

Below we state some useful results (their proofs are standard, however,
lengthy and therefore are omitted).

Quadrature rule. Assume that a is constant. Then the error representa-
tion formula in the proof of the Theorem 6.5 for dG(0), combined with the
quadrature rule for f reads as follows:

e2
N =

N∑

n=1

( ∫ tn

tn−1

(f − aU)(ϕ − πkϕ)dt − [Un−1](ϕ − πkϕ)+
n−1

+

∫ tn

tn−1

fπkϕdt − (fπkϕ)nkn

)
,

(6.5.13)
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where the last two terms represent the quadrature error. Here, e.g. for the
endpoint-rule ḡn = g(tn), whereas for the midpoint-rule ḡn := g(t(n−1/2)). We

also recall the weak stability factor S̃(tN) :=

∫ tN

0

|ϕ|dt/|eN |, where ϕ is the

solution of the dual problem

−ϕ̇ + aϕ = 0, for tN > t ≥ 0 ϕ(tN) = eN .

Recall that πkϕ is piecewise constant with the mass-preserving property
∫

In

|πkϕ(t)|dt =

∫

In

|ϕ(t)|dt.

It is easy to prove the following relations between the two stability factors:

S̃(tN) ≤ tN(1 + S(tN)),

and if a > 0 is sufficiently small, then we have indeed S̃(tN) >> S(tN).

Finally we state (without proof, see Johnson et al [20] for further details)
the following dG(0) estimate

Theorem 6.8 (The modified a posteriori estimate for dG(0)). For each
N = 1, 2, . . ., the dG(0) approximation U(t) computed using a quadrature
rule on the source term f satisfies

|u(tn) − Un| ≤ S(tn)|kR(U)|(0,tN ) + S̃(tN)Cj|kjf (j)|(0,tN ), (6.5.14)

where

R(U) =
|Un − Un−1|

kn

+ |f − aU |, on In (6.5.15)

and j = 1 for the rectangle rule, j = 2 for the midpoint rule, C1 = 1, C2 =
1/2, f (1) := ḟ := df/dt and f (2) := f̈ := d2f/dt2.

6.5.1 Some examples of error estimates

In this part we shall derive some simple versions of the error estimates above

Example 6.3. Let U be the cG(1) approximation of the solution u for the
initial value problem

u̇ + u = f, t > 0, u(0) = u0. (6.5.16)
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Then we have that

|(u − U)(T )| ≤ max
[0,T ]

|k(f − U̇ − U)|, (6.5.17)

where k is the time step.

Proof. Evidently the error e = u − U satisfies the Galerkin orthogonality

∫ T

0

(ė + e)vdt = 0, for all piecewise constants v(t). (6.5.18)

Let ϕ be the solution of the dual equation

−ϕ̇ + ϕ = 0, t < T, ϕ(T ) = e(T ), (6.5.19)

then ϕ(t) = e(T )et−T . Further,

|e(T )|2 = e(T ) · e(T ) +

∫ T

0

e(−ϕ̇ + ϕ)dt = e(T ) · e(T )−
∫ T

0

eϕ̇ dt +

∫ T

0

eϕdt.

Integration by parts yields

∫ T

0

eϕ̇dt = [e · ϕ]Tt=0 −
∫ T

0

ėϕdt = e(T )ϕ(T ) − e(0)ϕ(0) −
∫ T

0

ėϕdt.

Hence, using ϕ(T ) = e(T ), and e(0) = 0, we have

|e(T )|2 = e(T ) · e(T ) − e(T ) · e(T ) +

∫ T

0

ėϕ dt +

∫ T

0

eϕ dt =

∫ T

0

(ė + e)ϕdt

=

∫ T

0

(ė + e)(ϕ − v)dt =

∫ T

0

(
u̇ + u − U̇ − U

)
(ϕ − v)dt.

We have that r(U) := U̇ + U − f , is the residual and

|e(T )|2 = −
∫ T

0

r(U) · (ϕ − v)dt ≤ max
[0,T ]

|k · r(U)|
∫ T

0

1

k
|ϕ − v|dt. (6.5.20)

Recall that ∫

I

k−1|ϕ − v|dx ≤
∫

I

|ϕ̇|dx. (6.5.21)
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Further −ϕ̇ + ϕ = 0 implies ϕ̇ = ϕ, and ϕ(t) = e(T )et−T . Thus

|e(T )|2 ≤ max
[0,T ]

|k r(U)|
∫ T

0

|ϕ̇|dt = max
[0,T ]

|k r(U)|
∫ T

0

|ϕ(t)| dt

≤ max
[0,T ]

|kr(U)|e(T )|
∫ T

0

et−T dt.

(6.5.22)

Now since
∫ T

0

et−T dt = [et−T ]T0 = e0 − e−T = 1 − e−T ≤ 1, T > 0,

finally, we end up with the desired result:

|e(T )| ≤ max
[0,T ]

|k r(U)|,

and the proof is complete.

Problem 6.1. Generalize the above example to the problem u̇+au = f , with
a = positive constant. Is the statement of this example valid for u̇ − u = f?

Problem 6.2. Study the dG(0)-case for u̇ + au = f, a > 0

Example 6.4. Let u̇+u = f, t > 0. Show for the cG(1)-approximation U(t)
that

|(u − U)(T )| ≤ max
[0,T ]

|k2ü|T. (6.5.23)

Sketch of the proof via the dual equation. Let ϕ be the solution for the dual
problem

−ϕ̇ + ϕ = 0, t < T, ϕ(T ) = e(T ),

and define ρ := u − û and Θ := û − U , where û is the piecewise linear
interpolant of u. Then we may compute the error at time T , as

|e(T )|2 = |Θ(T )|2 = Θ(T )ϕ(T ) +

∫ T

0

Θ̄(−Φ̇ + Φ) dt =

∫ T

0

(Θ̇ + Θ)Φ̄dt

= −
∫ T

0

(ρ̇ + ρ)Φ̄ dt = −
∫ T

0

ρ · Φ̄ dt ≤ max
[0,T ]

|k2ü|
∫ T

0

|Φ̄| dt

≤ max
[0,T ]

|k2ü|T |e(T )|.

Here Φ is cG(1)-approximation of ϕ such that
∫ T

0
v(−Φ̇ + Φ) dt = 0 for all

piecewise constant v(t), and v̄ is the piecewise constant mean value. Observe
that ρ(T ) = u(T ) − û(T ) = 0 and Φ = ρ + Θ. The details are left to the
reader.
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6.6 Exercises

Problem 6.3. (a) Derive the stiffness matrix and load vector in piecewise
polynomial (of degree q) approximation for the following ODE in population
dynamics, 




u̇(t) = λu(t), for 0 < t ≤ 1,

u(0) = u0.

(b) Let λ = 1 and u0 = 1 and determine the approximate solution U(t), for
q = 1 and q = 2.

Problem 6.4. Consider the initial value problem

u̇(t) + a(t)u(t) = f(t), 0 < t ≤ T, u(0) = u0.

Show that if a(t) = 1, f(t) = 2 sin(t), then we have
u(t) = sin(t) − cos(t) =

√
2 sin(t − π/2).

Problem 6.5. Compute the solution for

u̇(t) + a(t)u(t) = t2, 0 < t ≤ T, u(0) = 1,

corresponding to
(a) a(t) = 4, (b) a(t) = −t.

Problem 6.6. Compute the cG(1) approximation for the differential equa-
tions in the above problem. In each case, determine the condition on the step
size that guarantees that U exists.

Problem 6.7. Without using fundamental theorem, prove that if a(t) ≥ 0
then, a continuously differentiable solution of (6.0.1) is unique.

Problem 6.8. Consider the initial value problem

u̇(t) + a(t)u(t) = f(t), 0 < t ≤ T, u(0) = u0.

Show that for a(t) > 0, and for N = 1, 2, . . . , the piecewise linear approxi-
mate solution U for this problem satisfies the a posteriori error estimate

|u(tN) − UN | ≤ max
[0,tN ]

|k(U̇ + aU − f)|, k = kn, for tn−1 < t ≤ tn.
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Problem 6.9. Consider the initial value problem:

u̇(t) + au(t) = 0, t > 0, u(0) = 1.

a) Let a = 40, and the time step k = 0.1. Draw the graph of Un :=
U(nk), k = 1, 2, . . . , approximating u using (i) explicit Euler, (ii) implicit
Euler, and (iii) Crank-Nicholson methods.

b) Consider the case a = i, (i2 = −1), having the complex solution u(t) = e−it

with |u(t)| = 1 for all t. Show that this property is preserved in Crank-
Nicholson approximation, (i.e. |Un| = 1 ), but NOT in any of the Euler
approximations.

Problem 6.10. Consider the initial value problem

u̇(t) + au(t) = 0, t > 0, u(0) = u0, (a = constant).

Assume a constant time step k and verify the iterative formulas for dG(0)
and cG(1) approximations U and Ũ , respectively: i.e.

Un =
( 1

1 + ak

)n

u0, Ũn =
(1 − ak/2

1 + ak/2

)n

u0.

Problem 6.11. Assume that
∫

Ij

f(s) ds = 0, for j = 1, 2, . . . ,

where Ij = (tj−1, tj), tj = jk with k being a positive constant. Prove that if
a(t) ≥ 0, then the solution for (6.0.1) satisfies

|u(t)| ≤ e−A(t)|u0| + max
0≤s≤t

|kf(s)|.

Problem 6.12. Let U be the cG(1) approximation of u satisfying the initial
value problem

u̇ + au = f, t > 0, u(0) = u0.

Let k be the time step and show that for a = 1,

|(u − U)(T )| ≤ min
(
||k(f − U̇ − U)||L∞[0,T ], T ||k2ü||L∞[0,T ]

)
.



6.6. EXERCISES 171

Problem 6.13. Consider the scalar boundary value problem

u̇(t) + a(t)u(t) = f(t), t > 0, u(0) = u0.

(a) Show that for a(t) ≥ a0 > 0, we have the stability estimate

|u(t)| ≤ e−a0t

(
|u0| +

∫ t

0

ea0s|f(s)| ds

)

(b) Formulate the cG(1) method for this problem, and show that the con-
dition 1

2
a0k > −1, where k is the time step, guarantees that the method is

operational, i.e. no zero division occurs.

(c) Assume that a(t) ≥ 0, f(t) ≡ 0, and estimate the quantity
R T

0
|u̇| dt

|u0| .

Problem 6.14. Consider the initial value problem (u = u(x, t))

u̇ + Au = f, t > 0; u(t = 0) = u0.

Show that if there is a constant α > 0 such that

(Av, v) ≥ α||v||2, ∀v,

then the solution u of the initial value problem satisfies the stability estimate

||u(t)||2 + α

∫ t

0

||u(s)||2 ds ≤ ||u0||2 +
1

α

∫ t

0

||f(s)||2 ds.

Problem 6.15. Formulate a continuous Galerkin method using piecewise
polynomials based on the original global Galerkin method.

Problem 6.16. Formulate the dG(1) method for the differential equations
specified in Problem 6.5.

Problem 6.17. Write out the a priori error estimates for the equations
specified in Problem 6.5.

Problem 6.18. Use the a priori error bound to show that the residual of the
dG(0) approximation satisfies R(U) = O(1).

Problem 6.19. Prove the following stability estimate for the dG(0) method
described by (6.2.10),

|UN |2 +
N−1∑

n=0

|[Un]|2 ≤ |u0|2.
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Chapter 7

Initial Boundary Value
Problems in 1d

A large class of phenomena in nature, science and technology, such as seasonal
periods, heat distribution, wave propagation, etc, are varying both in space and
time. To describe these phenomena in a physical domain requires the knowledge
of their initial status, as well as information on the boundary of the domain
(relevant status of surrounding environment), or asymptotic behavior in the case
of unbounded domains. Problems that model such properties are called initial
boundary value problems. In this chapter we shall study the two most important
equations of this type: namely, the heat equation and the wave equation in
one space dimension. We also address (briefly) the one-space dimensional time-
dependent convection-diffusion problem.

7.1 Heat equation in 1d

In this section we focus on some basic L2-stability and finite element error
estimates for the one-space dimensional heat equation. In Chapter 1 we
derived the one-dimensional stationary heat equation. A general discussion
on the heat equation can be found in our Lecture Notes in Fourier Analysis
[3]. Here, to illustrate, we consider an example of an initial boundary value
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problem (IBVP) for the one-dimensional heat equation, viz





u̇ − u′′ = f(x, t), 0 < x < 1, t > 0,

u(x, 0) = u0(x), 0 < x < 1,

u(0, t) = ux(1, t) = 0, t > 0,

(7.1.1)

where we have used the following notation

u̇ := ut =
∂u

∂t
, u′ := ux =

∂u

∂x
, u′′ := uxx =

∂2u

∂x2
.

Note that the partial differential equation in (7.1.1) contains three deriva-
tives, two derivatives in space and one derivative in time. This yields three
degrees of freedom (in the sense that, to recover the solution u from the
equation (7.1.1), it is necessary to integrate twice in space and once in time,
where each integration introduces an arbitrary “constant”.) Therefore, to
determine a unique solution to the heat equation, it is necessary to supply
three data: here two boundary conditions corresponding to the two spatial
derivatives in u′′ and an initial condition corresponding to the time derivative
in u̇.

u(x, t)

x

t

u0(x)

tn−1

tn

Figure 7.1: A decreasing temperature profile with data u(0, t) = u(1, t) = 0.
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Below we give an example, where these concepts are described in physical
terms:

Example 7.1. Describe the physical meaning of the functions and parame-
ters in the problem (7.1.1), when f = 20 − u.

Answer: The problem is an example of heat conduction where

u(x, t), means the temperature at the point x and time t.

u(x, 0) = u0(x), is the initial temperature at time t = 0.

u(0, t) = 0, means fixed temperature at the boundary point x = 0.

u′(1, t) = 0, means isolated boundary at the boundary point x = 1

(where no heat flux occurs).

f = 20 − u, is the heat source, in this case a control system to force

u → 20.

Remark 7.1. Observe that it is possible to generalize (7.1.1) to a u dependent
source term f , e.g. as in the above example where f = 20 − u.

7.1.1 Stability estimates

We shall derive a general stability estimate for the mixed (Dirichlet at one
end point and Neumann in the other) initial boundary value problem above,
prove a one-dimensional version of the Poincare inequality and finally derive
also some stability estimates in the homogeneous (f ≡ 0) case. These are
tools that we shall need in our finite element analysis.

Theorem 7.1. The IBVP (7.1.1) satisfies the stability estimates

||u(·, t)|| ≤ ||u0|| +
∫ t

0

||f(·, s)|| ds, (7.1.2)

||ux(·, t)||2 ≤ ||u′
0||2 +

∫ t

0

||f(·, s)||2 ds, (7.1.3)

where u0 and u′
0 are assumed to be L2(I) functions with I = (0, 1), further

we have assumed that f ∈ L1

(
[0, t], L2(I)

)
∩ L2

(
[0, t], L2(I)

)
. Note further
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that, here ||(·, t)|| is the time dependent L2 norm:

||w(·, s)|| := ||w(·, s)||L2(0,1) =
( ∫

Ω

||w(x, s)||2 dx
)1/2

.

Proof. Multiplying the equation in (7.1.1) by u and integrating over (0, 1)
yields ∫ 1

0

u̇u dx −
∫ 1

0

u′′u dx =

∫ 1

0

fu dx. (7.1.4)

By integration by parts in the second integral, we have

1

2

d

dt

∫ 1

0

u2 dx +

∫ 1

0

(u′)2 dx − u′(1, t)u(1, t) + u′(0, t)u(0, t) =

∫ 1

0

fu dx.

Then, using the boundary conditions and Cauchy-Schwarz’ inequality we end
up with

||u|| d

dt
||u|| + ||u′||2 =

∫ 1

0

fu dx ≤ ||f || ||u||. (7.1.5)

Consequently ||u|| d
dt
||u|| ≤ ||f || ||u||, and thus

d

dt
||u|| ≤ ||f ||. (7.1.6)

Integrating over time we get

||u(·, t)|| − ||u(·, 0)|| ≤
∫ t

0

||f(·, s)|| ds, (7.1.7)

which yields the first assertion (7.1.2) of the theorem. To prove (7.1.3) we
multiply the differential equation by u̇, integrate over (0, 1), and use integra-
tion by parts so that we have on the left hand side

∫ 1

0

(u̇)2 dx −
∫ 1

0

u′′u̇ dx = ||u̇||2 +

∫ 1

0

u′u̇′ dx − u′(1, t)u̇(1, t) + u′(0, t)u̇(0, t).

Hence, using the boundary data, where u(0, t) = 0 =⇒ u̇(0, t) = 0, and
Cauchy-Schwarz’ inequality

||u̇||2 +
1

2

d

dt
||u′||2 =

∫ 1

0

fu̇ dx ≤ ||f || ||u̇|| ≤ 1

2

(
||f ||2 + ||u̇||2

)
, (7.1.8)
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or
1

2
||u̇||2 +

1

2

d

dt
||u′||2 ≤ 1

2
||f ||2. (7.1.9)

Therefore, evidently, we have

d

dt
||u′||2 ≤ ||f ||2. (7.1.10)

Finally, integrating over (0, t) we get the second assertion of the theorem:

||u′(·, t)||2 − ||u′(·, 0)||2 ≤
∫ t

0

||f(·, s)||2 ds, (7.1.11)

and the proof is complete.

To proceed we give a proof of a one-dimensional version of the Poincare
inequality which is one of the most important inequalities in PDE and anal-
ysis.

Theorem 7.2 (The Poincare inequality in 1− d). Assume that u and u′ are
square integrable functions on an interval [0, L]. There exists a constant CL,
independent of u, but dependent on L, such that if u(0) = 0, then

∫ L

0

u(x)2 dx ≤ CL

∫ L

0

u′(x)2 dx, i.e. ||u|| ≤
√

CL||u′||. (7.1.12)

Proof. For x ∈ [0, L] we may write

u(x) =

∫ x

0

u′(y) dy ≤
∫ x

0

|u′(y)| dy =

∫ x

0

|u′(y)| · 1 dy

≤
( ∫ L

0

|u′(y)|2 dy
)1/2

·
( ∫ L

0

12dy
)1/2

=
√

L
( ∫ L

0

|u′(y)|2 dy
)1/2

,

where in the last step we used the Cauchy-Schwarz inequality. Thus

∫ L

0

u(x)2 dx ≤
∫ L

0

L
(∫ L

0

|u′(y)|2 dy
)

dx = L2

∫ L

0

|u′(y)|2 dy, (7.1.13)

and hence
||u|| ≤ L||u′||. (7.1.14)



178 CHAPTER 7. INITIAL BOUNDARY VALUE PROBLEMS IN 1D

Remark 7.2. The constant CL = L2 indicates that the Poincare inequality
is valid for arbitrary bounded intervals, but not for unbounded intervals. If
u(0) 6= 0 and, for simplicity L = 1, then by a similar argument as above we
get the following version of the one-dimensional Poincare inequality:

||u||2L2(0,1) ≤ 2
(
u(0)2 + ||u′||2L2(0,1)

)
. (7.1.15)

Theorem 7.3 (Stability of the homogeneous heat equation). The initial
boundary value problem for the heat equation





u̇ − u′′ = 0, 0 < x < 1, t > 0

u(0, t) = ux(1, t) = 0, t > 0

u(x, 0) = u0(x), 0 < x < 1,

(7.1.16)

satisfies the following stability estimates

a)
d

dt
||u||2 + 2||u′||2 = 0, b) ||u(·, t)|| ≤ e−t||u0||.

Remark 7.3. Note in particular that the stability estimate b) in above means
that, in the homogeneous case (i.e. in the absence of a source term in (7.1.1))
the temperature will decrease exponentially in time.

Proof. a) Multiply the equation by u and integrate over x ∈ (0, 1), to get

0 =

∫ 1

0

(u̇−u′′)u dx =

∫ 1

0

u̇u dx+

∫ 1

0

(u′)2 dx−u′(1, t)u(1, t)+u′(0, t)u(0, t),

where we used integration by parts. Using the boundary data we then have

1

2

d

dt

∫ 1

0

u2 dx +

∫ 1

0

(u′)2 dx =
1

2

d

dt
||u||2 + ||u′||2 = 0.

This gives the proof of a). As for the proof of b), using a) and the Poincare
inequality, with L = 1, i.e., ||u|| ≤ ||u′|| we get

d

dt
||u||2 + 2||u||2 ≤ 0. (7.1.17)

Multiplying both sides of (7.1.17) by the integrating factor e2t yields

d

dt

(
||u||2e2t

)
=

( d

dt
||u||2 + 2||u||2

)
e2t ≤ 0. (7.1.18)
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We replace t by s and integrate in s over (0, t), to obtain

∫ t

0

d

ds

(
||u||2e2s

)
ds = ||u(·, t)||2e2t − ||u(·, 0)||2 ≤ 0. (7.1.19)

This yields

||u(·, t)||2 ≤ e−2t||u0||2 =⇒ ||u(·, t)|| ≤ e−t||u0||, (7.1.20)

and completes the proof.

Below, for the sake of generality, we shall denote the spatial domain by
Ω and the boundary of Ω by ∂Ω. Thus, the corresponding formulation for
the homogeneous heat equation reads as: Given u0(x) find u(x, t) satisfying





u̇ − u′′ = 0, for x ∈ Ω, t > 0,

u(x, t) = 0, for x ∈ ∂Ω1, t > 0,

ux(x, t) = 0, for x ∈ ∂Ω2, t > 0,

u(x, 0) = u0(x), for x ∈ Ω,

(7.1.21)

where ∂Ω = ∂Ω1 ∪ ∂Ω2 (e.g. for Ω = [a, b], u(a, t) = u′(b, t) = 0).

Theorem 7.4 (An energy estimate). For any small positive constant ε, the
solution of the homogeneous heat equation (7.1.21) satisfies the estimate

∫ t

ε

‖u̇‖(s)ds ≤ 1

2

√
ln

t

ε
‖u0‖. (7.1.22)

Proof. We multiply the differential equation: u̇ − u′′ = 0, by −tu′′, and
integrate over Ω to obtain

−t

∫

Ω

u̇u′′ dx + t

∫

Ω

(−u′′)2 dx = 0. (7.1.23)

Integrating by parts and using the boundary data (note that u = 0 on ∂Ω1

implies that u̇ = 0 on ∂Ω1) we get

∫

Ω

u̇u′′ dx = −
∫

Ω

u̇′ u′ dx = −1

2

d

dt
‖u′‖2, (7.1.24)



180 CHAPTER 7. INITIAL BOUNDARY VALUE PROBLEMS IN 1D

so that (11.1.15) may be rewritten as

t
1

2

d

dt
‖u′‖2 + t‖u′′‖2 = 0. (7.1.25)

Using the identity t d
dt
‖u′‖2 = d

dt
(t‖u′‖2) − ‖u′‖2 we end up with

d

dt
(t‖u′‖2) + 2t‖u′′‖2 = ‖u′‖2. (7.1.26)

Now relabeling t as s and integrating in s over (0, t) we get

∫ t

0

d

ds
(s‖u′‖2(s)) ds + 2

∫ t

0

s‖u′′‖2(s) ds =

∫ t

0

‖u′‖2(s) ds ≤ 1

2
‖u0‖2,

where in the last inequality we just integrate the stability estimate (a) in the
previous theorem over the interval (0, t). Consequently,

t‖u′‖2(t) + 2

∫ t

0

s‖u′′‖2(s) ds ≤ 1

2
‖u0‖2. (7.1.27)

In particular, we have:

(I) ‖u′‖(t) ≤ 1√
2t
‖u0‖, (II)

(∫ t

0

s‖u′′‖2(s) ds
)1/2

≤ 1

2
‖u0‖. (7.1.28)

Now using the differential equation u̇ = u′′, and integrating over (ε, t) (same
relabeling as above), we obtain

∫ t

ε

‖u̇‖(s)ds =

∫ t

ε

‖u′′‖(s)ds =

∫ t

ε

1 · ‖u′′‖(s)ds =

∫ t

ε

1√
s
·
√

s‖u′′‖(s)ds

≤
( ∫ t

ε

s−1 ds
)1/2

·
( ∫ t

ε

s‖u′′‖2(s) ds
)1/2

≤ 1

2

√
ln

( t

ε

)
‖u0‖,

where in the last inequality we have used the estimate (II) in (7.1.28).

Problem 7.1. Prove that

‖u′′‖(t) ≤ 1√
2 t

‖u0‖. (7.1.29)

Hint: Multiply u̇ − u′′ by t2 (u′′)2, and note that u′′ = u̇ = 0 on ∂Ω, or
alternatively: differentiate u̇ − u′′ = 0 with respect to t and multiply the
resulting equation by t2 u̇.
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7.1.2 FEM for the heat equation

We consider the one-dimensional heat equation with Dirichlet boundary con-
ditions





u̇ − u′′ = f, 0 < x < 1, t > 0,

u(0, t) = u(1, t) = 0, t > 0,

u(x, 0) = u0(x), 0 < x < 1.

(7.1.30)

The Variational formulation for this problem reads as follows: For every time
interval In = (tn−1, tn], find u(x, t), x ∈ (0, 1), t ∈ In, such that

∫

In

∫ 1

0

(u̇v + u′v′)dxdt =

∫

In

∫ 1

0

fvdxdt, ∀v : v(0, t) = v(1, t) = 0. (VF)

A continuous piecewise linear Galerkin finite element method (FEM): cG(1)−
cG(1) is then formulated as: for each time interval In := (tn−1, tn], with
tn − tn−1 = kn, let

U(x, t) = Un−1(x)Ψn−1(t) + Un(x)Ψn(t), (7.1.31)

where

Ψn(t) =
t − tn−1

kn

, Ψn−1(t) =
tn − t

kn

, (7.1.32)

and

Uñ(x) = Uñ,1ϕ1(x) + Uñ,2ϕ2(x) + . . . + Uñ,mϕm(x), ñ = n − 1, n (7.1.33)

with ϕj being the usual piecewise linear, continuous finite element basis
functions (hat-functions) corresponding to a partition of Ω = (0, 1), with
0 = x0 < · · · < xℓ < xℓ+1 < · · · < xm+1 = 1, and ϕj(xi) := δij. Now the
Galerkin method (FEM) is to determine the unknown coefficients Un,ℓ in the
above representation for U (i.e. for U being a piecewise linear, continuous
function, in both the space and time variables) that satisfies the following
discrete variational formulation: Find U(x, t) given by (7.1.31) such that

∫

In

∫ 1

0

(U̇ϕi + U ′ϕ′
i) dxdt =

∫

In

∫ 1

0

fϕi dxdt, i = 1, 2, . . . ,m. (7.1.34)
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Note that, on In = (tn−1, tn] and with Un(x) := U(x, tn) and Un−1(x) :=
U(x, tn−1),

U̇(x, t) = Un−1(x)Ψ̇n−1(t) + Un(x)Ψ̇n(t) =
Un − Un−1

kn

. (7.1.35)

Further differentiating (7.1.31) with respect to x we have

U ′(x, t) = U ′
n−1(x)Ψn−1(t) + U ′

n(x)Ψn(t). (7.1.36)

Inserting (7.1.35) and (7.1.36) into (7.1.34) we get using the identities,
∫

In
dt =

kn and
∫

In
Ψndt =

∫
In

Ψn−1dt = kn/2 that,

∫ 1

0

Unϕidx

︸ ︷︷ ︸
M ·Un

−
∫ 1

0

Un−1ϕi dx

︸ ︷︷ ︸
M ·Un−1

+

∫

In

Ψn−1 dt

︸ ︷︷ ︸
kn/2

∫ 1

0

U ′
n−1ϕ

′
i dx

︸ ︷︷ ︸
S·Un−1

+

∫

In

Ψn dt

︸ ︷︷ ︸
kn/2

∫ 1

0

U ′
nϕ

′
i dx

︸ ︷︷ ︸
S·Un

=

∫

In

∫ 1

0

fϕi dxdt

︸ ︷︷ ︸
Fn

.

(7.1.37)
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This can be written in a compact form as the Crank-Nicolson system

(
M +

kn

2
S
)
Un =

(
M − kn

2
S
)
Un−1 + Fn, (CNS)

with the solution Un given by the data Un−1 and F , viz

Un =
(
M +

kn

2
S
)−1

︸ ︷︷ ︸
B−1

(
M − kn

2
S
)

︸ ︷︷ ︸
A

Un−1 +
(
M +

kn

2
S
)−1

︸ ︷︷ ︸
B−1

Fn, (7.1.38)

where M and S (computed below) are known as the mass-matrix and stiffness-
matrix, respectively, and

Un =




Un,1

Un,2

. . .

Un,m




, F =




Fn,1

Fn,2

. . .

Fn,m




, Fn,i =

∫

In

∫ 1

0

fϕi dx dt. (7.1.39)

Thus, given the source term f we can determine the vector Fn and then,
for each n = 1, . . . N , given the vector Un−1 (the initial value is given by
U0,j := u0(xj)) we may use the CNS to compute Un,ℓ, ℓ = 1, 2, . . . ,m (m
nodal values of U at the xj : s, and at the time level tn).

Problem 7.2. Derive a corresponding system of equations, as above, for
cG(1)−dG(0): with the discontinuous Galerkin approximation dG(0) in time
with piecewise constants.

We now return to the computation of the matrix entries for M and S, for
a uniform partition (all subintervals are of the same length) of the interval
I = (0, 1). Note that differentiating (7.1.33) with respect to x, yields

U ′
n(x) = Un,1ϕ

′
1(x) + Un,2ϕ

′
2(x) + . . . + Un,mϕ′

m(x). (7.1.40)

Hence, for i = 1, . . . ,m, the rows in the system of equations are given by

∫ 1

0

U ′
nϕ′

i =
( ∫ 1

0

ϕ′
iϕ

′
1

)
Un,1 +

(∫ 1

0

ϕ′
iϕ

′
2

)
Un,2 + . . . +

( ∫ 1

0

ϕ′
iϕ

′
m

)
Un,m,
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which can be written in matrix form as

SUn =




∫ 1

0
ϕ′

1ϕ
′
1

∫ 1

0
ϕ′

1ϕ
′
2 . . .

∫ 1

0
ϕ′

1ϕ
′
m

∫ 1

0
ϕ′

2ϕ
′
1

∫ 1

0
ϕ′

2ϕ
′
2 . . .

∫ 1

0
ϕ′

2ϕ
′
m

. . . . . . . . . . . .
∫ 1

0
ϕ′

mϕ′
1

∫ 1

0
ϕ′

mϕ′
2 . . .

∫ 1

0
ϕ′

mϕ′
m







Un,1

Un,2

. . .

Un,m




. (7.1.41)

Thus, S is just the stiffness matrix Aunif computed in Chapter 2:

S =
1

h




2 −1 0 0 . . . 0

−1 2 −1 0 . . . 0

0 −1 2 −1 . . . 0

. . . . . . . . . . . . . . . . . .

0 . . . . . . −1 2 −1

0 . . . . . . . . . −1 2




. (7.1.42)

A non-uniform partition yields a matrix of the form A in Chapter 2.
Similarly, recalling the notation for the mass matrix M introduced in (7.1.37),
we have that for i = 1, . . . ,m

[MUn]i =

∫ 1

0

Unϕi. (7.1.43)

Hence, to compute the mass matrix M one should drop all derivatives from
the general form of the matrix for S given by (7.1.41). In other words unlike

the form [SUn]i =
∫ 1

0
U ′

nϕ′
i, MUn does not involve any derivatives, neither in

Un nor in ϕi. Consequently

M =




∫ 1

0
ϕ1ϕ1

∫ 1

0
ϕ1ϕ2 . . .

∫ 1

0
ϕ1ϕm

∫ 1

0
ϕ2ϕ1

∫ 1

0
ϕ2ϕ2 . . .

∫ 1

0
ϕ2ϕm

. . . . . . . . . . . .
∫ 1

0
ϕmϕ1

∫ 1

0
ϕmϕ2 . . .

∫ 1

0
ϕmϕm




. (7.1.44)
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For a uniform partition, we have computed this mass matrix in Chapter 5:

M = h




2
3

1
6

0 0 . . . 0

1
6

2
3

1
6

0 . . . 0

0 1
6

2
3

1
6

. . . 0

. . . . . . . . . . . . . . . . . .

0 . . . . . . 1
6

2
3

1
6

0 . . . . . . . . . 1
6

2
3




=
h

6




4 1 0 0 . . . 0

1 4 1 0 . . . 0

0 1 4 1 . . . 0

. . . . . . . . . . . . . . . . . .

0 . . . . . . 1 4 1

0 . . . . . . . . . 1 4




.

7.1.3 Error analysis

In this section we outline a general framework for the error estimation pro-
cedure (this procedure is applicable for higher space dimensions as well). We
denote the spatial domain by Ω with boundary ∂Ω. In the one dimensional
case treated here this means that Ω is an arbitrary interval Ω := [a, b] with
∂Ω = {a, b}. For each n = 1, 2, . . . , N , we consider the slab Sn := Ω × In,
with In = (tn−1, tn], and rewrite the variational formulation for the equation
(7.1.30) as: to find the exact solution u(x, t) ∈ H1

0 := C([0, T ); H1
0 ([a, b]))

such that for each n = 1, 2, . . . , N ,
∫

In

∫

Ω

(u̇v + u′v′)dxdt =

∫

In

∫

Ω

fv dxdt, ∀v ∈ C(In; H1
0 ([a, b])), (7.1.45)

with H1
0 ([a, b]) being the usual L2-based Sobolev space over [a, b] (consist-

ing of square integrable functions vanishing at x = a, x = b, and having
square integrable derivatives). We may formulate a corresponding finite el-
ement method for the equation (7.1.30) as the continuous, piecewise linear
space-time approximation in (7.1.31)-(7.1.34). We may alternatively con-
struct the so called cG(1)dG(q) method: a finite element method based on
approximation using continuous piecewise linear functions in space and dis-
continuous piecewise polynomials of degree q in time. To this approach we
let Sn = Ω × In, and define the trial space as

W
(q)
k = {v(x, t) : v|Sn

∈ W
(q)
k,n, n = 1, . . . , N}, (7.1.46)

where

W
(q)
k,n = {v(x, t) : v(x, t) =

q∑

j=0

tjϕj(x) : ϕj ∈ V 0
n , (x, t) ∈ Sn}.
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Here V 0
n = V 0

hn
is the space of continuous piecewise linear functions on a

subdivision Tn of Ω with mesh function hn, vanishing on the boundary. The
functions in W

(q)
k may be discontinuous in time at the discrete time levels tn.

To account for this, we use the same notation as in the previous chapter:

w±
n = lim

s→0±
w(tn + s), [wn] := w+

n − w−
n . (7.1.47)

Now we may formulate the cG(1)dG(q) method as follows: Let U−
0 := u0,

and find U ∈ W
(q)
k such that for n = 1, . . . , N ,

∫

In

∫

Ω

(U̇v+U ′v′) dx dt+

∫

Ω

[Un−1]v
+
n−1 dx =

∫

In

∫

Ω

fv dx dt for all v ∈ W
(q)
k,n.

(7.1.48)
Subtracting (7.1.48) from (7.1.45) we obtain the time-discontinuous Galerkin
orthogonality relation for the error

∫

In

∫

Ω

(ėv + e′v′) dxdt +

∫

Ω

[en−1]v
+
n−1 dx = 0, for all v ∈ W

(q)
kh . (7.1.49)

Obviously in the time-continuous case the jump term in (7.1.48) disappears
and we end up with cG(1)cG(q) method, viz:

∫

In

∫

Ω

(U̇v + U ′v′) dx dt =

∫

In

∫

Ω

fv dx dt for all v ∈ W
(q)
k,n. (7.1.50)

Now, subtracting (7.1.50) from (7.1.45) we obtain the Galerkin orthogonality
relation for the error e = u − U as

∫

In

∫

Ω

(ėv + e′v′) dxdt = 0, for all v ∈ W
(q)
kn . (7.1.51)

A priori and a posteriori error estimates for the heat equation are obtained
combining the results in Chapters 5 and 6. To become familiar with some
standard techniques, below we shall demonstrate the a posteriori approach.

Theorem 7.5 (cG(1)cG(1) a posteriori error estimate). Assume:
• hn = h, ∀n
• u0 ∈ V 0

h1
= V 0

h (so that e(0) = 0).
Let ε = kN be small, and let 0 < t < T . Let u and U be the exact and
approximate solutions for the heat equation (7.1.30), respectively, i.e. U is
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the finite element approximation satisfying in either one of the equations
(7.1.34): cG(1)cG(1) or (7.1.50): cG(1)cG(q). Then the error e = u − U is
bounded as

‖e(T )‖ ≤
(
2

√
ln

T

ε

)
max
[0,T ]

‖(k + h2)r(U)‖, (7.1.52)

where r(U) is the residual and k and h are temporal and spatial mesh func-
tions, respectively.

Proof. Following the general framework for a posteriori error estimates, we
let ϕ(x, t) be the solution of the dual problem





−ϕ̇ − ϕ′′ = 0, in Ω × (0, T ),

ϕ = 0, on ∂Ω × (0, T ),

ϕ = e, in Ω for t = T,

(7.1.53)

where e = e(T ) = e(·, T ) = u(·, T ) − U(·, T ), T = tN . By a change of
variables, letting w(x, s) = ϕ(x, T − s), (s > 0); the backward dual problem
(7.1.53) is rewritten in the forward form:





ẇ − w′′ = 0, in Ω × (0, T ),

w = 0, on ∂Ω × (0, t),

w = e, in Ω for s = 0.

(7.1.54)

For this problem we have shown in the energy estimate theorem 7.4 that

∫ T

ε

‖ẇ‖ ds ≤ 1

2

√
ln

T

ε
‖e‖, (7.1.55)

and consequently, if s = T − t, then ds = −dt and ẇ(x, s) = −ϕ̇(x, T − s).
Hence, since −ϕ′′ = ϕ̇, we have for ϕ, that

∫ T−ε

0

‖ϕ̇‖ dt ≤ 1

2

√
ln

T

ε
‖e‖, and

∫ T−ε

0

‖ϕ′′‖ dt ≤ 1

2

√
ln

T

ε
‖e‖.
(7.1.56)



188 CHAPTER 7. INITIAL BOUNDARY VALUE PROBLEMS IN 1D

Now assume hn = h, n = 1, 2, . . . , and let u0 ∈ V 0
h1

= V 0
h , then, since

(−ϕ̇ − ϕ′′) = 0, integration by parts in t and x yields

‖e(T )‖2 =

∫

Ω

e(T ) · e(T ) dx +

∫ T

0

∫

Ω

e(−ϕ̇ − ϕ′′) dxdt

=

∫

Ω

e(T ) · e(T ) dx −
∫

Ω

e(T ) · ϕ(T ) dx +

∫

Ω

e(0) · ϕ(0)︸ ︷︷ ︸
=0; (u0∈V 0

h1
)

dx

+

∫ T

0

∫

Ω

(ėϕ + e′ϕ′) dxdt.

Using Galerkin orthogonality and integration by parts in x, we get for v ∈
W

(0)
k (i.e. piecewise constant in time and continuous, piecewise linear in

space),

‖e(T )‖2 =

∫ T

0

∫

Ω

ė(ϕ − v) + e′(ϕ − v)′ dxdt. (7.1.57)

But we have∫

Ω

ė(ϕ − v) + e′(ϕ − v)′ dx =

∫

Ω

(u̇ − U̇)(ϕ − v) dx

+
M+1∑

i=1

∫ xi

xi−1

(u′ − U ′)(ϕ − v)′ dx

=

∫

Ω

(u̇ − U̇)(ϕ − v) dx +
M+1∑

i=1

[(u′ − U ′)(ϕ − v)]xi
xi−1

−
M+1∑

i=1

∫ xi

xi−1

(u′′ − U ′′)(ϕ − v) dx

=

∫

Ω

(f − U̇)(ϕ − v) dx +
M∑

i=1

[U ′
i ](ϕ − v)(xi).

Here, the contribution from u′ yields a telescoped finite series with sum
u′(xM+1) − u′(x0) = 0 − 0 = 0. Thus

‖e(T )‖2 =

∫ T

0

∫

Ω

(f − U̇)(ϕ − v) dx +

∫ T

0

M∑

i=1

[U ′
i ](ϕ − v)(xi)

=

∫ T

0

∫

Ω

r1(U)(ϕ − v) dxdt +

∫ T

0

M∑

i=1

[U ′
i ](ϕ − v)(xi).

(7.1.58)
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where we have used ė−e′′ = u̇−u′′− U̇ +U ′′ = f − U̇ +U ′′ = f − U̇ := r1(U)
which is the residual. Next, with mesh functions h = h(x) and k = k(t) in x
and t, respectively we may derive (using the fact that v is piecewise constant
in time and continuous, piecewise linear in space) an interpolation estimate
of the form:

||(k + h2)−1(ϕ − v)||L2
≤ Ci(||ϕ̇||L2

+ ||ϕ′′||L2
). (7.1.59)

To estimate the first term in (7.1.58) (see Eriksson et al [20] Chap 16) we
have using the estimates (7.1.56) that

∫ T

0

∫

Ω

r1(U)(ϕ − v) dxdt ≤Ci

∫ T−kN

0

‖(k + h2)r1(U)‖(‖ϕ̇‖ + ‖ϕ′′‖) dt

+

∫ T

T−kN

‖r1(U)‖‖ϕ − v‖ dt

≤Ci max
[0,T−kN ]

‖(k + h2)r1(U)‖ ·
√

ln
T

kN

‖e(T )‖

+ max
[T−kN ,T ]

(
‖r1(U)‖ · ‖ϕ − v‖

)
· kN ,

where the last term can be estimated using the stability estimate (7.1.2) for
the dual problem with f = 0 as
(
‖r1(U)‖ · ‖ϕ−v‖

)
·kN ≤ C‖kNr1(U)‖‖ϕ‖ ≤ C‖kNr1(U)‖‖e(T )‖. (7.1.60)

Summing up we get
∫ T

0

∫

Ω

r1(U)(ϕ − v) dxdt ≤ Ci max
[0,T ]

‖(k + h2)r1(U)‖ ·
√

ln
T

kN

· ‖e(T )‖.
(7.1.61)

The second term in (7.1.58) can be similarly estimated as

∫ T

0

M∑

i=1

[U ′
i ](ϕ− v)(xi) ≤ Ci max

[0,T ]
‖(k +h2)r2(U)‖ ·

√
ln

T

kN

· ‖e(T )‖, (7.1.62)

where r2(U) := h−1
i |[U ′

i ]|, for x ∈ Ii. This gives our final estimate and the
proof is complete.

‖e(T )‖ ≤ C
(√

ln
T

kN

)
max
[0,T ]

‖(k + h2)r(U)‖, (7.1.63)

where r(U) = r1(U) + r2(U).
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x

y

t

v

ϕ

• Adaptivity Algorithm. Roughly speaking, adaptivity procedure in a
posteriori error estimates can be outlined as follows: Consider, as an example,
the Poisson equation

−u′′ = f in Ω, u = 0, on ∂Ω (7.1.64)

where for the error u − U , we have derived the a posteriori error estimate

‖e′‖ ≤ C‖h r(U)‖, (7.1.65)

with r(U) = |f | + maxIk
|[u′]| and [·] denoting the jump (over the endpoints

of a partition interval Ik). Then, the adaptivity is stated as the following,
3-steps, algorithm:

(1) Choose an arbitrary mesh-size h = h(x) and a tolerance Tol > 0.

(2) Given h, compute the corresponding U (also denoted uh).

(3) If C‖hr(U)‖ ≤ Tol, then accept U . Otherwise choose a new (refined)
h = h(x) and return to the step (2) above. ¤

• Higher order elements cG(2). Piecewise polynomials of degree 2 is de-
termined by the values of the approximate solution at the, e.g. mid-point
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and end-points of each subinterval. The construction is through using the
Lagrange interpolation basis λ0(x), λ1(x), and λ2(x), introduced in the in-
terpolation chapter; as in the graphs below:

Example 7.2 ( Error estimates in a simple case for cG(2)). For the Poisson
equation −u′′ = f, 0 < x < 1, associated with a Dirichlet (or Neumann)
boundary condition we have the following cG(2) error estimates

‖(u − U)′‖ ≤ C‖h2D3u‖. (7.1.66)

‖u − U‖ ≤ C max
(
h‖h2D3u‖

)
. (7.1.67)

‖u − U‖ ≤ C‖h2r(U)‖, where |r(U)| ≤ Ch. (7.1.68)

The proof of the estimates (7.1.66)-(7.1.68) are rather involved (see Eriks-
son et al [20] for the details) and therefore are omitted. These estimates can
be extended to the space-time discretization of the heat equation.

Example 7.3 ( The equation of an elastic beam).





(au′′)′′ = f, Ω = (0, 1),

u(0) = 0, u′(0) = 0, (Dirichlet)

u′′(1) = 0, (au′′)′(1) = 0, (Neumann)

(7.1.69)

where a is the bending stiffness, au′ is the moment, f is the load function,
and u = u(x) is the vertical deflection.
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A variational formulation for this equation can be written as

∫ 1

0

au′′v′′dx =

∫ 1

0

fvdx, ∀v, such that v(0) = v′(0) = 0. (7.1.70)

Here, considering piecewise linear finite element functions is inadequate.

7.1.4 Exercises

Problem 7.3. Work out the details with piecewise cubic polynomials having
continuous first derivatives: i.e., two degrees of freedom on each node.
Hint: A cubic polynomial in (a, b) is uniquely determined by ϕ(a), ϕ′(a), ϕ(b)
and ϕ′(b).

Problem 7.4. Let ‖ · ‖ denote the L2(0, 1)-norm. Consider the problem





−u′′ = f, 0 < x < 1,

u′(0) = v0, u(1) = 0.

a) Show that |u(0)| ≤ ‖u′‖ and ‖u‖ ≤ ‖u′‖.
b) Use a) to show that ‖u′‖ ≤ ‖f‖ + |v0|.

Problem 7.5. Assume that u = u(x) satisfies

∫ 1

0

u′v′dx =

∫ 1

0

fv dx, for all v(x) such that v(0) = 0. (7.1.71)

Show that −u′′ = f for 0 < x < 1 and u′(1) = 0.
Hint: See previous chapters.

Problem 7.6 (Generalized Poincare). Show that for a continuously differ-
entiable function v defined on (0, 1) we have that

||v||2 ≤ v(0)2 + v(1)2 + ||v′||2.

Hint: Use partial integration for
∫ 1/2

0
v(x)2 dx and

∫ 1

1/2
v(x)2 dx and note that

(x − 1/2) has the derivative 1.
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Problem 7.7. Let ‖ · ‖ denote the L2(0, 1)-norm. Consider the following
heat equation





u̇ − u′′ = 0, 0 < x < 1, t > 0,

u(0, t) = ux(1, t) = 0, t > 0,

u(x, 0) = u0(x), 0 < x < 1.

a) Show that the norms: ||u(·, t)|| and ||ux(·, t)|| are non-increasing in time.

||u|| =
( ∫ 1

0
u(x)2 dx

)1/2

.

b) Show that ||ux(·, t)|| → 0, as t → ∞.

c) Give a physical interpretation for a) and b).

Problem 7.8. Consider the inhomogeneous problem 7.8:





u̇ − εu′′ = f, 0 < x < 1, t > 0,

u(0, t) = ux(1, t) = 0, t > 0,

u(x, 0) = u0(x), 0 < x < 1.

where f = f(x, t).
a) Show the stability estimate

||u(·, t)|| ≤
∫ t

0

||f(·, s)|| ds.

b) Show that for the corresponding stationary (u̇ ≡ 0) problem we have

||u′|| ≤ 1

ε
||f ||.

Problem 7.9. Give an a priori error estimate for the following problem:

(auxx)xx = f, 0 < x < 1, u(0) = u′(0) = u(1) = u′(1) = 0,

where a(x) > 0 on the interval I = (0, 1).
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7.2 The wave equation in 1d

The theoretical study of the wave equation, being of hyperbolic type, has
some basic differences compared to that of the heat equation which is a
parabolic equation. Some important aspects in this regard are considered in
coming chapters concerning higher spatial dimensions. Nevertheless, in our
study here, the structure of the finite element procedure for the wave equation
is, mainly, the same as for the heat equation outlined in the previous section.
To proceed we start with an example of the homogeneous wave equation, by
considering the initial-boundary value problem





ü − u′′ = 0, 0 < x < 1 t > 0 (DE)

u(0, t) = 0, u(1, t) = 0 t > 0 (BC)

u(x, 0) = u0(x), u̇(x, 0) = v0(x), 0 < x < 1. (IC)

(7.2.1)

The most important property of the wave equation is the conservation of
energy:

Theorem 7.6. For the wave equation (7.2.1) we have that

1

2
||u̇||2 +

1

2
||u′||2 =

1

2
||v0||2 +

1

2
||u′

0||2 = Constant, (7.2.2)

where

||w||2 = ||w(·, t)||2 =

∫ 1

0

|w(x, t)|2 dx. (7.2.3)

Proof. We multiply the equation by u̇ and integrate over I = (0, 1) to get

∫ 1

0

ü u̇dx −
∫ 1

0

u′′ u̇ dx = 0. (7.2.4)

Using integration by parts and the boundary data we obtain

∫ 1

0

1

2

∂

∂t

(
u̇
)2

dx +

∫ 1

0

u′ (u̇)′ dx −
[
u′(x, t)u̇(x, t)

]1

0

=

∫ 1

0

1

2

∂

∂t

(
u̇
)2

dx +

∫ 1

0

1

2

∂

∂t

(
u′

)2

dx

=
1

2

d

dt

(
||u̇||2 + ||u′||2

)
= 0.

(7.2.5)
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Thus, we have that the quantity

1

2
||u̇||2 +

1

2
||u′||2 = Constant, independent of t. (7.2.6)

Therefore the total energy is conserved. We recall that 1
2
||u̇||2 is the kinetic

energy, and 1
2
||u′||2 is the potential (elastic) energy.

Problem 7.10. Show that ‖(u̇)′‖2 + ‖u′′‖2 = constant, independent of t.
Hint: Differentiate the equation with respect to x and multiply by u̇, . . . .
Alternatively: Multiply (DE): ü − u′′ = 0, by −(u̇)′′ and integrate over I.

Problem 7.11. Derive a total conservation of energy relation using the

Robin type boundary condition:
∂u

∂n
+ u = 0.

7.2.1 Wave equation as a system of hyperbolic PDEs

We rewrite the wave equation as a system of hyperbolic differential equations.
To this approach, we consider solving





ü − u′′ = 0, 0 < x < 1, t > 0,

u(0, t) = 0, u′(1, t) = g(t), t > 0,

u(x, 0) = u0(x), u̇(x, 0) = v0(x), 0 < x < 1,

(7.2.7)

where we let u̇ = v, and reformulate the problem as:




u̇ − v = 0, (Convection)

v̇ − u′′ = 0, (Diffusion).
(7.2.8)

We may now set w = (u, v)t and rewrite the system (7.2.8) as ẇ + Aw = 0:

ẇ + Aw =


 u̇

v̇


 +


 0 −1

− ∂2

∂x2 0





 u

v


 =


 0

0


 . (7.2.9)

In other words, the matrix differential operator is given by

A =


 0 −1

− ∂2

∂x2 0


 .
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Note that, in scalar form, this equation was studied in full detail in Chapter
6. Therefore, in this setting, the study of the wave equation is strongly
connected with that of systems of initial value problems.

7.2.2 The finite element discretization procedure

We follow the same procedure as in the case of the heat equation, and consider
the slab Sn = Ω× In, n = 1, 2, . . . , N , with In = (tn−1, tn]. Then, for each n
we define, on Sn, the piecewise linear approximations





U(x, t) = Un−1(x)Ψn−1(t) + Un(x)Ψn(t),

V (x, t) = Vn−1(x)Ψn−1(t) + Vn(x)Ψn(t),
0 < x < 1, t ∈ In.

(7.2.10)
We may choose the spatial basis functions as ϕj(x), j = 1, . . . ,m, and write





Uñ(x) = Uñ,1(x)ϕ1(x) + . . . + Uñ,m(x)ϕm(x), ñ = n − 1, n

Vñ(x) = Vñ,1(x)ϕ1(x) + . . . + Vñ,m(x)ϕm(x), ñ = n − 1, n.
(7.2.11)

1

ψn(t) ϕ j (x)

t n-1 t n tn+1 x x xj-1 j+1j

For u̇ − v = 0 and t ∈ In we write the general variational formulation
∫

In

∫ 1

0

u̇ϕ dxdt −
∫

In

∫ 1

0

vϕ dxdt = 0, for all ϕ(x, t). (7.2.12)

Likewise, v̇ − u′′ = 0 yields a variational formulation, viz
∫

In

∫ 1

0

v̇ϕ dxdt −
∫

In

∫ 1

0

u′′ϕdxdt = 0. (7.2.13)
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Integrating by parts in x, in the second term, and using the boundary con-
dition u′(1, t) = g(t) we get
∫ 1

0

u′′ϕdx = [u′ϕ]10 −
∫ 1

0

u′ϕ′ dx = g(t)ϕ(1, t) − u′(0, t)ϕ(0, t) −
∫ 1

0

u′ϕ′ dx.

Inserting the right hand side in (7.2.13) we get for all ϕ with ϕ(0, t) = 0:
∫

In

∫ 1

0

v̇ϕ dxdt +

∫

In

∫ 1

0

u′ϕ′ dxdt =

∫

In

g(t)ϕ(1, t) dt. (7.2.14)

The corresponding cG(1)cG(1) finite element method reads as: For each n,
n = 1, 2, . . . , N , find continuous piecewise linear functions U(x, t) and V (x, t),
in a partition, 0 = x0 < x1 < · · · < xm = 1 of Ω = (0, 1), such that

∫

In

∫ 1

0

Un(x) − Un−1(x)

kn

ϕj(x) dxdt

−
∫

In

∫ 1

0

(
Vn−1(x)Ψn−1(t) + Vn(x)Ψn(t)

)
ϕj(x) dxdt = 0,

for j = 1, 2, . . . ,m,

(7.2.15)

and
∫

In

∫ 1

0

Vn(x) − Vn−1(x)

kn

ϕj(x) dxdt

+

∫

In

∫ 1

0

(
U ′

n−1(x)Ψn−1(t) + U ′
n(x)Ψn(t)

)
ϕ′

j(x) dxdt

=

∫

In

g(t)ϕj(1) dt, for j = 1, 2, . . . ,m,

(7.2.16)

where U̇ , U ′, V̇ , and V ′ are computed using (7.2.10) with

ψn−1(t) =
tn − t

kn

, ψn(t) =
t − tn−1

kn

, kn = tn − tn−1.

Thus, the equations (7.2.15) and (7.2.16) are reduced to the iterative forms:
∫ 1

0

Un(x)ϕj(x)dx

︸ ︷︷ ︸
MUn

−kn

2

∫ 1

0

Vn(x)ϕj(x)dx

︸ ︷︷ ︸
MVn

=

∫ 1

0

Un−1(x)ϕj(x)dx

︸ ︷︷ ︸
MUn−1

+
kn

2

∫ 1

0

Vn−1(x)ϕj(x) dx

︸ ︷︷ ︸
MVn−1

, j = 1, 2, . . . ,m,
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and
∫ 1

0

Vn(x)ϕj(x)dx

︸ ︷︷ ︸
MVn

+
kn

2

∫ 1

0

U ′
n(x)ϕ′

j(x) dx

︸ ︷︷ ︸
SUn

=

∫ 1

0

Vn−1(x)ϕj(x) dx

︸ ︷︷ ︸
MVn−1

−kn

2

∫ 1

0

U ′
n−1(x)ϕ′

j(x) dx

︸ ︷︷ ︸
SUn−1

+gn, j = 1, 2, . . . ,m,

respectively, where we used (7.2.11) and as we computed earlier

S =
1

h




2 −1 . . . 0

−1 2 −1 . . .

. . . . . . . . . . . .

0 −1 2 −1

0 0 −1 1




, M =
h

6




4 1 . . . 0

1 4 1 . . .

. . . . . . . . . . . .

. . . 1 4 1

0 . . . 1 2




,

where

gn = (0, . . . , 0, gn,m)T , where gn,m =

∫

In

g(t) dt.

In compact form the vectors Un and Vn are determined by solving the linear
system of equations:





MUn − kn

2
MVn = MUn−1 + kn

2
MVn−1

kn

2
SUn + MVn = −kn

2
SUn−1 + MVn−1 + gn,

(7.2.17)

which is a system of 2m equations with 2m unknowns:


 M −kn

2
M

kn

2
S M




︸ ︷︷ ︸
A


 Un

Vn




︸ ︷︷ ︸
W

=


 M kn

2
M

−kn

2
S M





 Un−1

Vn−1


 +


 0

gn




︸ ︷︷ ︸
b

,

with W = A \ b, Un = W (1 : m) and Vn = W (m + 1 : 2m).
Note that the final solution vectors are Ûn = (0, Un) and V̂n = (0, Vn).
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7.2.3 Exercises

Problem 7.12. Derive the corresponding linear system of equations in the
case of time discretization with dG(0).

Problem 7.13 (discrete conservation of energy). Show that cG(1)-cG(1) for
the wave equation in system form with g(t) = 0, conserves energy: i.e.

‖U ′
n‖2 + ‖Vn‖2 = ‖U ′

n−1‖2 + ‖Vn−1‖2. (7.2.18)

Hint: Multiply the first equation by (Un−1 + Un)tSM−1 and the second equa-
tion by (Vn−1+Vn)t and add up. Use then, e.g., the fact that U t

nSUn = ‖U ′
n‖2,

where

Un =




Un,1

Un,2

. . .

Un,m




, and Un = Un(x) = Un,1(x)ϕ1(x) + . . . + Un,m(x)ϕm(x).

Problem 7.14. Consider the wave equation




ü − u′′ = 0, x ∈ R, t > 0,

u(x, 0) = u0(x), x ∈ R,

u̇(x, 0) = v0(x), x ∈ R.

(7.2.19)

Plot the graph of u(x, 2) in the following cases.
a) v0 = 0 and

u0(x) =





1, x < 0,

0, x > 0.

b) u0 = 0, and

v0(x) =





−1, −1 < x < 0,

1, 0 < x < 1,

0, |x| > 0.
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Problem 7.15. Compute the solution for the wave equation




ü − 4u′′ = 0, x > 0, t > 0,

u(0, t) = 0, t > 0,

u(x, 0) = 0, u̇(x, 0) = 0, x > 0.

(7.2.20)

Plot the solutions for the three cases t = 0.5, t = 1, t = 2, and with

u0(x) =





1, x ∈ [2, 3]

0, else
(7.2.21)

Problem 7.16. Apply cG(1) time discretization directly to the wave equation
by letting

U(x, t) = Un−1Ψn−1(t) + Un(x)Ψn(t), t ∈ In. (7.2.22)

Note that U̇ is piecewise constant in time and comment on:
∫

In

∫ 1

0

Üϕj dxdt

︸ ︷︷ ︸
?

+

∫

In

∫ 1

0

u′ϕ′
j dxdt

︸ ︷︷ ︸
k
2
S(Un−1+Un)

=

∫

In

g(t)ϕj(1)dt

︸ ︷︷ ︸
gn

, j = 1, 2, . . . ,m.

Problem 7.17. Construct a FEM for the problem




ü + u̇ − u′′ = f, 0 < x < 1, t > 0,

u(0, t) = 0, u′(1, t) = 0, t > 0,

u(x, 0) = 0, u̇(x, 0) = 0, 0 < x < 1.

(7.2.23)

Problem 7.18. Determine the solution for the wave equation




ü − c2u′′ = f, x > 0, t > 0,

u(x, 0) = u0(x), ut(x, 0) = v0(x), x > 0,

ux(1, t) = 0, t > 0,

in the following cases:

a) f = 0.

b) f = 1, u0 = 0, v0 = 0.
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7.3 Convection - diffusion problems

Most multi-physical phenomena are described by the convection, diffusion
and absorption: Problems of fluid- and gas dynamics, chemical reaction-
diffusion, electromagnetic fields, charged particles collision, etc, are often
modeled as convection-diffusion and absorption type problems. In Chapter 5
we illustrated the finite element procedure for the one-dimensional stationary
convection-diffusion (see Example 5.2). Here we shall give the derivation
for a time-dependent convection diffusion problem in one-dimensional case.
In the previous sections we illustrated combined space-time discretization.
Here, we focus on a certain space-time (or only space) discretizations that
is of vital interest for convection-dominated convection-diffusion equations:
namely the Streamline Diffusion Method (SDM), which is also more adequate
for piecewise discontinuous Galerkin approximations in time.

Some higher dimensional cases will be considered in coming chapters.

•A convection-diffusion model problem We illustrate the convection-
diffusion phenomenon by an example:

Example 7.4 (A convection model). Consider the traffic flow in a highway,
viz the Fig below. Let ρ = ρ(x, t) be the density of cars (0 ≤ ρ ≤ 1) and
u = u(x, t) the velocity (speed vector) of the cars at the position x ∈ (a, b)
and time t. For a highway path (a, b) the difference between the traffic inflow
u(a)ρ(a) at the point x = a and outflow u(b)ρ(b) at x = b gives the density
variation on the interval (a, b):

d

dt

∫ b

a

ρ(x, t)dx =

∫ b

a

ρ̇(x, t)dx = ρ(a)u(a) − ρ(b)u(b) = −
∫ b

a

(uρ)′dx

or equivalently ∫ b

a

(
ρ̇ + (uρ)′

)
dx = 0. (7.3.1)

Since a and b can be chosen arbitrary, thus we have

ρ̇ + (uρ)′ = 0. (7.3.2)

Let now u = 1 − ρ, (motivate this choice), then (7.3.2) is rewritten as

ρ̇ +
(
(1 − ρ)ρ

)′
= ρ̇ + (ρ − ρ2)′ = 0. (7.3.3)
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ρ

x
ba

u(a) u(b)

(a) = 1 ρ  (b) = −12

Hence

ρ̇ + (1 − 2ρ)ρ′ = 0 (A non-linear convection equation). (7.3.4)

Alternatively, (to obtain a convection-diffusion model), we may assume that
u = c − ε · (ρ′/ρ), c > 0, ε > 0, (motivate). Then we get from (7.3.2) that

ρ̇ +
(
(c − ε

ρ′

ρ
)ρ

)′
= 0, (7.3.5)

i.e.,

ρ̇ + cρ′ − ερ′′ = 0 (A convection-diffusion equation). (7.3.6)

The equation (7.3.6) is convection dominated if c > ε.
For ε = 0 the solution is given by the exact transport ρ(x, t) = ρ0(x− ct),

because then ρ is constant on the characteristic’s; (c, 1)-direction.

x

t
-

(x + ct, t)

-x -
x = x - ct
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Note that differentiating ρ(x, t) = ρ(x̄ + ct, t) with respect to t we get

∂ρ

∂x
· ∂x

∂t
+

∂ρ

∂t
= 0, ⇐⇒ cρ′ + ρ̇ = 0. (7.3.7)

Finally, let us rewrite the convection-diffusion equation (7.3.6), for ρ, by
changing the notation from ρ to u, and replacing c by β, i.e.

u̇ + β u′ − ε u′′ = 0. (7.3.8)

Remark 7.4. Compare this equation with the Navier-Stokes equations for
incompressible flow:

u̇ + (β · ∇)u − ε∆u + ∇P = 0, ∧ div u = 0, (7.3.9)

where β = u, u = (u1, u2, u3) is the velocity vector, with u1 representing the
mass, u2 momentum, and u3 the energy. Further P stands for the pressure
and ε = 1/Re with Re denoting the Reynold’s number.

A typical range for the Reynold’s number Re is between 105 and 107.
Therefore, for ε > 0 and small, because of difficulties related to boundary
layer and turbulence, the Navier-Stokes equations are not easily solvable.

Example 7.5 (The boundary layer). Consider the following boundary value
problem

(BVP)





u′ − εu′′ = 0, 0 < x < 1

u(0) = 1, u(1) = 0.
(7.3.10)

The exact solution to this problem is given by

u(x) = C
(
e1/ε − ex/ε

)
, with C =

1

e1/ε − 1
. (7.3.11)

which has an outflow boundary layer of width ∼ ε, as seen in the Fig below

7.3.1 Finite Element Method

We shall now study the finite element approximation of the problem (7.3.10).
To this end first we represent, as usual, the finite element solution by

U(x) = ϕ0(x) + U1ϕ1(x) + . . . + Unϕn(x), (7.3.12)

where the ϕj:s are the basis function, here continuous piecewise linears (hat-
functions) illustrated below:
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y

x

u(x)

1

0 1
ε

Figure 7.2: A ε boundary layer

0

ϕ
0
(x) ϕn(x)

...
xxn-1 n

y

x
1

1

Evidently, the corresponding variational formulation yields the FEM:

∫ 1

0

(
U ′ϕjdx + εU ′ϕ′

j

)
dx = 0, j = 1, 2, . . . , n, (7.3.13)

which, for piecewise linear Galerkin approximation (see the entries in con-
vection and stifness matrices), can be represented by the equations

1

2

(
Uj+1 − Uj−1

)
+

ε

h

(
2Uj − Uj−1 − Uj+1

)
= 0, j = 1, 2, . . . , n, (7.3.14)

where U0 = 1 and Un+1 = 0.
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Note that, using Central -differencing we may also write

Uj+1 − Uj−1

2h︸ ︷︷ ︸
corresp. to u′(xj)

−ε
Uj+1 − 2Uj + Uj−1

h2︸ ︷︷ ︸
corresp. to u′′(xj)

= 0
(
⇐⇒ 1

h
× equation(7.3.14)

)
.

Now for ε being very small this gives that Uj+1 ≈ Uj−1, which results, for
even n values alternating 0 and 1 as the solution values at the nodes:

y

x

0 1

1

U(x)

i.e., oscillations in U are transported “upstreams” making U a “globally bad
approximation” of u.

A better approach would be to approximate u′(xj) by an upwind deriva-
tive as follows

u′(xj) ≈
Uj − Uj−1

h
, (7.3.15)

which, formally, gives a better stability, however, with low accuracy.

Remark 7.5. The example above demonstrates that a high accuracy without
stability is indeed useless.

A more systematic method of making the finite element solution of the
fluid problems stable is through using the streamline diffusion method which
we, formally, introduce below.
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7.3.2 The Streamline-diffusion method (SDM)

The idea is to choose, in the variational formulation, the test functions of the
form (v+ 1

2
βhv′), instead of just v (this would finally correspond to adding an

extra diffusion to the original equation in the direction of the stream-lines).
Then, e.g. for our model problem we obtain the equation (β ≡ 1)

∫ 1

0

[
u′

(
v +

1

2
hv′

)
− ε · u′′

(
v +

1

2
hv′

)]
dx =

∫ 1

0

f
(
v +

1

2
hv′

)
dx. (7.3.16)

In the case of approximation with piecewise linears, in the discrete version
of the variational formulation, we should interpret the term

∫ 1

0
U ′′v′dx as a

sum viz, ∫ 1

0

U ′′v′dx :=
∑

j

∫

Ij

U ′′v′dx = 0. (7.3.17)

Then, with piecewise linear test functions, choosing v = ϕj we get the discrete
term corresponding to the second term in the first integral in (7.3.16) as

∫ 1

0

U ′1

2
hϕ′

jdx = Uj −
1

2
Uj+1 −

1

2
Uj−1, (7.3.18)

which adding to the obvious approximation of first term in the first integral:

∫ 1

0

U ′ϕjdx =
Uj+1 − Uj−1

2
, (7.3.19)

we end up with (Uj − Uj−1), (using, e.g. convection and stiffness matrices)
as an approximation of the first integral in (7.3.16), corresponding to the
upwind scheme.

Remark 7.6. The SDM can also be viewed as a least-square method:
Let A = d

dx
, then At = − d

dx
. Now u minimizes the expression ‖w′ − f‖ if

u′ = Au = f . This can be written as

AtAu = Atf ⇐⇒ −u′′ = −f ′, (the continuous form). (7.3.20)

While multiplying u′ = Au = f by v and integrating over (0, 1) we have

∫ 1

0

U ′vdx =

∫ 1

0

fv dx (the weak form), (7.3.21)
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where we replaced u′ by U ′. Thus, the weak form for the discretized equation
may be written as

(AU, v) = (f, v), ∀v ∈ Vh, (7.3.22)

and

(AU,Av) = (f,Av), ∀v ∈ Vh. (7.3.23)

Thus we have the SDM form

(AU, v + δAv) = (f, v + δAv), ∀v ∈ Vh. (7.3.24)

For the time-dependent convection equation, the oriented time-space el-
ement are used. Consider the time-dependent problem

u̇ + βu′ − εu′′ = f. (7.3.25)

U(x,t)

t

nt

n-1t

x

β

Set U(x, t) such that U is piecewise linear in x and piecewise constant in the
(β, 1)-direction. Combine with SDM and add up some artificial viscosity, ε̂,
depending on the residual term to get for each time interval In, the scheme:

∫

In

∫

Ω

[
(U̇ + βU)

(
v +

β

2
hv̇

)
+ ε̂ U ′v′

]
dxdt =

∫

In

∫

Ω

f
(
v +

β

2
hv′

)
dxdt. ¤
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7.3.3 Exercises

Problem 7.19. Prove that the solution u of the convection-diffusion problem

−uxx + ux + u = f, quadin I = (0, 1), u(0) = u(1) = 0,

satisfies the following estimate

(∫

I

u2φ dx
)1/2

≤
( ∫

I

f 2φ dx
)1/2

.

where φ(x) is a positive weight function defined on (0, 1) satisfying φx(x) ≤ 0
and −φx(x) ≤ φ(x) for 0 ≤ x ≤ 1.

Problem 7.20. Let φ be a solution of the problem

−εφ′′ − 3φ′ + 2φ = e, φ′(0) = φ(1) = 0.

Let ‖ · ‖ denote the L2-norm on I. Show that there is a constant C such that

|φ′(0)| ≤ C‖e‖, ‖εφ′′‖ ≤ C‖e‖.

Problem 7.21. Use relevant interpolation theory estimates and prove an a
priori and an a posteriori error estimate for the cG(1) finite element method
for the problem

−u′′ + u′ = f, in I = (0, 1), u(0) = u(1) = 0.

Problem 7.22. Prove an a priori and an a posteriori error estimate for the
cG(1) finite element method for the problem

−u′′ + u′ + u = f, in I = (0, 1), u(0) = u(1) = 0.

Problem 7.23. Consider the problem

−εu′′ + xu′ + u = f, in I = (0, 1), u(0) = u′(1) = 0,

where ε is a positive constant, and f ∈ L2(I). Prove that

||εu′′|| ≤ ||f ||.
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Problem 7.24. We modify the problem 7.23 above according to

−εu′′ + c(x)u′ + u = f(x) 0 < x < 1, u(0) = u′(1) = 0,

where ε is a positive constant, the function c satisfies c(x) ≥ 0, c′(x) ≤ 0,
and f ∈ L2(I). Prove that there are positive constants C1, C2 and C3 such
that

√
ε||u′|| ≤ C1||f ||, ||cu′|| ≤ C2||f ||, and ε||u′′|| ≤ C3||f ||,

where || · || is the L2(I)-norm.

Problem 7.25. Consider the convection-diffusion-absorption problem

−εuxx + ux + u = f, in I = (0, 1), u(0) = 0,
√

εux + u(1) = 0,

where ε is a positive constant, and f ∈ L2(I). Prove the following stability
estimates for the solution u

‖
√

εux‖ + ‖u‖ + |u(1)| ≤ C‖f‖,

‖ux‖ + ‖εuxx‖ ≤ C‖f‖,
where ‖ · ‖ denotes the L2(I)-norm, I = (0, 1), and C is an appropriate
constant.
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Chapter 8

Piecewise polynomials in
several dimensions

8.1 Introduction

•Variational formulation in R2

All studies in previous chapters for the one-dimensional case can be extended
to Rn, n ≥ 2. Then, the mathematical calculus becomes more involved. On
the other hand, the two and three dimensional cases concern the most rele-
vant models both from a physical point of view as well as application aspects.
Here we assume that the reader has some familiarity with the calculus of sev-
eral variables. A typical problem to study is, e.g. an equation of the form





−∆u + au = f, x := (x, y) ∈ Ω ⊂ R2

u(x, y) = 0, (x, y) ∈ ∂Ω.
(8.1.1)

Here, the discretization procedure, e.g. approximating with piecewise lin-
ears, would require extension of the interpolation estimates from the inter-
vals in R to higher dimensional domains in Rn, n ≥ 2. Other basic tools as
Cauchy-Shwarz’ and Poincare inequalities are also extended to the correspod-
ing inequalities in Rn. To compute the involved integrals, e.g. in the weak
formulations, the frequently used partial integration, in the one-dimensional
case, is now replaced by the Green’s formula below.

211
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Lemma 8.1 (Green’s formula). Let u ∈ C2(Ω) and v ∈ C1(Ω), then
∫∫

Ω

(∂2u

∂x2
+

∂2u

∂y2

)
v dxdy =

∫

∂Ω

(∂u

∂x
,
∂u

∂y

)
· n(x, y)v ds

−
∫∫

Ω

(∂u

∂x
,
∂u

∂y

)
·
(∂v

∂x
,
∂v

∂y

)
dxdy,

(8.1.2)

where n(x, y) is the outward unit normal at the boundary point x = (x, y) ∈
∂Ω and ds is a curve element on the boundary ∂Ω. In a concise form (8.1.2)
is written as ∫

Ω

(∆u)v dx =

∫

∂Ω

(∇u · n)v ds −
∫

Ω

∇u · ∇v dx. (8.1.3)

n

Ω

∂Ω

ds

Figure 8.1: A smooth domain Ω with an outward unit normal n

Proof. We give a proof in the case that Ω is a rectangular domain, see the
Fig below. Then using integration by parts we have that

∫∫

Ω

∂2u

∂x2
v dxdy =

∫ b

0

∫ a

0

∂2u

∂x2
(x, y) v(x, y) dxdy

=

∫ b

0

([∂u

∂x
(x, y) v(x, y)

]a

x=0
−

∫ a

0

∂u

∂x
(x, y)

∂v

∂x
(x, y)dx

)
dy

=

∫ b

0

(∂u

∂x
(a, y) v(a, y) − ∂u

∂x
(0, y) v(0, y)

)
dy

−
∫∫

Ω

∂u

∂x

∂v

∂x
(x, y) dxdy.
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n(0, y) = (−1, 0) n(a, y) = (1, 0)

n(x, 0) = (0,−1)

n(x, b) = (0, 1)

Ω

b

a

Γ1 := ∂Ω1
Γ3 := ∂Ω3

Γ4 := ∂Ω4

Γ2 := ∂Ω2

Figure 8.2: A rectangular domain Ω with its outward unit normals

Now identifying n on ∂Ω viz on Γ1 : n(a, y) = (1, 0)

on Γ2 : n(x, b) = (0, 1)

on Γ3 : n(0, y) = (−1, 0)

on Γ4 : n(x, 0) = (0,−1),

the first integral on the right hand side above can be written as
(∫

Γ1

+

∫

Γ3

)(∂u

∂x
,
∂u

∂y

)
· n(x, y)v(x, y)ds.

Hence
∫∫

Ω

∂2u

∂x2
v dxdy =

∫

Γ1∪Γ3

(∂u

∂x
,
∂u

∂y

)
· n(x, y)v(x, y)ds −

∫∫

Ω

∂u

∂x

∂v

∂x
dxdy.

Similarly, for the y-direction we get
∫∫

Ω

∂2u

∂y2
vdxdy =

∫

Γ2∪Γ4

(∂u

∂x
,
∂u

∂y

)
· n(x, y)v(x, y)ds −

∫∫

Ω

∂u

∂y

∂v

∂y
dxdy.

Adding up these two relations gives the desired result. The proof for the
case of a general domain Ω can be found in any text book in the calculus of
several variables.
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8.2 Piecewise linear approximation in 2 D

In this section the objective is to study the piecewise polynomial approxi-
mations of the solutions for differential equations in two dimensional spatial
domains. To introduce the principel ideas and for simplicity, we consider the
problem stated in polygonal domains and focus on piecewise linear polyno-
mial approximations. Thus we can deal with partitions (meshes) without any
concern about curved boundaries. Extensions to approximation by higher
degree polynomials and in general domain involves some additional details.

8.2.1 Basis functions for the piecewise linears in 2 D

We recall that in the one-dimensional case a function which is linear on
a subinterval is uniquely determined by its values at two points (e.g. the
endpoints of the subinterval), since there is only one straight line connecting
two points.

xk−1 xkIk

y

x

Figure 8.3: A picewise linear function on a subinterval Ik = (xk−1, xk).

Similarly a plane in R3 is uniquely determined by three points. Therefore, for
piecewise linear approximation of a function u defined on a two dimensional
polygonal domain Ωp ⊂ R2, i.e. u : Ωp → R, it is natural to make partitions
of Ωp into triangular elements and let the sides of the triangles to correspond
to the endpoints of the intervals in the one-dimensional case.

The figure below illustrates a “partitioning”, i.e. triangulation of a domain Ω
with curved boundary where the partitioning concerns only for the polygonal
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Ω

Ωp

Ν
Ν Ν Ν Ν Ν

1
2

3 4 5 6

domain ΩP generated by Ω. Here we have 6 internal nodes Ni, 1 ≤ i ≤ 6
and Ωp is the polygonal domain inside Ω, which is triangulated. The Figure
8.4 illustrates a piecewise linear function on a single triangle (element) which
is determined by its values at the vertices of the triangle.

Now for every linear function U on Ωp we have

U(x) = U1ϕ1(x) + U1ϕ2(x) + . . . + U6ϕ6(x), (8.2.1)

where Ui = U(Ni), i = 1, 2, . . . , 6, are numerical values (nodal values) and
ϕi(Ni) = 1. Further ϕi(Nj) = 0 for j 6= i, where ϕi(x) is linear in x in every
triangle/element. In other words

ϕi(Nj) =





1, j = i

0, j 6= i



 = δij (affin.) (8.2.2)

For the Dirichlet boundary condition we take ϕi(x) = 0 on ∂Ωp.

In this setting, given a differential equation, to determine the approximate
solution U is now reduced to find the nodal values U1, U2, . . . , U6, ontained
from the corresponding discrete variational formulation.

Example 8.1. Let Ω = {(x, y) : 0 < x < 4, 0 < y < 3} and make a FEM
discretization of the following boundary value problem:





−∆u = f in Ω

u = 0 on ∂Ω.
(8.2.3)
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y

z = f(x, y)

x

(x1, y1, 0)

(x2, y2, 0)

(x3, y3, 0)

(x1, y1, z1)

(x2, y2, z2)

(x3, y3, z3)

Figure 8.4: A triangle in 3D as a piecewise linear function and its projection
in 2D.

= 1

Ni

ϕi

We introduce the Sobolev space

H1
0 (Ω) := {v : v ∈ L2(Ω), |∇v| ∈ L2(Ω), and v = 0, on Γ := ∂Ω},

where by w ∈ L2(Ω) we mean that
∫
Ω

w(x)2 dx < ∞. Then, the variational
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formulation reads as follows: Find the function u ∈ H1
0 (Ω) such that

∫∫

Ω

(∇u · ∇v)dxdy =

∫∫

Ω

fvdxdy, ∀v ∈ H1
0 (Ω). (8.2.4)

Now we shall make a test function space of piecewise linears. To this approach
we triangulate Ω as in the figure below and let

1 2 3

4 5 6

V 0
h = {v ∈ C(Ω) : v being linear on each triangle and v = 0 on ∂Ω}.

Since such a function is uniquely determined by its values at the vertices
of the triangles and 0 at the boundary, so indeed in our example we have
only 6 inner vertices of interest. Now precisely as in the “1 − D” case we
construct basis functions (6 of them in this particular case), with values 1
at one of the (interior) nodes and zero at all other neighbouring nodes (may
contain both interior and boundary nodes). Then we get the two-dimensional
correspondence to the hat-functions: telt functions as shown in the figure
above.

Then, the finite element method (FEM) for (8.2.3) reads as follows: find
uh ∈ V 0

h , such that
∫∫

Ω

(∇uh · ∇v)dxdy =

∫∫

Ω

fv dxdy, ∀v ∈ V 0
h (Ω). (8.2.5)

The approximation procedure follows the path generalizing the 1D-case.
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K

Below we illustrate the FEM procedure through an example.

Example 8.2. Formulate the cG(1) piecewise continuous Galerkin method
for the boundary value problem

−∆u + u =f, x ∈ Ω;

u =0, x ∈ ∂Ω \ (Γ1 ∪ Γ2),

∇u · n =0, x ∈ Γ1 ∪ Γ2,

(8.2.6)

on the domain Ω, with outward unit normal n at the boundary (as in the
Figure below). Compute the matrices for the resulting system of equations
using the following mesh with nodes at N1, N2 and N3.

Ω
Γ2

Γ1

•

• •

N1

N2
N3

n

•
1

•
2

•3

T

standard element

Solution: Let V be the linear function space defined by

V := {v : v is continuous in Ω, v = 0, on ∂Ω \ (Γ1 ∪ Γ2)}.

Multiplying the differential equation by v ∈ V and integrating over Ω we get

−(∆u, v) + (u, v) = (f, v), ∀v ∈ V.
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Now using Green’s formula we have that

−(∆u,∇v) = (∇u,∇v) −
∫

∂Ω

(n · ∇u)v ds

= (∇u,∇v) −
∫

∂Ω\(Γ1∪Γ2)

(n · ∇u)v ds −
∫

Γ1∪Γ2

(n · ∇u)v ds

= (∇u,∇v), ∀v ∈ V,

where we used the boundary data and the definition of V . Thus the variational
formulation reads as

(∇u,∇v) + (u, v) = (f, v), ∀v ∈ V.

Let Vh be the usual finite element space consisting of continuous piecewise
linear functions satisfying the boundary condition v = 0 on ∂Ω \ (Γ1 ∪ Γ2):
Then, the cG(1) method for (8.2.6) is formulated as: Find U ∈ Vh such that

(∇U,∇v) + (U, v) = (f, v) ∀v ∈ Vh

Making the “Ansatz” U(x) =
∑3

j=1 ξjϕj(x), where ϕi are the standard basis
functions, we obtain the system of equations

3∑

j=1

ξj

(∫

Ω

∇ϕi · ∇ϕj dx +

∫

Ω

ϕiϕj dx
)

=

∫

Ω

fϕi dx, i = 1, 2, 3,

or in matrix form,
(S + M)ξ = F,

where Sij = (∇ϕi,∇ϕj) is the stiffness matrix, Mij = (ϕi, ϕj) is the mass
matrix, and Fi = (f, ϕi) is the load vector. We shall first compute the mass
and stiffness matrices for the reference triangle T with the side length h. The
local basis functions and their gradients are given by

φ1(x1, x2) = 1 − x1

h
− x2

h
, ∇φ1(x1, x2) = −1

h


 1

1


 ,

φ2(x1, x2) =
x1

h
, ∇φ2(x1, x2) =

1

h


 1

0


 ,

φ3(x1, x2) =
x2

h
, ∇φ3(x1, x2) =

1

h


 0

1


 .
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Hence, with |T | =
∫

T
dz = h2/2,

m11 = (φ1, φ1) =

∫

T

φ2
1 dx = h2

∫ 1

0

∫ 1−x2

0

(1 − x1 − x2)
2 dx1dx2 =

h2

12
,

s11 = (∇φ1,∇φ1) =

∫

T

|∇φ1|2 dx =
2

h2
|T | = 1.

Alternatively, we can use the midpoint rule, which is exact for polynomials
of degree 2 (precision 3):

m11 = (φ1, φ1) =

∫

T

φ2
1 dx =

|T |
3

3∑

j=1

φ1(x̂j)
2 =

h2

6

(
0 +

1

4
+

1

4

)
=

h2

12
,

where x̂j are the midpoints of the edges (note that at the vertices of the
standard triangle φi = 0). Similarly we can compute the other elements and
thus obtain the local mass and stiffness matrices:

m =
h2

24




2 1 1

1 2 1

1 1 2


 , s =

1

2




2 −1 −1

−1 1 0

−1 0 1


 .

We can now assemble the global matrices M and S from the local ones m and
s, through identifying the contribution from each element sharing the same
node to the global matrices.

M11 = 8m22 =
8

12
h2, S11 = 8s22 = 4,

M12 = 2m12 =
1

12
h2, S12 = 2s12 = −1,

M13 = 2m23 =
1

12
h2, S13 = 2s23 = 0,

M22 = 4m11 =
4

12
h2, S22 = 4s11 = 4,

M23 = 2m12 =
1

12
h2, S23 = 2s12 = −1,

M33 = 3m22 =
3

12
h2, S33 = 3s22 = 3/2.
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The remaining matrix elements are obtained by symmetry Mij = Mji, Sij =
Sji. Hence,

M =
h2

12




8 1 1

1 4 1

1 1 3


 , S =




4 −1 0

−1 4 −1

0 −1 3/2


 .

8.2.2 Error estimates for piecewise linear interpolation

In this section we make a straightforward generalization of the one dimenen-
sional linear interpolation estimates on an interval in the maximum norm to
a two dimensional linear interpolation on a triangle. As in the 1D case, our
estimates indicate that the interpolation errors depend on the second order,
this time, partial derivatives of the functions being interpolated, (i.e., the
curvature of the functions), the mesh size and also the shape of the triangle.

Similar results hold in Lp norms, p = 1, 2, as well as in higher dimensions
than 2.

To continue we assume a triangulation T = {K} of a two dimensional
polygonal domain Ω. We let vi, i = 1, 2, 3 be the vertices of the triangle K.
Now we consider a continuous function f defined on K and define the linear
interpolant πhf ∈ P1(K) by

πhf(vi) = f(vi), i = 1, 2, 3. (8.2.7)

This is illustrated in the Figure 8.5. We shall now state some basic inter-
polation results that we frequently use in the error estimates. The proofs of
these results can be found, e.g. in CDE [20].

Theorem 8.1. If f has contionuous second order partial derivatives, then

‖f − πhf‖L∞(K) ≤
1

2
h2

K ||D2f ||L∞(K), (8.2.8)

||∇(f − πhf)||L∞(K) ≤
3

sin(αK)
hK ||D2f ||L∞(K), (8.2.9)

where hK is the largest side of K, αK is the smallest angle of K, and

D2f =
( 2∑

i,j=1

(
∂2f

∂xi∂xj

)2
)1/2

.
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y

z

x

v1

v2

v3

•

•

•

K

f

πhf

Figure 8.5: The nodal interpolant of f in 2D case

Remark 8.1. Note that the gradient estimate (8.2.9) deteriotes for small
sin(αK); i.e. for the thinner triangle K. This phenomenon is avoided as-
suming a quasi-uniform triangulation, where there is a minimum angle re-
quirement for the triangles viz,

sin(αK) ≥ C, for some constant C. (8.2.10)

8.2.3 The L2 projection

Definition 8.1. Let Vh be the space of all continuous linear functions on a
triangulation Th = {K} of the domain Ω. The L2 projection Phu ∈ Vh of a
function u ∈ L2(Ω) is defined by

(u − Phu, v) = 0, ∀v ∈ Vh. (8.2.11)

This means that, the error u − Phu is orthogonal to Vh. (8.2.11) yields
a linear system of equations for the coefficients of Phu with respect to the
nodal basis of Vh.
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Advantages of the L2 projection to the nodal interpolation

• The L2 projection Phu is well defined for u ∈ L2(Ω), whereas the nodal
interpolant πhu in general requires u to be continuous. Therefore the L2

projection is an alternative for the nodal interpolation for, e.g. discontinuous
L2 functions.

• Letting v ≡ 1 in (8.2.11) we have that
∫

Ω

Phu dx =

∫

Ω

u dx. (8.2.12)

Thus the L2 projection conserves the total mass, whereas, in general, the
nodal interpolation operator does not preserve the total mass.

• The L2 projection does not need to satisfy the boundary condition, whereas
an interpolant has to.

• Finally we have the following error estimate for the L2 projection:

Theorem 8.2. For a u with square integrable second derivative the L2 pro-
jection Ph satisfies

‖u − Phu‖ ≤ Ci‖h2D2u‖. (8.2.13)

Proof. We have using (8.2.11) and the Cauchy’s inequality that

‖u − Phu‖2 = (u − Phu, u − Phu)

(u − Phu, u − v) + (u − Phu, v − Phu) = (u − Phu, u − v)

≤ ‖u − Phu‖‖u − v‖.
(8.2.14)

This yields
‖u − Phu‖ ≤ ‖u − v‖, ∀v ∈ Vh. (8.2.15)

Thus Phu is “closer” to u (is a better approximation in the L2-norm) than
πhu. Now choosing v = πhu and recalling the interpolation theorem above
we get the desired estimate (8.2.13).

8.3 Exercises

Problem 8.1. Show that the function u : R2 → R given by u(x) = log(|x|−1), x 6=
0 is a solution to the Laplace equation ∆u(x) = 0.
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Problem 8.2. Show that the Laplacian of a C2 function u : R2 → R in the
polar coordinates is written by

∆u =
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2

∂2u

∂θ2
. (8.3.1)

Problem 8.3. Show using (8.3.1) that the function u = a log(r) + b where a
and b are arbitrary constants is a solution of the Laplace equation ∆u(x) = 0
for x 6= 0. Are there any other solutions of the Laplace equation in R2 which
are invariant under rotation (i.e. it depends only on r = |x|)?
Problem 8.4. For a given triangle K, determine the relation between the
smallest angle τK, the triangle diameter hK and the diameter ρK of the largest
inscribed circle.

Problem 8.5. Prove that a linear function in R2 is uniquely determined by
its alues at three points as long as they don’t lie on a straight line.

Problem 8.6. Let K be a triangle with nodes {ai}, i = 1, 2, 3 and let the
midpoints of the edges be denoted by {aij, 1 ≤ i < j ≤ 3}.
a) Show that a function v ∈ P1(K) is uniqely determined by the degrees of
freedom: {v(aij), 1 ≤ i < j ≤ 3}.
b) Are functions continuous in the corresponding finite element space of piece-
wise linear functions?

Problem 8.7. Prove that if K1 and K2 are two neighboring triangles and
w1 ∈ P2(K1) and w2 ∈ P2(K2) agree at three nodes on the common boundary
(e.g., two endpoints and a midpoint), then w1 ≡ w2 on the common boundary.

Problem 8.8. Assume that the triangle K has nodes at {v1, v2, v3}, vi =
(vi

1, v
i
2), the element nodal basis is the set of functions λi ∈ P1(K), i = 1, 2, 3

such that

λi(v
j) =





1, i = j

0, i 6= j.

Compute the explicit formulas for λi.

Problem 8.9. Let K be a triangular element. Show the following identities,
for j, k = 1, 2, and x ∈ K,

3∑

i=1

λi(x) = 1,
3∑

i=1

(vi
j − xj)λi(x) = 0, (8.3.2)
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3∑

i=1

∂

∂xk

λi(x) = 0,
3∑

i=1

(vi
j − xj)

∂λi

∂xk

= δjk, (8.3.3)

where vi = (vi
1, v

i
2), i = 1, 2, 3 are the vertices of K, x = (x1, x2) and δjk = 1

if j = k and δjk = 0 otherwise.

Problem 8.10. Using (8.3.2), we obtain a representation for the interpola-
tion error of the form

f(x) − πhf(x) = −
3∑

i=1

ri(x)λi(x). (8.3.4)

Prove that the remainder term ri(x) can be estimated as

|ri(x)| ≤ 1

2
hK‖D2f‖L∞(K), i = 1, 2, 3. (8.3.5)

Hint: (I) Note that |vi − x| ≤ hK. (II) Start applying Cauchy’s inequality to
show that ∑

ij

xicijxj =
∑

i

xi

∑

j

cijxj.

Problem 8.11. τK is the smallest angle of a triangular element K. Show
that

max
x∈K

|∇λi(x)| ≤ 2

hK sin(τK)
.

Problem 8.12. The Euler equation for an incompressible inviscid fluid of
density can be written as

ut + (u · ∇)u + ∇p = f, ∇ · u = 0, (8.3.6)

where u(x, t) is the velocity and p(x, t) the pressure of the fluid at the pint x
at time t and f is an applied volume force (e.g., a gravitational force). The
second equation ∇ · u = 0 expresses the incopressibility. Prove that the first
equation follows from the Newton’s law.

Hint: Let u = (u1, u2) with ui = ui(x(t), t), i = 1, 2 and use the chain
rule to derive u̇i = ∂ui

∂x1
u1 + ∂ui

∂x2
u2 + ∂ui

∂t
, i = 1, 2.

Problem 8.13. Prove that if u : R2 → R2 satisfies rot u :=
(

∂u2

∂x1
,−∂u1

∂x2

)
= 0

in a convex domian Ω ⊂ R2, then there is a scalar function ϕ defined on Ω
such that u = ∇ϕ in Ω.

Problem 8.14. Prove that
∫
Ω

rot u dx =
∫
Γ
n× u ds, where Ω is a subset of

R3 with boundary Γ with outward unit normal n.
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Chapter 9

Riesz and Lax-Milgram
Theorems

9.1 Preliminaries

In Chapter 5, we proved under certain assumptions that to solve a boundary
value problem (BVP) is equavalent to its corresponding variational formula-
tion (VF) which in turn is equivalent to an associated minimization problem
(MP):

BVP ⇐⇒ VF ⇐⇒ MP.

More precisely we had the following one-dimensional boundary value prob-
lem:

(BV P ) :





−
(
a(x)u′(x)

)′
= f(x), 0 < x < 1

u(0) = u(1) = 0,
(9.1.1)

with the corresponding variational formulation, viz

(VF): Find u(x), with u(0) = u(1) = 0, such that

∫ 1

0

u′(x)v′(x)dx =

∫ 1

0

f(x)v(x)dx, ∀v ∈ H1
0 , (9.1.2)

227
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where H1
0 := H1

0 (0, 1) is the Sobolev space of all square integrable functions
having square integrable first order derivative on (0, 1) and vanishing at the
boundary of the interval (0, 1):

H1
0 =

{
v :

∫ 1

0

(
v(x)2 + v′(x)2

)
dx < ∞, v(0) = v(1) = 0

}
. (9.1.3)

We had also a minimization problem as:

(MP): Find u(x), with u(0) = u(1) = 0, such that u(x) minimizes the energy
functional F given by

F (v) =
1

2

∫ 1

0

v′(x)2dx −
∫ 1

0

f(x)v(x)dx, ∀v ∈ H1
0 . (9.1.4)

Recalling Poincare inequality we may actually take instead of H1
0 , the space

H1
0 =

{
w : [0, 1] → R :

∫ 1

0

w′(x)2dx < ∞, w(0) = w(1) = 0
}

. (9.1.5)

Let now V be a vector space of function on (0, 1) and define a bilinear form
on V by a(·, ·) : V × V → R, i.e. for α, β, x, y ∈ R and u, v, w ∈ V , we have

{
a(αu + βv, w) = α · a(u,w) + β · a(v, w)

a(u, xv + yw) = x · a(u, v) + y · a(u,w).
(9.1.6)

Example 9.1. Let V = H1
0 and define

a(u, v) := (u, v) :=

∫ 1

0

u′(x)v′(x)dx, (9.1.7)

then (·, ·) is symmetric, i.e. (u, v) = (v, u), bilinear (obvious), and positive
definite in the sense that

(u, u) ≥ 0, and (u, u) = 0 ⇐⇒ u ≡ 0.

Note that

(u, u) =

∫ 1

0

u′(x)2dx = 0 ⇐⇒ u′(x) = 0,

thus u(x) is constant and since u(0) = u(1) = 0 we have u(x) ≡ 0.
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Definition 9.1. A linear function L : V → R is called a linear form on V ,
if

L(αu + βv) = αL(u) + βL(v). (9.1.8)

Example 9.2. Let

ℓ(v) =

∫ 1

0

fv dx, ∀v ∈ H1
0, (9.1.9)

Then our (VF) can be restated as follows: Find u ∈ H1
0 such that

(u, v) = ℓ(v), ∀v ∈ H1
0. (9.1.10)

Generalizing the above example, (e.g. to a Hilbert space defined below), to
a bilinear form a(·, ·), and a linear foem L(·), we get the following abstract
problem: Find u ∈ V , such that

a(u, v) = L(v) ∀v ∈ V. (9.1.11)

Definition 9.2. Let ‖·‖V be a norm corresponding to a scalar product (·, ·)V

defined on V ×V . Then the bilinear form a(·, ·) is called coercive ( V-elliptic),
and a(·, ·) and L(·) are continuous, if there are constants c1, c2 and c2 such
that:

a(v, v) ≥ c1‖v‖2
V , ∀v ∈ V (coercivity) (9.1.12)

|a(u, v)| ≤ c2‖u‖V ‖v‖V , ∀u, v ∈ V (a is continuous) (9.1.13)

|L(v)| ≤ c3‖v‖V , ∀v ∈ V (L is continuous). (9.1.14)

Note that since L is linear, we have using the relation (9.1.14) above that

|L(u) − L(v)| = |L(u − v)| ≤ c3‖u − v‖V ,

which shows that L(u) −→ L(v) as u −→ v, in V . Thus L is continuous.
Similarly the relation |a(u, v)| ≤ c1‖u‖V ‖v‖V implies that the bilinear form
a(·, ·) is continuous in each component.

Definition 9.3. The energy norm on V is defined by ‖v‖a =
√

a(v, v), v ∈
V .
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Recalling the relations (9.1.12) and (9.1.13) above, the energy norm satisfies

c1‖v‖2
V ≤ a(v, v) = ‖v‖2

a ≤ c2‖v‖2
V . (9.1.15)

Hence, the energy norm ‖v‖a is equivalent to the abstract ‖v‖V norm.

Example 9.3. For the scalar product

(u, v) =

∫ 1

0

u′(x)v′(x)dx, in H1
0, (9.1.16)

and the norm
‖u‖ =

√
(u, u), (9.1.17)

the relations (9.1.12) and (9.1.13) are valid with c1 = c2 ≡ 1 : More closely
we have in this case that

(i): (v, v) = ‖v‖2 is an identity, and

(ii): |(u, v)| ≤ ‖u‖‖v‖ is the Cauchy’s inequality sketched below:

Proof of the Cauchy’s inequality. Using the obvious inequality 2ab ≤ a2 +b2,
we have

2|(u,w)| ≤ ‖u‖2 + ‖w‖2. (9.1.18)

We let w = (v/‖v‖2) (u, v), then

2|(u,w)| = 2
∣∣∣
(
u, (u, v)

v

‖v‖2

)∣∣∣ ≤ ‖u‖2 + |(u, v)|2‖v‖
2

‖v‖4
(9.1.19)

Thus

2
|(u, v)|2
‖v‖2

≤ ‖u‖2 + |(u, v)|2‖v‖
2

‖v‖4
, (9.1.20)

which multiplying by ‖v‖2, gives

2|(u, v)|2 ≤ ‖u‖2 · ‖v‖2 + |(u, v)|2, (9.1.21)

and hence
|(u, v)|2 ≤ ‖u‖2 · ‖v‖2, (9.1.22)

which completes the proof.
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Below we further develop the abstract framework and provide general creteria
to prove the existence of a unique solution for the PDEs.

Definition 9.4. A Hilbert space is a complete linear space with a scalar
product.

To define a complete linear space we first need to define a Cauchy sequence
of real or complex numbers.

Definition 9.5. A sequence {zk}∞k=1 ⊂ C is a Cauchy sequence if for every
ε > 0, there is an integer N > 0, such that m,n > N ⇒ |zm − zn| < ε.

Now we state, without proof, a classical theorem of analysis:

Theorem 9.1. Every Cauchy sequence in C is convergent. More precisely:
If {zk}∞k=1 ⊂ C is a Cauchy sequence, then there is a z ∈ C, such that for
every ǫ > 0, there is an integer M > 0, such that m ≥ M ⇒ |zm − z| < ε.

Definition 9.6. A linear space V (vector space) with the norm ‖ · ‖ is called
complete if every Cauchy sequence in V is convergent. In other words: For
every {vk}∞k=1 ⊂ V with the property that for every ε1 > 0 there is an integer
N > 0, such that m,n > N ⇒ ‖vm − vn‖ < ε1, (i.e. for every Cauchy
sequence) there is a v ∈ V such that for every ε > 0 there is an integer
M > 0 such that m ≥ M ⇒ |vm − v| < ε.

Theorem 9.2. The space H1
0 defind in (9.1.5) is a complete Hilbert space

with the norm

‖u‖ =
√

(u, u) =
( ∫ 1

0

u′(x)2dx
)1/2

. (9.1.23)

Definition 9.7. We define a functional ℓ as a mapping from a (linear) func-
tion space V into R, i.e.,

ℓ : V → R. (9.1.24)

• A funcitonal ℓ is called linear if

{
ℓ(u + v) = ℓ(u) + ℓ(v) for all u, v ∈ V

ℓ(αu) = α ℓ(u) for all u ∈ V and α ∈ R.
(9.1.25)
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• A functional is called bounded if there is a constant C such that

|ℓ(u)| ≤ C ‖u‖ for all u ∈ V (C is independnet of u)

Example 9.4. If f ∈ L2(0, 1), i.e.
∫ 1

0
f(x)2dx is bounded, then

ℓ(v) =

∫ 1

0

f(x)v(x)dx (9.1.26)

is a bounded linear functional.

Problem 9.1. Show that ℓ, defined in example above is linear.

Problem 9.2. Prove using Cauchy’s and Poincare’s inequalities that ℓ, de-
fined as in the above example , is bounded in H1

0.

9.2 Riesz and Lax-Milgram Theorems

Abstract formulations: Recalling that

(u, v) =

∫ 1

0

u′(x)v′(x)dx and ℓ(v) =

∫ 1

0

f(x)v(x)dx,

we may redefine our variational formulation (VF) and minimization problem
(MP) in an abstract form as (V) and (M), respectively:

(V) Find u ∈ H1
0, such that (u, v) = ℓ(v) for all v ∈ H1

0.

(M) Find u ∈ H1
0, such that F (u) = min

v∈H1
0

F (v) with F (v) =
1

2
‖v‖2 − ℓ(v).

Theorem 9.3. There exists a unique solution for the, equivalent, problems
(V) and (M).

Proof. That (V) and (M) are equvalent is trivial and shown as in Chapter 5.
To proceed, we note that there exists a real number σ such that F (v) > σ
for all v ∈ H1

0, (otherwise it is not possible to minimize F ): namely we can
write

F (v) =
1

2
‖v‖2 − ℓ(v) ≥ 1

2
‖v‖2 − γ‖v‖, (9.2.1)
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where γ is the constant bounding ℓ, i.e. |ℓ(v)| ≤ γ‖v‖. But since

0 ≤ 1

2
(‖v‖ − γ)2 =

1

2
‖v‖2 − γ‖v‖ +

1

2
γ2, (9.2.2)

thus evidently we have

F (v) ≥ 1

2
‖v‖2 − γ‖v‖ ≥ −1

2
γ2. (9.2.3)

Let now σ∗ be the largest real number σ such that

F (v) > σ for all v ∈ H1
0. (9.2.4)

Take a sequence of functions {uk}∞k=0, such that

F (uk) −→ σ∗. (9.2.5)

To show that there exists a unique solution for (V) and (M) we shall use the
following two fundamental results:

(i) It is always possible to find a sequence {uk}∞k=0, such that F (uk) → σ∗

(because R is complete.)

(ii) The parallelogram law (elementary linear algebra).

‖a + b‖2 + ‖a − b‖2 = 2‖a‖2 + 2‖b‖2.

Using (ii) and the linearity of ℓ we can write

‖uk − uj‖2 = 2‖uk‖2 + 2‖uj‖2 − ‖uk + uj‖2 − 4ℓ(uk) − 4ℓ(uj) + 4ℓ(u + v)

= 2‖uk‖2 − 4ℓ(uk) + 2‖uj‖2 − 4ℓ(uj) − ‖uk + uj‖2 + 4ℓ(uk + uj)

= 4F (uk) + 4F (uj) − 8F
(uk + uj

2

)
,

where we have used the definition of F (v) = 1
2
‖v‖2 − ℓ(v) with v = uk, uj,

and v = (uk + uj)/2, respectivey. In particular by linearity of ℓ:

−‖uk +uj‖2 +4ℓ(uk +uj) = −4
∥∥∥
uk + uj

2

∥∥∥
2

+8ℓ
(uk + uj

2

)
= −8F

(uk + uj

2

)
.
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uk, k = 1, 2, . . .

σ⋆
•

F (H1
0)

F

S ⊃ H1
0

Figure 9.1: Illustrating the existence of a unique solution for (V ) and (M).

Now since F (uk) → σ∗ and F (uj) → σ∗, then

‖uk − uj‖2 ≤ 4F (uk) + 4F (uj) − 8σ∗ → 0, as k, j → ∞.

Hence we have shown that {uk}∞k=0 is a Cauchy sequence. Since {uk} ⊂ H1
0

and H1
0 is complete thus {uk}∞k=1 is a convergent sequence. Therefore, there

exists a u ∈ H1
0 such that u = limk→∞ uk, then, by the continuity of F we

get that
lim

k→∞
F (uk) = F (u). (9.2.6)

Now (9.2.5) and (9.2.6) yield F (u) = σ∗ and by (9.2.4) and the definition of
σ∗ we end up with

F (u) < F (v), ∀v ∈ H1
0. (9.2.7)

This in our minimization problem (M). And since (M) ⇔ (V) we conclude
that: there is a unique u ∈ H1

0 , such that ℓ(v) = (u, v), ∀v ∈ H1
0.

Summing up we have proved that:
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Proposition 9.1. Every bounded linear functional can be represented as a
scalar product with a given function u. This u is the unique solution for both
(V) and (M).

Theorem 9.4 (Riesz representation theorem). If V is a Hilbert space with
the scalar product (u, v) and norm ‖u‖ =

√
(u, u), and ℓ(v) is a bounded

linear functional on V , then there is a unique u ∈ V such that

ℓ(v) = (u, v), ∀v ∈ V.

Theorem 9.5 (Lax-Milgram theorem). (A general version of Riesz theorem)
Assume that ℓ(v) is a bounded linear functional on V and a(u, v) is bilinear
bounded and elliptic in V , then there is a unique u ∈ V , such that

a(u, v) = ℓ(v), ∀v ∈ V. (9.2.8)

Remark 9.1. Here bilinear means that a(u, v) satisfies the same properties
as a scalar product, however it need not! to be symmetric.

Bounded means

|a(u, v) ≤ β‖u‖ ‖v‖, for some constant β > 0. (9.2.9)

Elliptic means
a(v, v) ≥ α‖v‖2, for some α > 0. (9.2.10)

Note that
If a(u, v) = (u, v), then α = β = 1.

Remark 9.2. Note that if the source term f ∈ L2(Ω) then (9.1.14) holds
for V = H1(Ω) and hence C3 = ‖f‖L2(Ω). The question is whether one can
reach (9.1.14) by a somewhat weaker assumption on f than f ∈ L2(Ω)? It
appears that a weaker assumption on the right hand side f can be obtained
using negative norm. More specifically, we define the H−1(Ω) norm of f , viz

‖f‖H−1(Ω = sup
v∈H1

0
(Ω)

(f, v)

‖v‖V

, V = H1
0 (Ω). (9.2.11)

Thus using Poincare, ideed by the equvalent norms ‖v‖H1
0
(Ω) = ‖∇v‖L2(Ω),

‖f‖H−1(Ω) ≤
‖f‖L2(Ω)‖v‖L2(Ω)

‖∇v‖L2(Ω)

≤ C‖f‖L2(Ω). (9.2.12)
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Hence, (9.1.14) holds with C3 = ‖f‖H−1(Ω). Therefore, it suffices that the
right hand side f(x) in the Poisson’s equation satisfies a weaker assumption,
i.e. f ∈ H−1(Ω) than f ∈ L2(Ω).

Below we give some examples of verifying Lax-Milgram and also applications
of Lax-Milgram proving existence of a unique solution for certain differential
equations of particular interest.

Example 9.5. Verify the assumptions of the Lax-Milgram Theorem and de-
termine the constants of the assumptions for I = (0, 1), f ∈ L2(I), V =
H1(I), ||w||2V = ||w||2L2(I) + ||w′||2L2(I), and

a(v, w) =

∫

I

(uw + v′w′) dx + v(0)w(0), L(v) =

∫

I

fv dx.

Solution. It is trivial to show that a(·, ·) is bilinear and b(·) is linear. We
have that

a(v, v) =

∫

I

v2 + (v′)2 dx + v(0)2 ≥ ||v||2V , (9.2.13)

so that we can take κ1 = 1. Further, using Cauchy-Schwarz inequality

|a(v, w)| ≤
∣∣∣
∫

I

vw dx
∣∣∣ +

∣∣∣
∫

I

v′w′ dx
∣∣∣ + |v(0)w(0)|

≤ ||v||L2(I)||w||L2(I) + ||v′||L2(I)||w′||L2(I) + |v(0)||w(0)|
≤

(
||v||L2(I) + ||v′||L2(I)

)(
||w||L2(I) + ||w′||L2(I)

)
+ |v(0)||w(0)|

≤
√

2
(
||v||2L2(I) + ||v′||2L2(I)

)1/2

·
√

2
(
||w||2L2(I) + ||w′||2L2(I)

)1/2

+ |v(0)||w(0)|
≤

√
2||v||V

√
2||w||V + |v(0)||w(0)|.

Now we have that

v(0) = −
∫ x

0

v′(y) dy + v(x), ∀x ∈ I, (9.2.14)

and by the Mean-value theorem for the integrals: ∃ξ ∈ I so that v(ξ) =
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∫ 1

0
v(y) dy. Choose x = ξ in (9.2.14), then by Cauchy-Schwarz inequality

|v(0)| =
∣∣∣ −

∫ ξ

0

v′(y) dy +

∫ 1

0

v(y) dy
∣∣∣

≤
∫ 1

0

|v′| dy +

∫ 1

0

|v| dy ≤ ||v′||L2(I) + ||v||L2(I) ≤
√

2||v||V ,

implies that

|v(0)||w(0)| ≤ 2||v||V ||w||V ,

and consequently

|a(u,w)| ≤ 2||v||V ||w||V + 2||v||V ||w||V = 4||v||V ||w||V ,

so that we can take κ2 = 4. Finally

|L(v)| =
∣∣∣
∫

I

fv dx
∣∣∣ ≤ ||f ||L2(I)||v||L2(I) ≤ ||f ||L2(I)||v||V ,

taking κ3 = ||f ||L2(I) all the conditions in the Lax-Milgram theorem are ful-
filled.

Example 9.6. Let u ∈ H1
0 (Ω) and consider the convection-diffusion problem

−div(ε∇u + βu) = f, in Ω ⊂ R2, u = 0 on Γ = ∂Ω, (9.2.15)

where Ω is a bounded convex polygonal domain, ε > 0 is constant, β =
(β1(x), β2(x)) and f = f(x). Determine the conditions in the Lax-Milgram
theorem that would guarantee existence of a unique solution for this problem.
Prove a stability estimate for u i terms of ||f ||L2(Ω), ε and diam(Ω), and
under the conditions that you derived.

Solution: Recall that H1
0 (Ω) := {w : w ∈ L2(Ω), |∇w| ∈ L2(Ω), w =

0 on ∂Ω}.

a) Multiply the equation (9.2.15) by v ∈ H1
0 (Ω) and integrate over Ω to obtain

the Green’s formula

−
∫

Ω

div(ε∇u + βu)v dx =

∫

Ω

(ε∇u + βu) · ∇v dx =

∫

Ω

fv dx.
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Thus the variational formulation for (9.2.15) is as follows: Find u ∈ H1
0 (Ω)

such that
a(u, v) = L(v), ∀v ∈ H1

0 (Ω), (9.2.16)

where

a(u, v) =

∫

Ω

(ε∇u + βu) · ∇v dx,

and

L(v) =

∫

Ω

fv dx.

According to the Lax-Milgram theorem, for a unique solution for (9.2.16) we
need to verify that there are positive constants γ, α, Λ such that the following
relations hold true

i)
|a(v, w)| ≤ γ||u||H1(Ω)||w||H1(Ω), ∀v, w ∈ H1

0 (Ω),

ii)
a(v, v) ≥ α||v||2H1(Ω), ∀v ∈ H1

0 (Ω),

iii)
|L(v)| ≤ Λ||v||H1(Ω), ∀v ∈ H1

0 (Ω).

Now using Cauchy-Schwarz inequality we have

|L(v)| = |
∫

Ω

fv dx| ≤ ||f ||L2(Ω)||v||L2(Ω) ≤ ||f ||L2(Ω)||v||H1(Ω),

hence iii) follows with Λ = ||f ||L2(Ω), and consequently the first condition is
that f ∈ L2(Ω).

Further we have that

|a(v, w)| ≤
∫

Ω

|ε∇v + βv||∇w| dx ≤
∫

Ω

(ε|∇v| + |β||v|)|∇w| dx

≤
(∫

Ω

(ε|∇v| + |β||v|)2 dx
)1/2(∫

Ω

|∇w|2 dx
)1/2

≤
√

2 max(ε, ||β||∞)
( ∫

Ω

(|∇v|2 + v2) dx
)1/2

||w||H1(Ω)

= γ||v||H1(Ω)||w||H1(Ω),
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which, with γ =
√

2 max(ε, ||β||∞), gives i). Hence the second condition is
that β ∈ L∞(Ω).

Finally, if divβ ≤ 0, then using Green’s formula

a(v, v) =

∫

Ω

(
ε|∇v|2 + (β · ∇v)v

)
dx =

∫

Ω

(
ε|∇v|2 + (β1

∂v

∂x1

+ β2
∂v

∂x2

)v
)

dx

=

∫

Ω

(
ε|∇v|2 +

1

2
(β1

∂

∂x1

(v)2 + β2
∂

∂x2

(v)2)
)

dx

=

∫

Ω

(
ε|∇v|2 − 1

2
(divβ)v2

)
dx ≥

∫

Ω

ε|∇v|2 dx.

Now by the Poincare’s inequality

∫

Ω

|∇v|2 dx ≥ C

∫

Ω

(|∇v|2 + v2) dx = C||v||2H1(Ω),

for some constant C = C(diam(Ω)), we have

a(v, v) ≥ α||v||2H1(Ω), with α = Cε,

which means that ii) is valid under the condition that div β ≤ 0.

From ii), (9.2.16) (with v = u) and iii) we conclude that

α||u||2H1(Ω) ≤ a(u, u) = L(u) ≤ Λ||u||H1(Ω),

and hence a stability estimate is given by

||u||H1(Ω) ≤
Λ

α
,

with Λ = ||f ||L2(Ω) and α = Cε defined above.

9.3 Exercises

Problem 9.3. Verify that the assumptions of the Lax-Milgram theorem are
satisfied for the following problems with appropriate assumptions on α and
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f .

(I)





−u′′ + αu = f, in (0, 1),

u(0) = u′(1) = 0, α = 0 and 1.

(II)





−u′′ + αu = f, in (0, 1),

u(0) = u(1) u′(0)0u′(1) = 0.

(III)





−u′′ = f, in (0, 1),

u(0) − u′(0) = u(1) + u′(1)a = 0.

Problem 9.4. Let Ω be a bounded domain in Rd with boundary Γ, show that
there is a constant C such that for all v ∈ H1(Ω),

‖v‖L2(Γ) ≤ C‖v‖H1(Ω), (9.3.1)

where ‖v‖2
H1(Γ) = ‖v‖2 + ‖∇v‖2. Hint: Use the following Green’s formula

∫

Ω

v2∆ϕ =

∫

Γ

v2∂nϕ −
∫

Ω

2v∇v · ∇ϕ, (9.3.2)

with ∂nϕ = 1. (9.3.1) is knowm as trace inequality, or trace theorem.

Problem 9.5. Let u be the solution of the following Neumann problem:




−∆u = f, in Ω ⊂ Rd,

−∂nu = ku, on Γ = ∂Ω, .

where ∂nu = n · ∇u with n being outward unit normal to Γ and k ≥ 0. a)
Show the stability estimate

‖u‖Ω ≤ CΩ(‖u‖Γ + ‖∇u‖Ω).

b) Use the estimate in a) to show that ‖u‖Γ → 0 as k → ∞.

Problem 9.6. Using the trace inequality, show that the solution for the prob-
lem 




−∆u + u = 0, in Ω

∂nu = g, on Γ,

satisfies the inequality

‖v‖2 + ‖∇v‖2 ≤ C‖g‖2
L2(Γ).
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Problem 9.7. Consider the boundary value problem





∆u = 0, in Ω ⊂ R2,

∂nu + u = g, on Γ = ∂Ω, n is outward unit normal to Γ.

a) Show the stability estimate

||∇u||2L2(Ω) +
1

2
||u||2L2(Γ) ≤

1

2
||g||2L2(Γ).

b) Discuss, concisely, the conditions for applying the Lax-Milgram theorem
to this problem.
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Chapter 10

The Poisson Equation

In this chapter we shall extend the studies for the one-dimensional problem
of the stationary heat condection in Chapter 5 to solve the Poisson equation
in higher dimensions





−∆u = f, in Ω ⊂ Rd, d = 2, 3

u = 0 on ∂Ω,
(10.0.1)

where Ω is a bounded domain in Rd, with d = 2 or d = 3, with polygonal
boundary Γ = ∂Ω. For a motivation of studying the Poisson equation and
its applications, see Chapter 1. Below we approximate (10.0.1) using finite
element method, prove stability results and derive a priori and a posteriori
error estimates.

10.1 Stability

To derive stability estimates for (10.0.1) we shall assume an underlying gen-
eral vector space V (to be specified below) of functions as the solution space.
We multiply the equation by u ∈ V and integrate over Ω to obtain

−
∫

Ω

(∆u)udx =

∫

Ω

f u dx. (10.1.1)

243
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Using Green’s formula and the boundary condition, u = 0 on Γ, we get that

‖∇u‖2 =

∫

Ω

fu ≤ ‖f‖ ‖u‖, (10.1.2)

where ‖ · ‖ denotes the usual L2(Ω)-norm.

To dervie a, so called, weak stability estimate for (10.1.1) we shall need the
following result.

Lemma 10.1 (Poincaré inequality; the 2D-version). For the solution u of
the problem (10.0.1) in a bounded domain Ω ⊂ R2, There exisists a constant
CΩ, independet of u such that

‖u‖ ≤ CΩ‖∇u‖. (10.1.3)

Proof. Let ϕ be a function such that ∆ϕ = 1 in Ω, and 2|∇ϕ| ≤ CΩ in Ω, (it
is easy to construct such a function ϕ ), then by Green’s formula and using
the boundary condition we get

‖u‖2 =

∫

Ω

u2∆ϕ = −
∫

Ω

2u(∇u · ∇ϕ) ≤ CΩ‖u‖ ‖∇u‖. (10.1.4)

Thus, we have the desired result:

‖u‖ ≤ CΩ‖∇u‖.

Remark 10.1. We note that in (10.1.3), as in the one-dimensional case, we
have CΩ ≈ diam(Ω), and therefore (10.1.3) is valid as long as Ω is a bounded
domain.

Combining the Poincare inequality with the inequality (10.1.2) we get that
the following weak stability estimate holds

‖∇u‖ ≤ CΩ‖f‖. (10.1.5)

Problem 10.1. Derive corresponding stability estimates for following Neu-
mann problem: 




−∆u + u = f, in Ω

∂u
∂n

= 0, on Γ = ∂Ω.
(10.1.6)
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10.2 Error Estimates for FEM

We start formulating the weak form for the problem (10.0.1). We multiply
the equation by a test function, integrate over Ω and use Green’s formula.
Then, the variational formulation reads as follows: Find u ∈ H1

0 (Ω) such
that

(V F ) :

∫

Ω

∇u · ∇v dx =

∫

Ω

fv dx, ∀v ∈ H1
0 (Ω). (10.2.1)

We prepare for a finite element method where we shall approximate the
exact solution u(x) by a suitable discrete solution U(x) in a certain finite
dimensional subspace of H1

0 (Ω). To this approach let Th = {K : ∪K = Ω} be
a triangulation of the domain Ω by elemenet K with the maximum diagonal
h = max diag(K). To proceed we shall consider continuous piecewise linear
approximations for the solution u ∈ H1

0 (Ω) in a finite dimensional subspace

V 0
h = {v(x) : v is continuous, piecewise linear on Th, and v = 0 on Γ = ∂Ω}.

associated to the partition Th. Let now ϕj, j = 1, 2, . . . , n be the correspond-
ing basis functions, such that ϕj(x) is continuous, linear on each K and

ϕj(Ni) =





1 for i = j

0 for i 6= j,
(10.2.2)

where N1, N2, . . . , Nn are the inner nodes in the triangulation.

Now we set the approximate solution U(x) to be a linear combination of the
basis functions ϕj, j = 1, . . . , n,

U(x) = U1ϕ1(x) + U2ϕ2(x) + . . . + Unϕn(x), (10.2.3)

and seek the coefficients Uj = U(Nj), i.e., the nodal values of U(x), at the
nodes Nj, 1 ≤ j ≤ n, so that

(FEM)

∫

Ω

∇U · ∇ϕi dx =

∫

Ω

f ϕi dx, for i = 1, 2, . . . n, (10.2.4)

or equivalently

(V 0
h )

∫

Ω

∇U · ∇v dx =

∫

Ω

f v dx, ∀v ∈ V 0
h . (10.2.5)
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Note that every v ∈ V 0
h can be represented by a linear combination of {ϕj}n

j=1:

v(x) = v(N1)ϕ1(x) + v(N2)ϕ2(x) + . . . + v(Nn)ϕn(x). (10.2.6)

Theorem 10.1 (The a priori error estimate for the gradient ∇u−∇U). Let
e = u−U represent the error in the above continuous, piecewise linear, finite
element approximation of the solution for (10.0.1). Then we have

‖∇e‖ = ‖∇(u − U) ≤ C‖h D2u‖. (10.2.7)

Proof. For the error e = u − U we have ∇e = ∇u − ∇U = ∇(u − U).
Subtracting (10.2.5) from the (10.2.1) where we restrict v to V 0

h , we obtain
the Galerkin Orthogonality:

∫

Ω

(∇u −∇U) · ∇v dx =

∫

Ω

∇e · ∇v dx = 0, ∀v ∈ V 0
h . (10.2.8)

Further we may write

‖∇e‖2 =

∫

Ω

∇e·∇e dx =

∫

Ω

∇e·∇(u−U) dx =

∫

Ω

∇e·∇u dx−
∫

Ω

∇e·∇U dx.

Now using the Galerkin orthogonality (10.2.8), since U(x) ∈ V 0
h we have

the last integral above:
∫

Ω
∇e · ∇U dx = 0. Hence removing the vanishing

∇U -term and inserting
∫

Ω
∇e · ∇v dx = 0, ∀v ∈ V 0

h we have that

‖∇e‖2 =

∫

Ω

∇e·∇udx−
∫

Ω

∇e·∇vdx =

∫

Ω

∇e·∇(u−v)dx ≤ ‖∇e‖ ‖∇(u−v)‖.

Thus
‖∇(u − U)‖ ≤ ‖∇(u − v)‖, ∀v ∈ V 0

h . (10.2.9)

That is, in the L2-norm, the gradient of the finite element solution: ∇U is
closer to that of the exact soltion: ∇u, than the gradient ∇v of any other v
in V 0

h . In other words, measuring in H1
0 -norm, the error u−U is orthogonal

to V 0
h . It is possible to show that there is a v ∈ V 0

h (an interpolant), such
that

‖∇(u − v)‖ ≤ C‖h D2u‖, (10.2.10)

where h = h(x) = diam(K) for x ∈ K and C is a constant independent of h.
This is the case, for example, if v interpolates u at the nodes Ni.
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U

u

V 0
h

u − U

•

Figure 10.1: The orthogonal (L2) projection of u on V 0
h .

Combining (10.2.9) and (10.2.10) we get

‖∇e‖ = ‖∇(u − U) ≤ C‖h D2u‖, (10.2.11)

which is indicating that the error is small if h(x) is sufficiently small depend-
ing on D2u. See the Fig. 10.2 below.

To prove an a priori error estimate for the solution we shall use the following
result.

Lemma 10.2 (regularity lemma). Assume that Ω has no re-intrents. We
have for u ∈ H2(Ω); with u = 0 or (∂u

∂n
= 0) on ∂Ω, that

‖D2u‖ ≤ CΩ ‖∆u‖, (10.2.12)

where

D2u = (u2
xx + 2u2

xy + u2
yy)

1/2. (10.2.13)

We postpone the proof of this lemma and first derive the error estimate.
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x2

x3

x1

N1

N2

N3

•

•

•

K

u

πhu

Figure 10.2: The nodal interpolant of u in 2D case

Theorem 10.2 (a priori error estimate for the solution e = u − U). For a
general mesh we have the following a priori error estimate for the solution
of the Poisson equation (10.0.1),

‖e‖ = ‖u − U‖ ≤ C2 CΩ (max
Ω

h) ‖h D2u‖, (10.2.14)

where C is constant (generated twice).

Proof. Let ϕ be the solution of the dual problem




−∆ϕ = e, in Ω

ϕ = 0, on ∂Ω.
(10.2.15)

Then, we have using Green’s formula that

‖e‖2 =

∫

Ω

e(−∆ϕ)dx =

∫

Ω

∇e · ∇ϕ dx =

∫

Ω

∇e · ∇(ϕ − v) dx

≤ ‖∇e‖‖∇(ϕ − v)‖, ∀v ∈ V 0
h ,

(10.2.16)
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•

•

•

•

•

•

•

•

•

••

•

•
••

•

h large h small

D2u large

D2u small

Figure 10.3: The adaptivity priciple: to refine mesh for large D2u

where in the last equality we have used the Galerkin orthogonality. We now
choose v (e.g. as an interpolant of ϕ) such that

‖∇(ϕ − v)‖ ≤ C‖h D2ϕ‖ ≤ C(max
Ω

h)‖D2ϕ‖. (10.2.17)

Applying the lemma to ϕ, we get

‖D2ϕ‖ ≤ CΩ ‖∆ϕ‖ = CΩ‖e‖. (10.2.18)

Finally, combining (10.2.11)-(10.2.18) yields

‖e‖2 ≤ ‖∇e‖ ‖∇(ϕ − v)‖ ≤ ‖∇e‖C max
Ω

h ‖D2ϕ‖

≤ ‖∇e‖C(max
Ω

h)CΩ‖e‖ ≤ C‖h D2u‖C (max
Ω

h)CΩ‖e‖.
(10.2.19)

Thus we have obtained the desired a priori error estimate

‖e‖ = ‖u − U‖ ≤ C2 CΩ (max
Ω

h) ‖h D2u‖. (10.2.20)
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Corollary 10.1 (strong stability estimate). Using the Lemma, for a piece-
wise linear approximation, the a priori error estimate (10.2.20) can be written
as the following strong stability estimate,

‖u − U‖ ≤ C2 C2
Ω (max

Ω
h)2 ‖f‖. (10.2.21)

Theorem 10.3 ( a posteriori error estimate). Let u be the solution of the
Poisson equation (10.0.1) and U its continuous piecewise linear finite element
approximation. Then, there is constant C, independent of u and h, such that

‖u − U‖ ≤ C ‖h2r‖, (10.2.22)

where r = f + ∆hU is the residual with ∆h being the discrete Laplacian
defined by

(∆hU, v) =
∑

K∈Th

(∇U,∇v)K . (10.2.23)

Proof. We start considering the following dual problem




−∆ϕ(x) = e(x), x ∈ Ω,

ϕ(x) = 0, x ∈ ∂Ω, e(x) = u(x) − U(x).
(10.2.24)

Then e(x) = 0, ∀x ∈ ∂Ω, and using Green’s formula we have that

‖e‖2 =

∫

Ω

e e dx =

∫

Ω

e(−∆ϕ)dx =

∫

Ω

∇e · ∇ϕdx. (10.2.25)

Thus by the Galerkin orthogonality (10.2.8) and using the boundary data:
ϕ(x) = 0, ∀x ∈ ∂Ω, we get

‖e‖2 =

∫

Ω

∇e · ∇ϕdx −
∫

Ω

∇e · ∇vdx =

∫

Ω

∇e · ∇(ϕ − v) dx

=

∫

Ω

(−∆e)(ϕ − v) dx ≤ ‖h2r‖ ‖h−2(ϕ − v)‖

≤ C ‖h2r‖ ‖∆ϕ‖ ≤ C ‖h2r‖ ‖e‖,

(10.2.26)

where we use the fact that the −∆e = −∆u + ∆hU = f + ∆hU = r is the
residual and choose v as an interpolant of ϕ. Thus, the final result reads as

‖u − U‖ ≤ C ‖h2r‖. (10.2.27)
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Corollary 10.2 (strong stability estimate). Observe that for piecewise linear
approximations ∆hU = 0 on each element K and hence r ≡ f and our a
posteriori error estimate above can be viewed as a strong stability estimate

‖e‖ ≤ C ‖h2f‖. (10.2.28)

Problem 10.2. Show that ‖(u − U)′‖ ≤ C‖hr‖.

Problem 10.3. Verify that for v being the interpolant of ϕ, we have

‖e‖ ≤ C ‖h2f‖ ×





‖h−2 (ϕ − v)‖ ≤ C ‖∆ϕ‖, and

‖h−1(ϕ − v)‖ ≤ C ‖∇ϕ‖.
(10.2.29)

Problem 10.4. Derive the estimate corresponding to (10.2.27) for the one-
dimensional case.

Remark 10.2. We now returm to the proof of Lemma. One can show that,
in the Lemma for a convex Ω, the constant CΩ ≤ 1. Otherwise CΩ > 1 and
increases with the degree of the sigularity of a corner point at the boundary
of the domain Ω. With Ω having a re-interant we have that CΩ = ∞.

10.2.1 Proof of the regularity Lemma

Proof. Let now Ω be a rectangular domain and set u = 0 on ∂Ω. We have
then

‖∆u‖2 =

∫

Ω

(uxx + uyy)
2dxdy =

∫

Ω

(u2
xx + 2uxxuyy + u2

yy) dxdy. (10.2.30)

Applying Green’s formula (in x-direction) for the rectangular domain Ω we
can write

∫

Ω

uxxuyydxdy =

∫

∂Ω

(ux · nx)uyy ds −
∫

Ω

ux uyyx︸︷︷︸
=uxyy

dxdy. (10.2.31)

Once again by Green’s formula ( with v = ux and ∆w = uxyy”),

∫

Ω

uxuxyydxdy =

∫

∂Ω

ux(uyx · ny)ds −
∫

Ω

uxyuxy dxdy. (10.2.32)



252 CHAPTER 10. THE POISSON EQUATION

Inserting (10.2.32) in (10.2.31) yields

∫

Ω

uxxuyy dxdy =

∫

∂Ω

(uxuyynx − uxuyxny)ds +

∫

Ω

uxyuxy dxdy. (10.2.33)

n(0, y) = (−1, 0) n(a, y) = (1, 0)

n(x, 0) = (0,−1)

n(x, b) = (0, 1)

Ω

b

a

uyy = 0uyy = 0

ux = 0

ux = 0

Figure 10.4: A rectangular domain Ω with its outward unit normals

Now, as we can see from the figure, we have that (uxuyynx − uxuyxny) = 0,
on ∂Ω and hence

∫

Ω

uxxuyydxdy =

∫

Ω

uxyuxydxdy =

∫

Ω

u2
xy dxdy. (10.2.34)

Thus, in this case,

‖∆u‖2 =

∫

Ω

(uxx + uyy)
2dxdy =

∫

Ω

(u2
xx + 2u2

xy + u2
yy)dxdy = ‖D2u‖2,

and the proof is complete by a constant CΩ ≡ 1. The general case of a
polygonal domain, easily, follows from this proof.
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10.3 Exercises

Problem 10.5. Consider the following two dimensional problem:





−∆u = 1, in Ω

u = 0, on ΓD

∂u
∂n

= 0, on ΓN

(10.3.1)

See figure below

1

Γ

x2 x2

ΓN

Γ

Γ
D Ω

1

1

1

N

D

xx1 1

Triangulate Ω as in the figure and let

U(x) = U1ϕ1(x) + . . . + U16ϕ16(x),

where x = (x1, x2) and ϕj, j = 1, . . . 16 are the basis functions, see Fig.
below, and determine U1, . . . U16 so that

∫

Ω

∇U · ∇ϕjdx =

∫

Ω

ϕjdx, j = 1, 2, . . . , 16.
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N1

N15

ϕ
1

ϕ
15

Problem 10.6. Generalize the procedure in the previous problem to the fol-
lowing case





−∇(a∇u) = f, in Ω

u = 0, on ΓD

a∂u
∂n

= 7, on ΓN

, where





a = 1 for x1 < 1
2

a = 2 for x1 > 1
2

f = x2. mesh-size=h.

Problem 10.7. Consider the Dirichlet problem

−∇ · (a(x)∇u) = f(x), x ∈ Ω ⊂ R2, u = 0, for x ∈ ∂Ω.

Assume that c0 and c1 are constants such that c0 ≤ a(x) ≤ c1, ∀x ∈ Ω and let
U =

∑N
j=1 αjwj(x) be a Galerkin approximation of u in a finite dimensional

subspace M of H1
0 (Ω). Prove the a priori error estimate

||u − U ||H1
0
(Ω) ≤ C inf

χ∈M
||u − χ||H1

0
(Ω).

Problem 10.8. Determine the stiffness matrix and load vector if the cG(1)
finite element method applied to the Poisson’s equation on a triangulation
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with triangles of side length 1/2 in both x1- and x2-directions:





−∆u = 1, in Ω = {(x1, x2) : 0 < x1 < 2, 0 < x2 < 1},
u = 0, on Γ1 = {(0, x2)} ∪ {(x1, 0)} ∪ {(x1, 1)},
∂u
∂n

= 0, on Γ2 = {(2, x2) : 0 ≤ x2 ≤ 1}.

Problem 10.9. Let Ω = (0, 2)× (0, 2), B1 = ∂Ω \B2 and B2 = {2}× (0, 2).
Determine the stiffness matrix and load vector in the cG(1) solution for the
problem 




−∂2u
∂x2

1

− 2∂2u
∂x2

2

= 1, in Ω = (0, 2) × (0, 2),

u = 0, on B1,
∂u
∂x1

= 0, on B2,

with piecewise linear approximation applied on the triangulation below:

1

2

1

B

B

B

B

2

1

x

x

2

1

2

Problem 10.10. Determine the stiffness matrix and load vector if the cG(1)
finite element method with piecewise linear approximation is applied to the
following Poisson’s equation with mixed boundary conditions:





−∆u = 1, on Ω = (0, 1) × (0, 1),

∂u
∂n

= 0, for x1 = 1,

u = 0, for x ∈ ∂Ω \ {x1 = 1},
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on a triangulation with triangles of side length 1/4 in the x1-direction and
1/2 in the x2-direction.

Problem 10.11. Formulate the cG(1) method for the boundary value prob-
lem

−∆u + u = f, x ∈ Ω; u = 0, x ∈ ∂Ω.

Write down the matrix form of the resulting equation system using the fol-
lowing uniform mesh:

1 2

3
4

h

h

x
2

x
1

T



Chapter 11

The Initial Boundary Value
Problems in RN

This chapter is devoted to the study of time dependent problems formulated
in spatial domain in RN , N ≥ 2. More specifically we shall consider the finite
element methods for two fundamental equations: the heat equation and the wave
equation. In this setting we have already studied time discretizations as well as
a concise finite element analysis of the Laplace’s equation in Chapters 6 and 10,
respectively. Here we shall derive certain stability estimates for these equations
and construct fully discrete schemes for temporal and spatial discretizations. We
also formulate some convergence results that can be viewed as a combination of
error estimates in Chapters 6 and 10. Detailed proofs for a priori and a posteriori
error estimates are direct generalization of the results of Chapter 7 for one space
dimension and can be found in, e.g. Thomee [53] and Eriksson et al. [20].

11.1 The heat equation in RN

In this section we shall study the stability of the heat equation in RN , N ≥ 2.
Here our concern will be those aspects of the stability estimates for the higher
dimensional case that are not a direct consequence of the study of the one-
dimesional problem addressed in Chapter 7.

257
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The initial boundary value problem for the heat conduction can be formu-
lated as





u̇(x, t) − ∆u(x, t) = f(x, t), in Ω ⊂ Rd, d = 1, 2, 3 (DE)

u(x, t) = 0, on Γ := ∂Ω, 0 < t ≤ T, (BC)

u(x, 0) = u0(x), for x ∈ Ω. (IC)

(11.1.1)
The equation (11.1.1) is of parabolic type with significant smoothing and
stability properties. It can also be used as a model for a variety of physical
phenomena involving diffusion processes. Some important physical proper-
ties of (11.1.1) are addressed in Chapter 1. Here, we shall focus on the
stability concept and also construction of the fully discrete schemes, which
is a combination of the discretization procedure in Chapters 6 and 10. For a
priori and a posteriori analyses refer the reader to Chapter 16 in [20].

11.1.1 The fundamental solution

Let us consider the stationary heat conduction in the whole two dimentional
Eucledean space:





u̇(x, t) − ∆u(x, t) = 0, in R2 × (0,∞)(

u(x, 0) = u0(x), for ∈ R2
(11.1.2)

The solution to (11.1.2) with the Dirac delta function as its initial data:
u0(x) = δ0(x) is called the Fundamental solution of the heat equation (11.1.2)
which is denoted by E(x, t) given by

E(x, t) =
1

4πt
exp

(
− |x|2

4t

)
. (11.1.3)

For a general u0 the solution is expressed in terms of fundamental solution
and is obtained through convolution of u0 and E, viz

u(x, t) =
1

4πt

∫

R2

u0(y) exp
(
− |x − y|2

4t

)
dy. (11.1.4)
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11.1.2 Stability

The stability estimates for the heat equation (11.1.1) are summarized in
theorem below. It roughly states a control of certain energy norms of the
solution u by the L2 norm of the initial data u0. Meanwhile, in several
estimates, the singularities at t = 0 are clearly pronounced.

Theorem 11.1 (Energy estimates). Let f ≡ 0. Then, the solution u of the
problem (11.1.1) satisfies the following stability estimates

max
(
‖u‖(t), 2

∫ t

0

‖∇u‖2(s) ds
)
≤ ‖u0‖ (11.1.5)

‖∇u‖(t) ≤ 1√
2 t

‖u0‖ (11.1.6)

(∫ t

0

s‖∆u‖2(s) ds
)1/2

≤ 1

2
‖u0‖ (11.1.7)

‖∆u‖(t) ≤ 1√
2 t

‖u0‖ (11.1.8)

∫ t

ε

‖u̇‖(s) ds ≤ 1

2

√
ln

t

ε
‖u0‖. (11.1.9)

Proof. Let f ≡ 0. To derive the first two estimates in (11.1.5) we multiply
(11.1.1) by u and integrate over Ω, to get

∫

Ω

u̇u dx −
∫

Ω

(∆u)u dx = 0. (11.1.10)

Note that u̇u = 1
2

d
dt

u2 and using Green’s formula with the Dirichlet boundary
data, u = 0 on Γ, we have that

−
∫

Ω

(∆u)u dx = −
∫

Γ

(∇u ·n) u ds+

∫

Ω

∇u ·∇u dx =

∫

Ω

|∇u|2 dx. (11.1.11)

Thus equation (11.1.10) can be written in the following two equivalent forms:

1

2

d

dt

∫

Ω

u2dx +

∫

Ω

|∇u|2dx = 0 ⇐⇒ 1

2

d

dt
‖u‖2 + ‖∇u‖2 = 0, (11.1.12)
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where ‖ · ‖ denotes the L2(Ω) norm. We substitute t by s and integrate the
equation (11.1.12) over s ∈ (0, t) to get

1

2

∫ t

0

d

ds
‖u‖2(s)ds+

∫ t

0

‖∇u‖2(s)ds =
1

2
‖u‖2(t)−1

2
‖u‖2(0)+

∫ t

0

‖∇u‖2ds = 0.

Hence, inserting the initial data u(0) = u0 we have

‖u‖2(t) + 2

∫ t

0

‖∇u‖2(s) ds = ‖u0‖2. (11.1.13)

In particular, we have our first two stability estimates

‖u‖(t) ≤ ‖u0‖, and

∫ t

0

‖∇u‖2(s) ds ≤ 1

2
‖u0‖.

To derive (11.1.6) and (11.1.7) we multiply the equation, u̇ − ∆u = 0, by
−t ∆u and integrate over Ω to obtain

−t

∫

Ω

u̇ ∆u dx + t

∫

Ω

(∆u)2 dx = 0. (11.1.14)

Using Green’s formula (u = 0 on Γ =⇒ u̇ = 0 on Γ) yields

∫

Ω

u̇ ∆u dx = −
∫

Ω

∇u̇ · ∇u dx = −1

2

d

dt
‖∇u‖2, (11.1.15)

so that (11.1.14) can be rewritten as

t
1

2

d

dt
‖∇u‖2 + t ‖∆u‖2 = 0. (11.1.16)

Now using the relation t d
dt
‖∇u‖2 = d

dt
(t‖∇u‖2) − ‖∇u‖2, (11.1.16) can be

rewritten as

d

dt

(
t‖∇u‖2

)
+ 2t‖∆u‖2 = ‖∇u‖2. (11.1.17)

Once again we substitute t by s and integrate over (0, t) to get

∫ t

0

d

ds

(
s‖∇u‖2(s)

)
ds + 2

∫ t

0

s‖∆u‖2(s)ds =

∫ t

0

‖∇u‖2(s)ds.
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Using (??), the last equality is estimated as

t ‖∇u‖2(t) + 2

∫ t

0

s ‖∆u‖2(s) ds ≤ 1

2
‖u0‖2. (11.1.18)

In particular, we have

‖∇u‖(t) ≤ 1√
2t
‖u0‖ and

( ∫ t

0

s‖∆u‖2(s) ds
)1/2

≤ 1

2
‖u0‖,

which are our third and fourth stability estimates (11.1.6) and (11.1.7). The
stability estimate (11.1.8) is proved analogously. Now using (11.1.1): (u̇ =
∆u) and (11.1.8) we may write

∫ t

ε

‖u̇‖(s)ds ≤ 1√
2
‖u0‖

∫ t

ε

1

s
ds =

1√
2

ln
t

ε
‖u0‖ (11.1.19)

or more carefully

∫ t

ε

‖u̇‖(s)ds =

∫ t

ε

‖∆u‖(s)ds =

∫ t

ε

1 ‖∆u‖(s)ds =

∫ t

ε

1√
s

√
s‖∆u‖(s)ds

≤
( ∫ t

ε

s−1 ds
)1/2 ( ∫ t

ε

s‖∆u‖2(s) ds
)1/2

≤ 1

2

√
ln

t

ε
‖u0‖,

where in the last two inequalities we use Cauchy Schwarz inequality and
(11.1.7), respectively. This yields (11.1.9) and the proof is complete.

Problem 11.1. Show that ‖∇u(t)‖ ≤ ‖∇u0‖ (the stability estimate for the
gradient). Hint: Multiply (11.1.1) by −∆u and integrate over Ω.

Is this inequality valid for u0 = constant?

Problem 11.2. Derive the corresponding estimate for Neuman boundary
condition:

∂u

∂n
= 0. (11.1.20)
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11.1.3 A finite element method for the heat equation

For the time discretization of (11.1.1) we shall consider a partition of the
time interval I = [0, T ] : 0 = t0 < t1 < . . . < tN = T into sub-intervals
In = (tn−1, tn) of length kn = tn − tn−1. Then, we divide the space-time slab
Sn = Ω × In inte prisms K × In, where K ∈ Tn and Tn is a triangulation
of Ω with the mesh function hn. We construct a finite element mesh based
on approximations by continuous piecewise linear functions in space and
discontinuous polynomials of degree r in time. We shall refer to this method
as cG(1)dG(r) method. We define the trial space viz,

W
(r)
k = {v(x, t) : v|Sn

∈ W
(r)
kn }, n = 1, 2, . . . , N,

where

W
(r)
kn = {v(x, t) : v(x, t) =

r∑

j=0

tjψj(x), ψj ∈ Vn, (x, t) ∈ Sn},

with Vn = Vhh
is the space of continuous piecewise linear functions vanishing

on Γ associated to Tn. Generally, the functions in W
(r)
k are discontinuous

across the discrete time levels tn with jump discontinuities [wn] = w+
n − w−

n

and w±
m = lims→0± w(tn + s).

The cG(1)dG(r) method is based on a variational formulation for (11.1.1),

viz: Find U ∈ W
(r)
k such that for n = 1, 2, . . . , N ,

∫

In

(
(U̇ , v) + (∇U,∇v)

)
dt +

(
[Un−1], v

+
n−1

)
=

∫

In

(f, v) dt, ∀v ∈ W
(r)
kn ,

(11.1.21)
where U−

0 = u0 and(·, ·) is the L2(Ω) inner product.

Using the discrete Laplacian ∆n, we may write (11.1.21) in the case of r = 0
as follows: find Un ∈ Vn such that

(I − kn∆n)Un = PnUn−1 +

∫

In

Pnf dt, (11.1.22)

where Un = U−
n = U |In

∈ Vn , and Pn is the L2(Ω) projection onto Vn. Note
that the inituial data Un−1 ∈ Vn−1 from the previous time interval In−1 is
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projected into the space Vn. If Vn−1 ⊂ Vn, then PnUn−1 = Un−1. For the
case r = 1, writing U(t) = Φn + (t − tn−1)Ψn on In with Φn, Ψn ∈ Vn, the
variational formulation (11.1.21) takes the following form





(I − kn∆n)Φn + (I − kn

2
∆n)Ψn = PnUn−1 +

∫
In

Pnf dt,

(1
2
I − kn

3
∆n)Ψn − kn

2
∆nΦn =

∫
In

t−tn−1

kn
Pnf dt,

(11.1.23)

and gives a system of equations for Φn and Ψn.

11.1.4 Constructing the discrete equations

To construct the matrix equation that determines Un in the case r = 0
according (11.1.22), we let ϕn,j denote the nodal basis for Vn associated with
Jn interior nodes of Tn, the we can write Un as

Un =
Jn∑

j=1

ξn,jϕn,j.

Here ξn,j are the nodal values of Un. Let us denote the vector coefficients by
ξn = (ξn,j). We denote the Jn × Jn mass matrix by Mn, stiffness matrix by
Sn and the Jn × 1 data vector by bn, with elements

(Mn)i,j = (ϕn,j, ϕn,i), (Sn)i,j = (∇ϕn,j,∇ϕn,i), (bn)i = (f, ϕn,i),

for 1 ≤ i, j ≤ Jn. Finally, we denote the Jn × Jn−1 = matrix Mn−1,n with
entries

(Mn−1,n)ij = (ϕn,j, ϕn−1,i), 1 ≤ i ≤ Jn, 1 ≤ j ≤ Jn−1. (11.1.24)

Now, the discrete equation for cG(1)dG(0) approximation on In reads as
follows

(Mn + knSn)ξn = Mn−1,nξn−1 + bn. (11.1.25)

One can easily see that the coefficient matrix of the system (11.1.25) is sparse,
symmetric, and positive definite, which can be solved by a direct or an in-
terative algorithm.
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11.1.5 An apriori error estimate

To derive a priori (or a posteriori) error estimates for the heat equation is a
rather involved procedure. Below we outline the prerequisites and formulated
an apriori error estimate theorem without a proof. Detiailed studies of the
error analysis, for both heat and wave equations, can be found in [20]

We assume that there are positive constants αi, i = 1, 2, with α2 sufficiently
small, such that for n = 1, . . . , N ,

α1kn ≤ kn+1 ≤ α−1
1 kn, (11.1.26)

α1hn(x) ≤ hn+1(x) ≤ α−1
1 hn, x ∈ Ω (11.1.27)

(max
x∈Ω̄

h(x))2 ≤ α2kn, (11.1.28)

The relation (11.1.28) enters if Vn−1 * Vn. An a priori error estimte is then
given as:

Theorem 11.2. If Ω is convex and α2 sufficiently small, then there is a
constant Ci depending only on τ and αi, i = 1, 2, such that for N ≥ 1,

‖u(tN) − UN‖ ≤ CiLN max
1≤n≤N

(kn‖u̇‖In
+ ‖h2

nD
2u‖In

), (11.1.29)

wherec

LN = 2 + max
1≤n≤N

max
{(

log(
tn
kn

)
)1/2

, log(
tn
kn

)
}

.

Example 11.1 (The equation of an elastic beam). This is an example of
a stationary biharmonic equation describing the bending of an elastic beam
as a one-dimensional model problem (the relation to the heat coductivity is
the even number of spatial differentiation and the problem in here is in one
spatial dimension).





(au′′)′′ = f, Ω = (0, 1),

u(0) = 0, u′(0) = 0, (Dirichlet)

u′′(1) = 0, (au′′)′(1) = 0, (Neumann)

(11.1.30)
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0 1

f

x

y

where a is the bending stiffness

au′′ is the moment

f is the function load

u = u(x) is the vertical deflection

Variational form:

∫ 1

0

au′′v′′dx =

∫ 1

0

fvdx, ∀v(x) such that v(0) = v′(0) = 0. (11.1.31)

FEM: Piecewise linear functions won’t work (inadequate).

11.2 Exercises

Problem 11.3. Work out the details with piecewise cubic polynomials having
continuous first derivatives: i.e., two degrees of freedom on each node.

A cubic polynomial in (a, b) is uniquely determined by ϕ(a), ϕ′(a), ϕ(b) and
ϕ′(b), where the basic functions would have the following form:
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Problem 11.4. Consider the following general form of the heat equation





ut(x, t) − ∆u(x, t) = f(x, t), for x ∈ Ω, 0 < t ≤ T,

u(x, t) = 0, for x ∈ Γ, 0 < t ≤ T,

u(x, 0) = u0(x), for x ∈ Ω,

(11.2.1)

where Ω ∈ R2 with boundary Γ. Let ũ be the solution of (11.2.1) with a
modified initial data ũ0(x) = u0(x)ε(x).

a) Show that w := ũ − u solves (11.2.1) with initial data w0(x) = ε(x).

b) Give estimates for the difference between u and ũ.

c) Prove that the solution of (11.2.1) is unique.

Problem 11.5. Formulate the equation for cG(1)dG(1) for the two-dimensional
heat equation using the discrete Laplacian.

Problem 11.6. In two dimensions the heat equation, in the case of radial
symmetry, can be formulated as ru̇−(ru′

r)
′
r = rf , where r = |x| and w′

r = ∂w
∂r

.
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a) Verify that u = 1
4πt

exp(− r2

4t
) is a solution for the homogeneous equation

(f = 0) with the initial data being the Dirac δ function u(r, 0) = δ(r).

b) Sketching u(r, t) for t = 1 and t = 0.01, deduce that u(r, t) → 0 as
t → 0 for r > 0.

c) Show that
∫

R2 u(x, t) dx = 2π
∫ ∞
0

u(r, t) r dr = 1 for all t.

d) Determine a stationary solution to the heat equation with data

f =





1/(πε)2, for r < ε,

0, otherwise.

e) Determine the fundamental solution corresponding to f = δ, letting
ε → 0.

Problem 11.7. Consider the Schrödinger equation

iu̇ − ∆u = 0, in Ω, u = 0, on ∂Ω.

where i =
√
−1 and u = u1 + iu2.

a) Show that the total probability
∫

Ω
|u|2 is independent of the time.

Hint: Multiplying by ū = u1 − iu2, and consider the imaginary part

b) Consider the corresponding eigenvalue problem, i.e, find the eigenvalue
λ and the corresponding eigenfunction u 6= 0 such that

−∆u = λu in Ω, u = 0, on ∂Ω.

Show that λ > 0 and give the relationship between the norms ‖u‖ and
‖∇u‖ for the corresponding eigenfunction u.

c) Determine (in terms of the smallest eigenvalue λ1), the smallest possi-
ble value for the constant C in the Poincare estimate

‖u‖ ≤ C‖∇u‖,

derived for all solutions u vanishing at the boundary (u = 0, on ∂Ω).
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Problem 11.8. Consider the initial-boundary value problem





ut(x, t) − ∆u(x, t) = f(x, t), for x ∈ Ω, t > 0,

u(x, t) = 0, for x ∈ Γ, t > 0,

u(x, 0) = u0(x), for x ∈ Ω,

(11.2.2)

a) Prove (with ‖u‖ = (
∫
Ω

u2 dx)1/2) that

‖u(t)‖2 +

∫ t

0

‖∇u(s)‖2 ds ≤ ‖u0‖2 +

∫ t

0

‖f(s)‖2 ds

‖∇u(t)‖2 +

∫ t

0

‖∆u(s)‖2 ds ≤ ‖∇u0‖2 +

∫ t

0

‖f(s)‖2 ds

b) Formulate dG(0) − cG(1) method for this problem.

Problem 11.9. Formulate and prove dG(0) − cG(1) a priori and a poste-
riori error estimates for the two dimentional heat equation (cf. the previous
problem) that uses lumped mass and midpoit quadrature rule.

Problem 11.10. Consider the convection problem

β · ∇u + αu = f, x ∈ Ω, u = g, quadx ∈ Γ−, (11.2.3)

Define the outflow Γ+ ans inflow Γ− boundaries. Assume that α − 1
2
∇ · β ≥

c > 0. Show the following stability estimate

c‖u‖2

∫

Γ+

n · βu2 ds dt ≤ ‖u0‖2 +
1

c
‖f‖2 +

∫

Γ−

|n · β|g2 ds. (11.2.4)

Hint: Show first that

2(β · ∇u, u) =

∫

Γ+

n · β u2 ds −
∫

Γ−

‖n · β‖u2 ds − ((∇ · β)u, u).

Formulate the streamline diffusion for this problem.
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Problem 11.11. Consider the convection problem

u̇ + β · ∇u + αu = f, x ∈ Ω, t > 0,

u = g, x ∈ Γ−, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(11.2.5)

where Γ+ and Γ− are defined as above. Assume that α − 1
2
∇ · β ≥ c > 0.

Show the following stability estimate

‖u(·, T )‖2 + c

∫ T

0

‖u(·, t)‖2 dt +

∫ T

0

∫

Γ+

n · βu2 ds dt

≤ ‖u0‖2 +
1

c

∫ T

0

‖f(·, t)‖2 dt +

∫ T

0

∫

Γ−

|n · β|g2 ds dt,

(11.2.6)

where ‖u(·, T )‖2 =
∫
Ω

u(x, T )2 dx.

11.3 The wave equation in RN

The fundamental study of the wave equation in Rn, n ≥ 2 is an extension
of the results in the one-dimensional case introduced in Chapter 7. Some
additional properties of the wave equation are introduced in Chapter 1. For
a full finite element study of the higher dimensional problem we refere to [31]
and [20]. In this section we shall prove the law of conservation of energy,
derive spatial and temporal discretizations and give a stability estimate for
the wave equation in Rn, n ≥ 2,

Theorem 11.3 (Conservation of energy). For the wave equation given by




ü − ∆u = 0, in Ω (DE)

u = 0, on ∂Ω = Γ (BC)

(u = u0) ∧ (u̇ = v0) in Ω, for t = 0, (IC)

(11.3.1)

where ü = ∂2u/∂t2, with t ∈ [0, T ], we have that

1

2
‖u̇‖2 +

1

2
‖∇u‖2 = constant, independent of t, (11.3.2)
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i.e., the total energy is conserved, where 1
2
‖u̇‖2 is the kinetic energy, and

1
2
‖∇u‖2 is the potential (elastic) energy.

Proof. We multiply the equation by u̇ and integrate over Ω to get
∫

Ω

ü u̇ dx −
∫

Ω

∆u · u̇ dx = 0. (11.3.3)

Using Green’s formula:

−
∫

Ω

(∆u)u̇ dx = −
∫

Γ

(∇u · n)u̇ ds +

∫

Ω

∇u · ∇u̇ dx, (11.3.4)

and the boundary condition u = 0 on Γ, (which implies u̇ = 0 on Γ), we get
∫

Ω

ü · u̇ dx +

∫

Ω

∇u · ∇u̇ dx = 0. (11.3.5)

Consequently we have that
∫

Ω

1

2

d

dt
(u̇2) dx +

∫

Ω

1

2

d

dt
(|∇u|2) dx = 0 ⇐⇒ 1

2

d

dt
(‖u̇‖2 + ‖∇u‖2) = 0,

and hence

1

2
‖u̇‖2 +

1

2
‖∇u‖2 = constant, independent of t,

and we have the desired result.

11.3.1 The weak formulation

We multiply the equation ü − ∆u = f by a test function v ∈ H1
0 (Ω) and

integrate over Ω to obtain
∫

Ω

fv dx =

∫

Ω

üv dx −
∫

Ω

∆u v dx

=

∫

Ω

üv dx +

∫

Ω

∇u · ∇v dx −
∫

∂Ω

(n · ∇u)v ds

=

∫

Ω

üv dv +

∫

Ω

∇u · ∇v dx.

(11.3.6)
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where we used Green’s formula and boundary data on v. Thus we have the
following variational formulation for the wave equation: Find u ∈ H1

0 (Ω)
such that for every fixed t ∈ [0, T ],

∫

Ω

üv dv +

∫

Ω

∇u · ∇v dx =

∫

Ω

fv dx, ∀v ∈ H1
0 (Ω). (11.3.7)

11.3.2 The semi-discrete problem

Let V 0
h be a subspace of H1

0 (Ω) consisting of continuous piecewise linear
functions on a partition Th of Ω. The semi-discrete (spatial discretization)
couterpart of (11.3.7) reads as follows: Find U ∈ V 0

h , such that for every
fixed t ∈ (0, T ],

∫

Ω

Üv dx +

∫

Ω

∇U · ∇v dx =

∫

Ω

fv dx, ∀v ∈ V 0
h . (11.3.8)

Now let {ϕj}N
j=1 be a set of basis functions for V 0

h , thus in (11.3.8) we may
choose v = ϕi, i = 1, . . . , N . Now making the anstaz

U(x, t) =
N∑

j=1

ξj(t)ϕj(x), (11.3.9)

where ξj, j = 1, . . . , N are N time depndent unknown coefficients. Hence,
with i = 1, . . . , N and t ∈ I = (0, T ], (11.3.8) can be written as

N∑

j=1

ξ̈j(t)

∫

Ω

ϕjϕi dx +
N∑

j=1

ξj(t)

∫

Ω

∇ϕj · ∇ϕi dx =

∫

Ω

fϕi dx. (11.3.10)

In the matrix form (11.3.10) is written as the N ×N linear system of ODE,

Mξ̈(t) + Sξ(t) = b(t), t ∈ I = (0, T ], (11.3.11)

where M and S are the usual mass and stiffness matrices, respectively and b
is the load vector.
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11.3.3 The fully-discrete problem

Here we shall discretize the ODE system (11.3.11) in the time variable. To
this end we let η = ξ̇ and rewrite (11.3.11) as two first order systems:

Mξ̇(t) = Mη(t)

Mη̇(t) + Sξ(t) = b(t).
(11.3.12)

We apply the Crank-Nicolson method to each system, and as in Chapter 7,
we end up with

M
ξn − ξn−1

kn

= M
ηn + ηn−1

2
, (11.3.13)

M
ηn − ηn−1

kn

+ S
ξn + ξn−1

2
=

bn + bn−1

2
. (11.3.14)

In block matrix form this can be written as


 M −kn

2
M

kn

2
S M





 ξn

ηn


 =


 M kn

2
M

−kn

2
S M





 ξn−1

ηn−1


+


 0

kn

2
(bn + bn−1)


 .

Here we may, e.g. choose the starting iterates ξ0 and η0 as the nodal inter-
polations of u0 and v0, respectively.

Note that, as we mentioned earlier in Chapter 6, the Crank-Nicolson method
is more accurate than the Euler methods and it has the energy norm pre-
serving property: it conserves energy. Therefore it is a more suitable method
to the numerical study of the wave equation.

11.3.4 A priori error estimate for the wave equation

Theorem 11.4. The spatial discrete soltion U given by (11.3.9) satisfies the
a priori error estimate

‖u(t) − U(t)‖ ≤ Ch2
(
‖uxx(t)‖ +

∫ t

0

‖ü(·, s)‖ ds
)
. (11.3.15)
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Proof. The proof follows the general path of a priori error estimates combined
with conservation of energy Theorem 11.2.

11.4 Exercises

Problem 11.12. Show that

‖u̇‖2 + ‖∇u‖2 = constant, independent of t.

Hint: Multiply (DE): ü − ∆u = 0 by −∆u̇ and integrate over Ω.

Alternatively: differentiate the equation with respect to x and multiply the
result by u̇, and continue!

Problem 11.13. Derive a total conservation of energy relation using the

Robin type boundary condition:
∂u

∂n
+ u = 0.

Problem 11.14. Determine a solution for the following equation

ü − ∆u = eitδ(x),

where ∆ = ∂2

∂x2
1

+ ∂2

∂x2
2

+ ∂2

∂x2
3

, i =
√
−1, x = (x1, x2, x3) and δ is the Dirac-delta

function.

Hint: Let u = eitv(x), v(x) = w(r)/r where r = |x|. Further rv = w → 1
4π

as r → 0.

Problem 11.15. Consider the initial boundary value problem





ü − ∆u + u = 0, x ∈ Ω, t > 0,

u = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), u̇(x, 0) = u1(x), x ∈ Ω.

(11.4.1)

Rewrite the problem as a system of two equations with a time derivative of
order at most 1. Why this modification is necessary?
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Problem 11.16. Consider the initial boundary value problem





ü − ∆u = 0, x ∈ Ω, t > 0,

u = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), u̇(x, 0) = u1(x), x ∈ Ω.

(11.4.2)

Formulate the cG(1) method for this problem. Show that the energy is con-
served.



Answers to Exercises

Chapter 1. Exercise Section 1.1.1

1.1 The solution is unique only for ℓ 6= nπ, where n is an integer.

1.2 a) No! b)
∫ ℓ

0
f(x) dx = 0.

1.3
∑N

i=1 ci = 1.

1.4 b) c1 = 0, c2 = 1.

1.5 a) a + 3b = 0, b) 3a − πb = 0, c) 2a + eb = 0.

1.6 a) uss = 0; v(s, t) = u(x, y)

b) u(x, y) = f(x − y) + xg(x − y).

c) vss + vtt = 0, v(s, t) = u(x, y).

1.7 c)
sin 2πx sinh 2πy

sinh 2π
− sin 3πx sinh 3πy

sinh 3π
+

2 sin πx sinh π(1 − y)

sinh π
.

Chapter 1. Exercise Section 1.2.1

1.11 u = constant gives circles with center
(
1, −1

u

)
and radius 1/|u|.

v = constant gives circles with center
(

−v
v−1

, 0
)

and radius 1/|v − 1|.

1.15 The term represents heat loss at a rate proportional to the execess
temperature over θ0.

275
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1.18 a2 = b2c2.

1.19 α = ±c.

Chapter 2. Exercise Section 2.2

2.3
Pu(t) = 0.9991 + 1.083t + 0.4212t2 + 0.2786t3.

2.5 a. u(x) = 1
2
x(1 − x)

b. R(x) = π2A sin πx + 4π2B sin 2πx − 1

c. A = 4/π3 and B = 0.

d. -

2.6 a. -

b. R(x) = (π2 +1)A sin πx+(4π2 +1)B sin 2πx+(9π2 +1)C sin 3πx−x

c. A =
2

π(π2 + 1)
, B = − 1

π(4π2 + 1)
and C =

2

3π(9π2 + 1)
.

2.7 a. u(x) = 1
6
(π3 − x3) + 1

2
(x2 − π2)

b. R(x) = −U ′′(x) − x + 1 = 1
4
ξ0 cos x

2
+ 9

4
ξ1 cos 3x

2

c. ξ0 = 8(2π − 6)/π and ξ1 = 8
9
(2

9
− 2

3
π)/π.

2.8 U(x) = (16 sin x + 16
27

sin 3x)/π3 + 2x2/π2.

Chapter 3. Exercise Section 3.4

3.2 (a) x, (b) 0.

3.3

Π1f(x) =





4 − 11(x + π)/(2π), −π ≤ x ≤ −π
2
,

5/4 − (x + π
2
)/(2π), −π

2
≤ x ≤ 0,

1 − 7x/(2π), 0 ≤ x ≤ π
2
,

3(x − π)/(2π), π
2
≤ x ≤ π.
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3.8 Check the conditions required for a Vector space.

3.9

Π1f(x) = f(a)
2x − a − b

a − b
+ f(

a + b

2
)
2(x − a)

b − a
.

3.11 Hint: Use the procedure in the proof of Theorem 3.1, with somewhat
careful estimates at the end.

3.12

π4

(
e−8x2

)
≈ 0.25x4 − 1.25x2 + 1.

3.13 For example we may choose the following basis:

ϕi,j(x) =





0, x ∈ [xi−1, xi],

λi,j(x), i = 1, . . . ,m + 1, j = 0, 1, 2.

λi,0(x) =
(x − ξi)(x − xi)

(xi−1 − ξi)(xi−1 − xi)
, λi,1(x) =

(x − xi−1)(x − xi)

(ξi − xi−1)(ξi − xi)
,

λi,2(x) =
(x − xi−1)(x − ξi)

(xi − xi−1)(xi − ξi)
, ξi ∈ (xi−1, xi).

3.14 This is a special case of problem 3.13.

3.15 Trivial

3.16 Hint: Use Taylor expansion of f about x = x1+x2

2
.

Chapter 4. Exercise Section 4.3

4.2

LU =




1 0 0

2 1 0

−2 0 1







1 3 2

0 −1 3

0 0 5


 .
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4.3

x =


 0

−1


 .

4.4

LDU =




1 0 0

0 1 0

3 −4 1







1 0 0

0 1 0

0 0 14







1 1 −3

0 1 1

0 0 1


 .

4.7 The exact solution is (1/15,−11/15) = (0.066666,−0.733333).

(a) (u3
1, u

3
2) = (5/64,−47/64), ρ(J) = 1/4 and ||e3||∞ = 0.011.

(b) (u3
1, u

3
2) = (0.0673828,−0.7331543), ρ(G) = 1/16 and

||e3||∞ = 7 × 10−4.

(c) (u3
1, u

3
2) = (0.066789,−0.733317), ρ(ω0) = 0.017 and

||e3||∞ = 1 × 10−4.

Chapter 5. Exercise Section 5.5

5.1 c) sin πx, x ln x and x(1−x) are test functions of this problem. x2 and
ex − 1 are not test functions.

5.3 a) U is the solution for

AU = f ⇐⇒ 1/h




2 −1 0

−1 2 −1

0 −1 2







U1

U2

U3


 = h




1

1

1




with h = 1/4.

b) A is invertible, therefore U is unique.

5.6 a) ξ is the solution for

2


 2 −1

−1 2





 ξ1

ξ2


 =


 0

7



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b) (ξ1, ξ2) = 7(1/2, 1) and U(x) = 7x (same as the exact solution).

5.7 a) ξ is the solution for

Aξ = f ⇐⇒ 1/h




2 −1 0

−1 2 −1

0 −1 2







ξ0

ξ1

ξ2


 =




−5

0

0




with h = 1/3. That is: (ξ0, ξ1, ξ2) = −1
3
(15, 10, 5).

b) U(x) = 5x − 5 (same as the exact solution).

5.8 a) No solution!

b) Trying to get a finite element approximation ends up with the matrix
equation

Aξ = f ⇐⇒




2 −2 0

−2 4 −2

0 −2 2







ξ0

ξ1

ξ2


 =




1

2

1




where the coefficient matrix is singular (detA = 0). There is no finite
element solution.

5.9 d) ||U ||2E = ξT Aξ (check spectral theorem, linear algebra!)

5.10 For an M + 1 partition (here M = 2) we get aii = 2/h, ai,i+1 = −1/h
except aM+1,M+1 = 1/h − 1, bi = 0, i = 1, . . . ,M and bM+1 = −1:

a) U = (0, 1/2, 1, 3/2).

b) e.g, U3 = U(1) → 1, as k → ∞.

5.11 c) Set α = 2 and β = 3 in the general FEM solution:

ξ = α
3
(−1, 1, 1)T + β(0, 0, 2)T :




ξ1

ξ2

ξ3


 = 2/3




−1

1

1


 + 3




0

0

2


 .
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5.12

3


 2 −1

−1 2





 ξ1

ξ2


 +

1

18


 4 1

1 4





 ξ1

ξ2


 =

1

3


 1

1




⇐⇒ (MATLAB) ξ1 = ξ2 = 0.102.

5.13 Just follow the procedure in the theory.

5.15 a priori: ||e||E ≤ ||u − πhu||E.

a posteriori: ||e||E ≤ Ci||hR(U)||L2(I).

5.16 a) ||e′||a ≤ Ci||h(aU ′)′||1/a.

b) The matrix equation:




1 −1 0 0

−1 2 −1 0

0 −1 3 −2

0 0 2 4







ξ0

ξ1

ξ2

ξ3




=




−3

0

0

0




,

which yields the approximate solution U = −3(1/2, 1, 2, 3)T .

c) Since a is constant and U is linear on each subinterval we have that

(aU ′)′ = a′U ′ + aU ′′ = 0.

By the a posteriori error estimate we have that ||e′||a = 0, i.e. e′ = 0.
Combining with the fact that e(x) is continuous and e(1) = 0, we get
that e ≡ 0, which means that the finite, in this case, coincides with the
exact solution.

5.17 a priori: ||e||H1 ≤ Ci

(
||hu′′|| + ||h2u′′||

)
.

a posteriori: ||e||H1 ≤ Ci||hR(U)||L2(I).

5.18 a) a priori: ||e||E ≤ ||u − v||h(1 + c), and a posteriori: ||e||E ≤
Ci||hR(U)||L2(I).

b) Since c ≥ 0, the a priori error estimate in a) yields optimality for
c ≡ 0, i.e. in the case of no convection (does this tell anything to you?).
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5.19 a priori: ||e||H1 ≤ Ci

(
||hu′′||+4||h2u′′||

)
, a posteriori estimate is similar

(see [5.17]).

Chapter 6. Exercise Section 6.6

6.3 a) aij = j
j+i

− 1
j+i+1

, bi = 1
i+1

, i, j = 1, 2, . . . ,

b) q = 1 : U(t) = 1 + 3t. q = 2 : U(t) = 1 + 8
11

t + 10
11

t2.

6.5 a) u(t) = e−4t + 1
32

(8t2 − 4t + 1).

b) u(t) = e
1

2
t2 − t +

√
π√
2
e

1

2
t2erf( t√

2
), erf(x) = 2√

π

∫ x

0
e−y2

dy.

6.6 a) Ui(xi) =
[(x3

i−x3
i−1

)/3]−Ui(xi−1)·(2(xi−xi−1)−1)

1+2(xi−xi−1)

6.9 a)

Explicit Euler: Un = −3Un−1, U0 = 1.

Implicit Euler Un = 1
5
Un−1, U0 = 1.

Crank-Nicolson: Un = 1
3
Un−1, U0 = 1.

b)

Explicit Euler: |Un| =
√

1 + 0.01|Un−1| =⇒ |Un| ≥ |Un−1|.
Implicit Euler: |Un| = 1√

1+0.01
|Un−1| =⇒ |Un| ≤ |Un−1|.

Crank-Nicolson: |Un| = |1−0.2i/2
1+0.2i/2

||Un−1| = |Un−1|.

Chapter 7. Exercise Section 7.1.4

7.9 ||e|| ≤ ||h2uxx||

Chapter 7. Exercise Section 7.2.3

7.15

u(x, t) =





1
2
(u0(x + 2t) + u0(x − 2t)), x ≥ 2t

1
2
(u0(2t + x) + u0(2t − x)), x < 2t
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7.18 a) u(x, t) = 1
2
[u0(x + ct) + u0(ct − x)] + 1

2c

( ∫ x+ct

0
v0 +

∫ ct−x

0
v0

)
.

b) u(x, t) = 1
2c

∫ t

0
2c(t − s) ds = t2/2.

Chapter 7. Exercise Section 7.3.3

7.21 a priori: ||e||H1 ≤ Ci

(
||hu′′|| + ||h2u′′||

)
.

a posteriori: ||e||H1 ≤ Ci||hR(U)||.

7.22 a priori: ||e||E ≤ Ci

(
||hu′′|| + ||h2u′′||

)
.

a posteriori: ||e||E ≤ Ci||hR(U)||.

Chapter 8.

8.3 No! There are no other rotation invariant solutions.

8.4 ρK ≤ τKhK

2
.

8.6 b) No!

8.8

λ1(x) = 1 − D−1(v3 − v2)t
[ 0 −1

1 0

]
(x − v1),

where D = (v2
1 − v1

1)(v
2
2 − v1

2) − (v3
1 − v1

1)(v
3
2 − v1

2).

Chapter 9. Riesz and Lax-Milgram Theorems

9.3 (I) and (II) α > 0 and f ∈ L2(0, 1). (III) f ∈ L2(0, 1).
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Chapter 10. Poisson equation

10.8

A =




4 −1 0 0

−1 4 −1 0

0 −1 4 −1

0 0 −1 2




b =
1

8




2

2

2

1




.

10.9

A =


 6 −1

−1 3


 b =


 1

1/2


 .

10.10

A =




5 −2 0 0

−2 5 −2 0

0 −2 5 −2

0 0 −2 5/2




b =
1

16




2

2

2

1




.

10.11

M =
h2

12




8 1 1 1

1 4 0 1

1 0 4 1

1 1 1 8




, S =




4 −1 −1 0

−1 4 0 −1

−1 0 4 −1

0 −1 −1 4




.

Chapter 11. Initial boundary value problems

11.4 b)

‖w(T )‖2 + 2

∫ T

0

‖∇w‖2 dt ≤ ‖ε‖2.

11.7 c) 1/
√

λ1.

11.14 v = 1
4π

cos(r)
r

and the corresponding solution u = eit 1
4π

cos(r)
r

.
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Chapter 12

Algorithms and MATLAB
Codes

To streamline the computational aspects, we have gathered suggestions for
some algorithms and Matlab codes that can be used in implementations.
These are simple specific Matlab codes on the concepts such as

• The L2-projection.

• Numerical integration rules: Midpoint, Trapezoidal, Simpson.

• Finite difference Methods: Forward Euler, Backward Euler, Crank-Nicolson.

• Matrices/vectors: Stiffness- Mass-, and Convection Matrices. Load vector.

The Matlab codes are not optimized for speed, but rather intended to be easy to
read.

285
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An algorithm for L2-projection:

1. Choose a partition Th of the interval I into N sub-intervals, N +1 nodes,
and define the corresponding space of piece-wise linear functions Vh.

2. Compute the (N + 1) × (N + 1) mass matrix M and the (N + 1) × 1
load vector b, viz

mij =

∫

I
ϕjϕi dx, bi =

∫

I
fϕi dx.

3. Solve the linear system of equations

Mξ = b.

4. Set

Phf =

N∑

j=0

ξjϕj .

Below are two versions of Matlab codes for computing the mass matrix M:

function M = MassMatrix(p, phi0, phiN)

%-------------------------------------------------- ------------------
% Syntax: M = MassMatrix(p, phi0, phiN)
% Purpose: To compute mass matrix M of partition p of an interv al
% Data: p - vector containing nodes in the partition
% phi0 - if 1: include basis function at the left endpoint
% if 0: do not include a basis function
% phiN - if 1: include basis function at the right endpoint
% if 0: do not include a basis function
%-------------------------------------------------- ------------------

N = length(p); % number of rows and columns in M
M = zeros(N, N); % initiate the matrix M
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% Assemble the full matrix (including basis functions at end points)
for i = 1:length(p)-1

h = p(i + 1) - p(i); % length of the current interval
M(i, i) = M(i, i) + h/3;
M(i, i + 1) = M(i, i + 1) + h/6;
M(i + 1, i) = M(i + 1, i) + h/6;
M(i + 1, i + 1) = M(i + 1, i + 1) + h/3;

end

% Remove unnecessary elements for basis functions not inclu ded
if ˜phi0

M = M(2:end, 2:end);
end
if ˜phiN

M = M(1:end-1, 1:end-1);
end

A Matlab code to compute the mass matrix M for a non-uniform mesh:

Since now the mesh is not uniform (the sub-intervals have different lengths), we
compute the mass matrix assembling the local mass matrix computation for each
sub-interval. To this end we can easily compute the mass matrix for the standard

interval I1 = [0, h] with the basis functions ϕ0 = (h − x)/h and ϕ1 = x/h: Then,

1

x0 = 0 x1 = h
x

ϕ0(x) ϕ1(x)

Figure 12.1: Standard basis functions ϕ0 = (h − x)/h and ϕ1 = x/h.
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the standard mass matrix is given by

M I1 =




∫
I1

ϕ0ϕ0

∫
I1

ϕ0ϕ1
∫
I1

ϕ1ϕ0

∫
I1

ϕ1ϕ1


 .

Inserting for ϕ0 = (h − x)/h and ϕ1 = x/h we compute M I1 as

M I1




∫ h
0 (h − x)2/h2 dx

∫ h
0 (h − x)x/h2 dx

∫ h
0 x(h − x)/h2 dx

∫ h
0 x2/h2 dx


 =

h

6


 2 1

1 2


 . (12.0.1)

Thus, for an arbitrary sub-interval Ik := [xk−1, xk] with the mesh size hk, and
basis functions ϕk and ϕk−1 (see Fig. 3.4.), the local mass matrix is given by

M Ik =




∫
Ik

ϕk−1ϕk−1

∫
Ik

ϕk−1ϕk
∫
Ik

ϕkϕk−1

∫
Ik

ϕk1ϕk


 =

hk

6


 2 1

1 2


 (12.0.2)

where hk is the length of the interval Ik. Note that, assembling, the diagonal
elements in the Global mass matrix will be multiplied by 2 (see Example 4.1).
These elements are corresponding to the interior nodes and are the result of adding
their contribution for the intervals in their left and right. The assembling is through
the following Matlab routine:

A Matlab routine to compute the load vector b:

To solve the problem of the L2-projection, it remains to compute/assemble the
load vector b. To this end we note that b depends on the unknown function f ,
and therefore will be computed by some of numerical integration rules (midpoint,
trapezoidal, Simpson or general quadrature). Below we shall introduce Matlab
routines for these numerical integration methods.

function b = LoadVector(f, p, phi0, phiN)

%-------------------------------------------------- ------------------
% Syntax: b = LoadVector(f, p, phi0, phiN)
% Purpose: To compute load vector b of load f over partition p
% of an interval
% Data: f - right hand side funcion of one variable
% p - vector containing nodes in the partition
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% phi0 - if 1: include basis function at the left endpoint
% if 0: do not include a basis function
% phiN - if 1: include basis function at the right endpoint
% if 0: do not include a basis function
%-------------------------------------------------- ------------------

N = length(p); % number of rows in b
b = zeros(N, 1); % initiate the matrix S

% Assemble the load vector (including basis functions at bot h endpoints)
for i = 1:length(p)-1

h = p(i + 1) - p(i); % length of the current interval
b(i) = b(i) + .5 * h* f(p(i));
b(i + 1) = b(i + 1) + .5 * h* f(p(i + 1));

end

% Remove unnecessary elements for basis functions not inclu ded
if ˜phi0

b = b(2:end);
end
if ˜phiN

b = b(1:end-1);
end

The data function f can be either inserted as f=@(x) followed by some expression
in the variable x , or more systematically through a separate routine, here called
“Myfunction” as in the following example

Example 12.1 (Calling a data function f(x) = x2 of the load vector).
function y= Myfunction (p)

y=x.ˆ2

\vskip 0.3cm
Then, we assemble the corresponding load vector, viz:

\begin{verbatim}
b = LoadVector (@Myfunction, p, 1, 1)
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Alternatively we may write

f=@(x)x.ˆ2
b = LoadVector(f, p, 1, 1)

Now we are prepared to write a Matlab routine “My1DL2Projection” for computing

the L2-projection.
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Matlab routine to compute the L2-projection:

function pf = L2Projection(p, f)

M = MassMatrix(p, 1, 1); % assemble mass matrix
b = LoadVector(f, p, 1, 1); % assemle load vector
pf = M\b; % solve linear system
plot(p, pf) % plot the L2-projection

The above routine for assembling the load vector uses the Composite trapezoidal

rule of numerical integration. Below we gather examples of the numerical integra-
tion routines:

A Matlab routine for the composite midpoint rule

function M = midpoint(f,a,b,N)

h=(b-a)/N
x=a+h/2:h:b-h/2;
M=0;
for i=1:N

M = M + f(x(i));
end
M=h* M;

A Matlab routine for the composite trapezoidal rule

function T=trapezoid(f,a,b,N)

h=(b-a)/N;
x=a:h:b;

T = f(a);
for k=2:N

T = T + 2* f(x(k));
end
T = T + f(b);
T = T * h/2;



292 CHAPTER 12. ALGORITHMS AND MATLAB CODES

A Matlab routine for the composite Simpson’s rule

function S = simpson(a,b,N,f)

h=(b-a)/(2 * N);
x = a:h:b;
p = 0;
q = 0;

for i = 2:2:2 * N % Define the terms to be multiplied by 4
p = p + f(x(i));

end

for i = 3:2:2 * N-1 % Define the terms to be multiplied by 2
q = q + f(x(i));

end

S = (h/3) * (f(a) + 2 * q + 4* p + f(b)); % Calculate final output

The precomputations for standard and local stiffness and convection matrices:

SI1 =




∫
I1

ϕ′
0ϕ

′
0

∫
I1

ϕ′
0ϕ

′
1

∫
I1

ϕ′
1ϕ

′
0

∫
I1

ϕ1′ϕ′
1


 =




∫
I1

−1
h

−1
h

∫
I1

−1
h

1
h∫

I1
1
h
−1
h

∫
I1

1
h

1
h


 =

1

h


 1 −1

−1 1


 .

As in the assembling of the mass-matrix, even here, for the global stiffness matrix,
each interior node has contributions from both intervals that the node belongs.
Consequently, assembling we have 2/h as the interior diagonal elements in the
stiffness matrix (rather than 1/h in the single interval computes above). For the
convection matrix C, however, because of the skew-symmetry the contributions
from the two adjacent interior intervals will cancel out:

CI1 =




∫
I1

ϕ′
0ϕ0

∫
I1

ϕ0ϕ
′
1

∫
I1

ϕ1ϕ
′
0

∫
I1

ϕ1′ϕ1


 =




∫
I1

−1
h

h−x
h

∫
I1

h−x
h

1
h∫

I1
x
h
−1
h

∫
I1

x
h

1
h




=
1

2


 −1 1

−1 1


 .

A thorough computation of all matrix elements, for both interior and bound-
ary nodes, in the case of continuous piece-wise linear approximation, for Mass-,
stiffness- and convection-matrices are demonstrated in Examples 4.1 and 4.2.
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A Matlab routine assembling the stiffness matrix:

function S = StiffnessMatrix(p, phi0, phiN)

%-------------------------------------------------- -------------------
% Syntax: S = StiffnessMatrix(p, phi0, phiN)
% Purpose: To compute the stiffness matrix S of a partition p o f an
% interval
% Data: p - vector containing nodes in the partition
% phi0 - if 1: include basis function at the left endpoint
% if 0: do not include a basis function
% phiN - if 1: include basis function at the right endpoint
% if 0: do not include a basis function
%-------------------------------------------------- -------------------

N = length(p); % number of rows and columns in S
S = zeros(N, N); % initiate the matrix S

% Assemble the full matrix (including basis functions at end points)
for i = 1:length(p)-1

h = p(i + 1) - p(i); % length of the current interval
S(i, i) = S(i, i) + 1/h;
S(i, i + 1) = S(i, i + 1) - 1/h;
S(i + 1, i) = S(i + 1, i) - 1/h;
S(i + 1, i + 1) = S(i + 1, i + 1) + 1/h;

end

% Remove unnecessary elements for basis functions not inclu ded
if ˜phi0

S = S(2:end, 2:end);
end
if ˜phiN

S = S(1:end-1, 1:end-1);
end
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A Matlab routine to assemble the convection matrix:

function C = ConvectionMatrix(p, phi0, phiN)

%-------------------------------------------------- ------------------------
% Syntax: C = ConvectionMatrix(p, phi0, phiN)
% Purpose: To compute the convection matrix C of a partition p of an
% interval
% Data: p - vector containing nodes in the partition
% phi0 - if 1: include a basis function at the left endpoint
% if 0: do not include a basis function
% phiN - if 1: include a basis function at the right endpoint
% if 0: do not include a basis function
%-------------------------------------------------- ------------------------

N = length(p); % number of rows and columns in C
C = zeros(N, N); % initiate the matrix C

% Assemble the full matrix (including basis functions at bot h endpoints)
for i = 1:length(p)-1

C(i, i) = C(i, i) - 1/2;
C(i, i + 1) = C(i, i + 1) + 1/2;
C(i + 1, i) = C(i + 1, i) - 1/2;
C(i + 1, i + 1) = C(i + 1, i + 1) + 1/2;

end

% Remove unnecessary elementC for basis functions not inclu ded
if ˜phi0

C = C(2:end, 2:end);
end
if ˜phiN

C = C(1:end-1, 1:end-1);
end
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Finally, below we gather the Matlab routines for finite difference approximations
(also cG(1) and dG(0) ) for the time discretizations.

Matlab routine for Forward-, Backward-Euler and Crank-Nicolson:

function [] = three_methods(u0, T, dt, a, f, exactexists, u)

% Solves the equation du/dt + a(t) * u = f(t)
% u0: initial value; T: final time; dt: time step size
% exactexists = 1 <=> exact solution is known
% exactexists = 0 <=> exact solution is unknown

timevector = [0]; % we build up a vector of
% the discrete time levels

U_explicit_E = [u0]; % vector which will contain the
% solution obtained using "Forward Euler"

U_implicit_E = [u0]; % vector which will contain the
% solution with "Backward Euler"

U_CN = [u0]; % vector which will contain the
% solution using "Crank-Nicolson"

n = 1; % current time interval

t_l = 0; % left end point of the current
% time interval, i.e. t_{n-1}

while t_l < T

t_r = n * dt; % right end point of the current
% time interval, i.e. t_{n}

% Forward Euler:
U_v = U_explicit_E(n); % U_v = U_{n-1}
U_h = (1-dt * a(t_l)) * U_v+dt * f(t_l); % U_h = U_{n};
U_explicit_E(n+1) = U_h;
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% Backward Euler:
U_v = U_implicit_E(n); % U_v = U_{n-1}
U_h = (U_v + dt * f(t_r))/(1 + dt * a(t_r)); % U_h = U_{n}
U_implicit_E(n+1) = U_h;

% Crank-Nicolson:
U_v = U_CN(n); % U_v = U_{n-1}
U_h = ((1 - dt/2 * a(t_l)) * U_v + dt/2 * (f(t_l)+f(t_r))) ...

/ (1 + dt/2 * a(t_r)); % U_h = U_{n}
U_CN(n+1) = U_h;

timevector(n+1) = t_r;
t_l = t_r; % right end-point in the current time interval

% becomes the left end-point in the next time interval.

n = n + 1;

end

% plot (real part (in case the solutions become complex))

figure(1)

plot(timevector, real(U_explicit_E), ’:’)
hold on
plot(timevector, real(U_implicit_E), ’--’)
plot(timevector, real(U_CN), ’-.’)

if (exactexists)
% if known, plot also the exact solution

u_exact = u(timevector);
plot(timevector, real(u_exact), ’g’)

end

xlabel(’t’)
legend(’Explicit Euler’, ’Implicit Euler’, ’Crank-Nicol son’, 0)
hold off
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if (exactexists)

% if the exact solution is known, then plot the error:
figure(2)

plot(timevector, real(u_exact - U_explicit_E), ’:’)
hold on
plot(timevector, real(u_exact - U_implicit_E), ’--’)
plot(timevector, real(u_exact - U_CN), ’-.’)
legend(’Explicit Euler’, ’Implicit Euler’, ’Crank-Nicol son’, 0)
title(’Error’)
xlabel(’t’)
hold off

end

return

Example 12.2. Solving u′(t) + u(t) = 0 with three_methods

a= @(t) 1;
f= @(t) 0;
u= @(t) exp(-t)
u_0=1;
T= 1;
dt=0.01;
three_methods (u_0, T, dt, a, f, 1, u)
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Table of Symbols

Symbol reads Exempel/Definition

∀ for all, for every ∀x, cos2 x + sin2 x = 1

∃ There exists There exists x ∈ R such that x + 1 > 4 (example x ∈ R and x > 3)

: such that ∃x : x > 3

∨ or x ∨ y (x or y)

∧ or & and x ∧ y (x and y) also x & y

∈ belongs
√

2 ∈ R (
√

2 is a real numbers R)

/∈ not belongs
√

2 /∈ Q (
√

2 is not a rational number )

⊥ orthogonal to u ⊥ v (u and v are orthogonal)

:= defines as I :=

∫ b

a

f(x) dx (I defines as integralen in RHS)

=: defines

∫ b

a

f(x) dx =: I (The integral in LHS defines I)

≈ approximates A ≈ B (A approximates B) or A is approximately equal to B.

=⇒ implies A =⇒ B (A implies B.)

⇐⇒ equivalent A ⇐⇒ B (A is equivalent to B.)

ODE Ordinary Differential Equation

PDE Partial Differential Equation

IVP Initial Value Problem

BVP Boundart Value Problem

VF Variational Formulation

MP Minimization Problem

Pq(I) p ∈ Pq(I) p(x) is a polynomial of degree ≤ q for x ∈ I.

H1(I) v ∈ H1(I) if

∫ b

a

(
v(x)2 + v′(x)2

)
dx < ∞, I = [a, b].

Vh(I) v ∈ Vh(I) the space of piecewise linear functions on a partition of I.

V 0
h (I) v ∈ V 0

h (I) v ∈ Vh(I) and v is 0 at both or one of the boundary points.
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Symbol reads Exempel/Definition

||f ||p, ||f ||Lp(I) Lp-norm of f on I ||f ||p :=





(∫

I

|f(x)|p dx
)1/p

, 1 ≤ p < ∞

maxx∈I |f(x)|, p = ∞

Lp(I) Lp-space f ∈ Lp(I) iff ||f ||p < ∞

||v||a weighted L2-norm ||v||a :=
( ∫

I

a(x)|v(x)|2 dx
)1/2

, a(x) > 0

||v||E the energy norm ||v||E :=
( ∫

I

a(x)|v(x)′|2 dx
)1/2

, ||v||E = ||v′||a.

∏
product

N∏

i=1

i = 1 · 2 · 3 · . . . · N =: N !

∑
sum

N∑

i=1

i = 1 + 2 + 3 + . . . + N =: N(N + 1)/2

(u, v) or 〈u, v〉 skalar/inner product
(u, v) := u1v1 + u2v2 + . . . + uNvN , u, v ∈ RN

(u, v) :=

∫

I

u(x)v(x) dx for u, v ∈ L2(I).

Phf L2-projection (f, w) = (Phf, w), ∀w ∈ Pq(a, b).

Th(I) a partition of I Th[a, b] : a = x0 < x1 < . . . < xN = b.

πhf interpolant of f πhf(xi) = f(xi) in a partition Th of I = [a, b].

FDM Finite Difference Method

FE Forward Euler Forward Euler FDM

BE Backward Euler Backward Euler FDM ⇐⇒ dG(0)

CN Crank-Nicolson Crank-Nicolson FDM ⇐⇒ cG(1)

FEM Finite Element Metthod/Galerkin Method

cG(1) continuous Galerkin continuous, piecewise linear Galerkin approx

dG(0) discont. Galerkin discontinuous, piecewise constant Galerkin

cG(1)cG(1) continuous Galerkin space time continuous, piecewise linear Galerkin

Ci Interpolation Constant

Cs Stability constant

TOL Error TOLerance



Index

A

Adaptivity 125, 157, 190, 249

B

boundary condition 12-13, 18, 21, 22,

25, 26, 51, 55, 56, 116-118, 174,

176, 197, 219, 223, 244, 270

Dirichlet 14, 36, 50, 118, 126, 181,

191, 215

essential 118,

mixed 116, 175, 255,

natural 118,

Neumann 14, 36, 118, 191, 261

Robin 14, 118, 195, 273.

Boundary value problem 12, 17, 36, 41,

57, 59, 111, 114, 119, 126, 141,

203, 215, 218, 227, 257,

Two point bvp 25, 55, 111, 117

C

Cauchy-Schwarz 43, 49, 121, 124, 176,

177, 236, 237, 238

Conservation of energy 24-27, 194-195,

199, 269, 273

Convection 26, 126, 133-134, 195,

201, 202, 204, 206, 207, -129

Convection-diffusion 34, 126, 131, 173,

201, 202, 203, 208, 237,

Convection matrix 133, 292, 294

Crank-Nicolson 148, 170, 183, 272, 285,

295, 296, 297, 304

D

differential equation 7-13, 16, 18, 20,

21, 22, 23, 25, 35, 56, 58, 73,

73, 89, 117, 118, 146, 176, 179,

305
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180, 195, 214, 215, 218, 236,

ordinary differential equation 7-9, 14,

18, 35, 141

partial differential equation 7, 8, 12,

17, 18, 23, 36, 174,

linear 20-22,

nonlinear 19,

quasilinear 19,

differential operator 9, 19, 20, 23,

89, 195

linear 9,

Diffusion 9, 11, 26, 28, 131, 195,

201, 206, 258,

E

Error estimates 7, 63, 65, 72, 86, 120,

151, 154, 161, 162, 166, 173,

191, 221, 223, 245, 257,

a posteriori 7, 111, 120,

123, 125, 139, 140, 148,

169, 186, 187, 190, 243, 250-251

a priori 7, 111, 120, 122, 148,

149, 158, 159, 160, 171, 193,

246-250, 254, 264, 272, 273

Interpolation error 72, 73, 86, 151,

221, 225,

Error representation formula 150, 151,

154-156, 163, 165, 163, 165

Euler scheme 147,

Existence 7, 15, 18, 231, 236, 237

F

Finite dimensional spaces 8, 38, 45, 50,

70, 89, 119, 126, 245, 254,

Finite Element Method 7, 18, 35, 38,

41, 45, 51, 89, 119, 136, 137, 139

141, 143, 181, 185, 197, 203,

217, 243, 245, 257, 262,

Continuous Galerkin 119, 126, 144

146, 218,

Disontinuous Galerkin 144, 146, 183,

186, 201,

Fundamental solution 16, 258

G

Galerkin Method IVP 144, 146, 171
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Galerkin Method BVP 49, 218,, 102

Galerkin Method IBVP 181

Gauss elimination 90, 92, 94, 96, 99

Gauss quadrature 58, 80, 81, 82

Gauss-Seidel 58, 101-104, 106-108,

H

hat function 41, 60, 66, 113, 119,

126, 127, 132, 181, 217,

half hat function 66, 117,

Heat equation 10-12, 23-26, 28, 36,

49, 55, 126, 173-175, 178-179

181, 186, 257-259, 264

I

Interpolation

Lagrange interpolation 67-75

83, 191,

linear interpolation 61-65, 84,

221

polynomial interpolation 38,

Initial Boundary Value Problem (IBVP)

36, 141, 173, 175, 178, 194,

257, 258, 268,

Initial value problem 11, 34, 35, 44, 57,

141, 144, 148, 168, 196,

J, K

Jacobi method 99, 100, 103

L

Lagrange basis 38-40, 64, 68-71, 82

Linear equation system 13, 100,

linear space 38, 42, 231

L2-projection 47-48, 51, 150, 162, 285,

M

Mass Matrix 129, 130, 183-185,

219, 263, 286-288

positive definite 57, 97, 228, 263

Minimization problem 111, 114-115, 135,

Mixed bvp 116,

N

Neumann problem/data 240, 244,

Numerical integration 7, 61, 73, 285,

288, 291
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Composite midpoint 58, 77, 79, 291

Composite trapezoidal 77, 80, 291

Composite Simpson’s 78, 79, 80, 292

Simple midpoint 74, 79,

Simple trapezoidal 74, 79,

Simple Simpson’s 75, 80,

Norm 43

L2-norm 43, 49, 63, 120, 125, 176,

246, 259, 260

Lp-norm 63, 65, 120, 221

vector norm 63

maximum norm 63, 65, 98, 101, 120,

221

energy norm 120, 121, 123, 229, 259,

272

weighted norm 120, 122

O

Ordinary Differential Equations

(ODE) 7-9, 18, 35 , 141

Orthogonality 43, 45, 151, 153-154

Order of a differential equation

8, 13, 18

P

Partial Differential Equations

(PDE) 7-8, 17, 18, 20, 23, 36, 174

elliptic 10-11,

homogeneous 8, 20-22, 25, 175, 179

hyperbolic 10-11,

inhomogeneous 8-9, 21, 24, 26, 32,

50, 55-56, 126

Laplace 9, 12, 24, 29, 257,

parabolic 10-11,

Poisson equation 23, 111, 190, 236,

243

potential equation 10-11,

Tricomi equation 10,

partition 37, 40, 47, 50, 66, 67, 73, 76

119, 127, 131, 145, 181, 197

214, 286

Poincare inequality 175, 177, 192, 211,
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232

Q

R

Residual 44-45, 120, 123, 146, 155, 187,

S

Scalar initial value problem, 141,

Scalar product 42-43, 62-63, 229-231,

S.O.R. 104

stability 15, 19, 142, 173, 178, 205, 243,

259,

stability estimate 173, 175, 180, 189,

stability factor 150, 160, 164, 168,

strong stability 250, 251,

weak stability 244,

Stiffness matrix, 52-54, 56, 128, 133,

183, 219-220, 263, 271, 292

Streamline-Diffusion 201, 206,

Superposition 19, 21-22.

T

Taylor expansion 64, 66, 71, 72

test function 16, 44-46, 50, 112, 118,

127, 131-132, 144, 206,

trial function 45, 50, 119, 126, 131, 146,

U

V/W

Variational formulation 44, 50, 112,

181, 196, 211, 219, 227, 245, 262,

wave equation 10, 12, 23, 29, 32,

194-196, 269, 271, 272,

Well-posed problem 18-19,

XYZ


