Chapter 9. Scalar Initial Value Problem. (IVP)

Consider following (ODE)

(DE) { u(t) +a(t)u(t) = f(t), 0<t<T

(IV) u(0) = ug
. . du
where f(t) is the source term and 4(t) = e

Here a(t) is bounded and a(t) > 0 = a parabolic problem,
while a(t) > 0 = a dissipative problem.
Fundamental solution

¢

Let A(t) = / a(s)ds, (i.e. A(t) is the primitive function of a(t), with A(0) = 0),
0

then

t
(1) u(t) = ug - e 4® 4 / e~(AO=4) £ (5)ds.
0

Proof: The integrating factor is elo a(s)ds — ¢AM_ Multiplying the (DE) by e4®
and using a(t) = A(t), we get

d

u(t)e® + A()eOu(t) = eAD f(t), e pr

(u(t)e) = 1O f(t),

which integrating over (0, %) gives that

t t ¢
/ dii(u(s)ef‘@))ds _ / A f(8)ds = u(£)eAD — u(0)eA® = / eAO) £ (s)ds.
0 0 0
Now since A(0) = 0 and u(0) = uy we get
t
u(t) = ug - e A0 4 / e AD-AG) £(5)ds.
0

and the proof is complete.



Stability estimates
Using the fundamental solution we can derive the following stability estimates:

1
: —at - _ ,—at
(i) If a(t) > a > 0, then |u(t)| < e “|ug| + a(l e )gglsa%(t |f(s)|

(ii) If a(t) > 0 (i.e. @ = 0 the parabolic case), then
¢
)] < fuol + [ 1(5)ds or [u(t)] < uo] + 11,
0
Proof:

t
(i) For a(t) > 0, V¢t > 0, we have that A(t) = / a(s)ds is non-decreasing and
0
A(t) — A(s) > 0, Vt > s.

t ¢
Since a(t) > « > 0 we have A(t) = / a(s)ds > / a - ds = at. Further
0 0

Thus e 4®) < e~ot and e (A1) -A)) < g—alt=s),
Hence using (1), we get

(2) u(t) <ug-e”™ +/ e~ max |f(s)|ds,

0 0<s<t

which after integration gives that

1 s=t
< oot [_ —a(t—s):|
[u(t)] < €™ Juo| + max [f(s)]] e .

1
< o~ - _ ,—at
lu(t)| <e |u0|—|—a(1 e )52?§|f(3)| O

t

(ii) Let @« = 01in (2) then |u(t)| < |uo| +/ | f(s)|ds, and the proof is complete.
0

g

Remark: Recall that we refer to the set of functions where we seek the ap-
proximate solution as the trial space and the space of functions used for the
orthogonality condition, as the test space.



9.2. Galerkin finite element methods (FEM) for IVP
c¢G(1) Continuous Galerkin of degree 1:

In this case the trial functions are piecewise linear and continuous while the
test functions are piecewise constant and discontinuous, i.e. the trial and test
functions are in different spaces.

Note, e.g. the variational formulation: Find a function u in an appropriate space
of trial functions that satisfies

1 1
/ au'v'dr = / fvdzx for all appropriate test functions v.
0 0

dG(0) Discontinuous Galerkin of degree 0:

Here both the trial and test functions are piecewise constant and discontinuous
(they are in the same space of functions).

gG(q) Global Galerkin of degree g:

This method is formulated as follows: Find U € P%(0,T),U(0) = ug, such that
/T(U + al)vdt = /T fodt, Vv e PY0,T), with v(0) =0,
0 0
where v := {t,12,...,t9}.
cG(q) Continuous Galerkin of degree g:
Find U € P%(0,T),U(0) = uy, such that
T T

/0 (U + aU)vdt = /0 fodt, Vv e PTH0,T),
where now v := {1,¢,#%,...,t9 1}
Note the difference between the two test function spaces above.

Example: Consider cG(q) with ¢ = 1 then ¢! = ¢ = 1 and v = 1, thus we
have

(3) /0 N+ )t = /0 O+ alydt = U(T) - U(0) + /0 " Uyt

But U(t) is a linear function through U(0) and the unknown quantity U(T), thus

(4) U(t) = UL+ U0,



inserting U (¢) in (3) we have

(5) U(T) — U(0) + /OTa(U(T)% + U(@%) dt = /OT fdt.

which gives us U(T) and consequently, through (4) and assuming U(0) is given,
U(t). Using this idea we can formulate:

The c¢G(1) Algorithm for the partition 7y of [0, T'] to subintervals I = (tx_1, tx)-

(1) Given U(0) = Uy, apply (5) to (0,t;] and compute U(t;).
Then authomatically get U(t),Vt € [0,¢1] (see (4)).

(2) Assume that U is computed in all the successive intervals (tx_1,%], k£ =
0,1,n—1.
(3) Compute U(t),t € (tn_1,tn)-

This is done through applying (5) to the interval (¢,_1, t,], instead of (0, T:
le.

l— tnfl
tn - tn—l

bty —t

tn - tn—l

Ultn)—U(tn_1)+ / ; a( Ult,)+ U(tn_l))dt: / "t

Now since U (t,—1) is known, we can calculate U(t,) and U(t),t € (tn—1,ts]
is determined by the n-version of the linear combination formula (4):

Ut) = U(tn)ti + U(tn_l)t"t_ t,

n n

In sequel we shall use the notation U(t,) = Uy, U(tp_1) = Un_1, - ...

Global forms

Continuous Galerkin c¢G(q): Find U(t) € V}C(q), such that U(0) = U, and
tn tn
/ (U + al)wdt = / fwdt,  Ywe WY,
0 0

Vk(q) = {v :v continuous piecewise polynomials of degree ¢ on the partition 7},

W,c(qfl) = {w : w discontinuous piecewise polynomials of degree ¢ — 1 on 7}.

4



Discontinuous Galerkin dG(q): Find U(t) € P4(0,T) such that
T T
/ (U7 + al)wdt + a(U(0) — u(0))(0) = / fodt, Vv € PU(0,T).
0 0

This approach gives up the requirement that U(t) satisfies the initial condition.
Instead, the intial condition is represented by (U(0) — u(0)) with U(0) # u(0).

Notation: Let v*n = lim and [v,] = v} — v is the “jump” in v(t) at time ¢.

n_

s—0t
y
+
Vi
"
Vo
<--- kn rrrrrrrr >
: t
th th th+l

dG(q): Forn=1,...,N find U(t) € P%(t,_1,t,) such that

tn . tn
(6) / (U + aU)vdt + U, v}, = / fodt+ U, vt |, Yv € Pty 1,t,).
tn—1 tn

-1
Let ¢ = 0, in the case of approximating with piecewise constants v = 1 is the
only base function and we have U(t) = U, = U, = U, on I, = (t,, 1, t,], where
U,=U(ty), ... and U = 0.

Thus (6) gives the dG(0) formulation: For n = 1,2,..., N find piecewise con-
stants U, such that

tn tn
/ aU,dt + U, = / fdt +U, 1.

th—1 tn—1
Finally summing over n in (6), we get the global dG(q) formulation: Find U(t) €
Wk(q), such that

N tn ) N tN
Z/ (U + aU)wdt + Z[Un_l]w:{_l = / fwdt,Yw € Wk(q) Uy = up.
n=1

th—1 n=1 0



An “a posteriori” error estimate for the cG(1) formulation

The continuous problem:
(7) ut) +a(t)u(t) = f(t), Vte(0,T)
The variational form for (7) is:
T T
/ (4 + au)vdt 2/ fodt, Vu(t) € PY0,T).
0 0
Integrating by parts we get
T T
8)  w(T)w(T) — u(0)v(0) + / u(t)( — o) + av(t))dt - / fudt.
0 0
If we choose v to be the solution of the dual problem:
—0+av=0, in (0,7),
then (8) is equivalent to
T
w(T)o(T) = u(0)v(0) + / Fodt, Vo(t) € PY(0,T).
0

Thus we have the following:

Dual problem for (7): Find ¢(t) such that

(9) {—ﬂﬂ+dﬂﬂﬂzm tn>1>0
wltn) = en, en =uy — Uy = u(ty) — U(tn)
y
u(t) problem
‘ X
0 (t) problem T



Theorem 9.2: For N =1,2,... the ¢cG(1) solution U(t) satisfies
lex| < S(tn) - max|k - r(U)]
t

LN
where k = k, = |I,| for t € I, = (t,_1,t,) is the time step and r(U) = U +
ty
aU — f is the residual error. Further, S(ty) = (/ |gb\dt) /en is the stability
0

factor. The stability factor measures the effects of the accumulation of error in
the approximation and to give the analysis a quantitative meaning we have to
give a quantitative bound of this factor.

A a(t) <A, Wt
S(tn)ﬁ{ 1 at)>0, W

Proof: Let e(t) = u(t) — U(t). By the dual problem: —¢(t) + a(t)e(t) = 0 we
can write

tn
e?\,ze?\,+0:e?\,+/ e(—¢ +ap)dt,
0

and using partial integration we have
tn tn tn
/ e(—¢ + a(t)p)dt = [—e(t)p(t)] + / épdt +/ eapdt = {e(0) =0} =
0 0 0

in tn
= —e(ty) p(tn) +/ (6 +ae)pdt = —ex + / (é + ae)pdt.
=eN =eN

Since

é(t) + a(t)e(t) = u(t) — U(t) + a(t)u(t) — a(t)U(2),
and f(t) = u(t) + a(t)u(t) we can now write
é(t) + a(t)e(t) = f(t) — U(t) — a(t)U(2).
Recalling the definition of the residual: r(U) = U + aU — f we have that
é(t) +a(t)e(t) = —r(U),

and consequently
tn
2 =e 40=e — 2 — / P (U (1)) o () dt.
0

tN
Thus we have the error representation formula: 3 (t) = — / r(U(t))e(t)dt. To
0
continue we use the interpolant m,¢ of ¢ and write
1 tn ty
o= —— | @(s)ds = i = —/ r(U)(p(t) — mrp(t))dt +/ r(U)mge(t)dt.
0 0

kn I
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Now from the discrete variational formulation:

tn

/O (0 + al)mpp(t)dt = [ oty

ty
we have the Galerkin orthogonality / r(U)mee(t)dt = 0. Thus the final form
0

12
of the error representation formula is: e3 = —/ r(U)(p(t) — mpep(t))dt. Now
0

applying the interpolation error

||f - Trqf“Lp(a,b) S Cl(b - a/)“fI”Lp(a,b)’

to the function ¢ and the interval I, |I,| = k, we get / lp — mrpldt <
In

ky, / |¢|dt. Thus we may write
In

tn N N
(10) / |<,0—7rks0|dt=Z/I o —mepldt <> ko [ |pldt
0 n=1 n n=1 In

Let now |v|; = max |v(t)|, then using (10) and the final form of the error repre-
€

sentation formula we have

N in
enl? < SOl b [ 1 < s klr(@)) [

In
But since f(fN lpldt = |en|- S(tn), (see the definition of S(¢y)), we have that

en!? < le!S(tx) max(klr(U)]).

’tN
This completes the proof of the first assertion of the theorem.

To prove the second assertion , we claim that:

(a) la(®)] <A, 0<t<ty=[pt) < ™len|, 0<t<ty
(b) la(t)] = 0, V= |p(t)| < len|, Vte€[0,tn]

To prove this claim let s = ty — ¢, (t = ty — s) and define ¥(s) = ¢(ty — s),
then by the chain rule

@_@.ﬁ__-(t _s)
ds _ dt ds PN T ek

8



The dual problem is now formulated as follows: find () such that
—@(ty — s) +alty — s)p(ty —s) =0.
The corresponding problem for v (s):

{ d‘gfj) alty — 8)(s) = 0, ty >8>0
w(O) = (p(tN) = €N, EN = UN — UN = U(tN) — U(tN),

has the exact solution 1(s) = 1(0) - e~ AlN)eAlN=9) = ¢ . eAB=AlN) Now using
the relation 1(s) = ¢(t), ty — s =t, we get

QD(ZL,) =epn- eA(t)*A(tN), and Sp(t) =ey- a(t)eA(t)*A(tN)'

Thus the proof of both claims (a) and (b) are easily followed:

(a) For |a(t)] < A, we have

‘(p(t)‘ _ ‘eN‘efttN a(s)ds < ‘eN‘emax”a(t)KtN—t) < ‘eN‘e)\-tN
4
(b) For |a(t)| <0, we have |p(t)| = \eN\efOtN As)ds < | |emine ad(ttN) and since
(t—1tn) <0 we get |o(t)] < |en|- O

Further note that for a(t) > 0 we have

[ eton =l [ a0 = e et
0

= |en] - ( _ eA(O)—A(m)) <1,

L
N o(t)|dt
o lettylat _

which gives that S(ty) = en]
En

The case |a(t)] < A:

We have earlier derived that ¢(t) = a(t)ey - eAO=AEN) thus
t
[G(8)] < Aen|eAO=AN = N|eyeliv “% < Aley|eMtn),

Integrating over (0,ty) we get

tn tN in
[ 161t < lew! [ 2Nt = e[ - ] < el (-1 + ),
0 0

which gives that S(ty) < (=1 + ™) < ¥ and completes the proof of the
second assertion. a



Convergence order O(k?):

97 ) - T

TRa()
Th V(1)

Note that (g(t) — mxg(t)) L (constants) Vg(t), and since U(t) is constant on Iy
we have that [~ U(p — mpp)dt = 0, thus

== [ rO)el) = me)de = [ (f = U =0 = mi
= /OtN (f — aU)(p — mep)dt — /0 ’ Ul(p — mep)dt
= [0 - e - mi.

Similarly using the fact that 7 (aU — f) is a constant

/0 ' m(aU — f)(p — mpp)dt =0

and we can write

ex = — /OtN ((aU — f) — m(aU — f)) (p — mp)dt.

Now using Theorem 9.2 and the interpolation error we get

lexl < S(t) - [kl(aU = f) = mi(al = )

[O’tN]

d
< S(tw) - [k (aU = f)|g001

dt

10



9.3.2. An a posteriori error estimate for the dG(0)

Theorem 9.3. For N =1,2,..., the dG(0) solution U(t) satisfies
lu(ty) — Un| < S(tw)[kR(U) oy, Un =Ultn)
where

Uy —Un-|

R(U):| L +‘f—UIU| for ty_1 <t <ty.

Proof: Similar as in ¢G(1). Note that now the residual error includes jump
terms and since dual problem satisfies —¢(t) + a(t)¢(t) = 0, we can write

A=+ / " e (t) + alt)yp(t))dt = [PI] =

) =% +g (/t:nl (€ + ae)p(t)dt — [egp]ﬁz_l)

:{é+ae:a—U+au—aU:f—aU, (Uconstant:>U:0)}

N tn N
—2+Y / (f = al)pdt Y eglir_,.

tn—l

¢Jrr1 G q)n+1(t) ¢E+l

d )
) L

e(t,)p(ty) — et )e(ti))

={g(t;) =9, 9t} ) =g} =

(]
S
=
I
WE
/N

N
= (ea0n — €5 100 1) = (ex01 —egod) + (e300 —efef) + ...

n=1

+ (Ey_1PN_1 — 62_2%_2) + (ex¥n — 6}_1%_1)-

11



To continue we write ¢, = (¢, — ¢ + o), i=1,...N —1 then

- Z ep)in . = —enoy +edol —er (o7 —of +¢f) +efof
—ey (3 —+ps +5) +espy ...
—en_1(Pn_1 = PN_1 T PN1) TN 1PN
We rewrite these terms as

—e; (pi — o o) Hefof = —efo; + e —erof +ef o
=e; (pf — o)+ o (& —e7) = e [pi] + ¢ [ed],
where [g] = g7 — g~ represents the jump. Thus

N N-1 N-1
= (ep)lir, =—ex +efod + > lealos + > e, lenl.

Inserting in (11) we get that

N
eN—eN+Z/t f—al) gpdt—Z[eg@]t »
n—1 n=1
N-1 N-1
= €N+Z/ f—aU)edt — ey + ef o5 + Z[en]@n +Z[‘Pn]e
tn—1 n=1 n=1

= {¢n, U, smooth = [p,] =0, [un] =0}

_60¢0+Z/" —aUgodtJrZ[en]gon— ([un] = 0= [e,] = [~ U]}

tn—1

- Z(/ (f = aU)pdt = [Un-1lpp_1) =

= {Galerkin} = Z — alU)(p — mp) — [Un—1](p — meep), 1y Yt

tnl

The rest is as in Theorem 9.2.

Adaptive dG(0):

To guarantee that the dG(0) approximation U(t) satiesfies
len| = |u(t,) —U(t,)| <TOL (TOL is a given tolerance)
we seek to determine the time step &, so that

(12) S(ty) rtré?x|knR(U)| =TOL,n=1,2,...,N.

12



Algorithm:

(i) Compute U, from U, _; using a predicted step k.
tn tn
Example, / aU,dt + U, = / fdt+U,—1
th—1 tn—1

(ii) Compute |kR(U)|s, := max |k, R(U)].

Is (12) valid YES! Accept the solution U,
for this k,,? — and go to the next time step
NO!

Recompute (12) with
a smaller &,

9.4. A priori error analysis

The discontinuous Galerkin method, dG(0) for @ + au = f, a=constant:

Find U = U(t), t € I, such that

th tn
(13) / Udt +a / Udt = / fdt.
tnfl tnfl In

Note that U(t) = U, is constant for t € I,,. Let U, = U(t,), U,—1 = U(t,—1) and
kn = tn — tn—la then

tn tn
/ Udt + a/ Udt = U(ty) = Ultn_1) + aknU, = Uy — Un_1 + aknU,.
th—1 th—1

Hence with a given initial data u(0) = ug, the equation (13) can be written as

{ Up = Upr + akn Uy = [, fdt n=1,2,...

(14) UO = Up-

As for the ezact solution u(t) of @ + au = f, the same procedure would give
tn
(1) ults) — ulta_1) + knaun(t) = / fdt + knaun(t) — a / w(t)dt,
I'n. tn—1

where we have moved the term a fti"_l u(t)dt to the right hand side and add
knau,(t) to both sides.

13



Thus

(14) & (1 + kna)Un(t) = Up_1(t) + / fdt

(15) & (1 + kna)un(t) = up—1(t) + [ fdt + knaun(t) — a/tn u(t)dt

In n—

Let now e, = u, — U, and e,,_1 = u,,_1(t) — U,_1(t) then (15) — (14) gives that

(16) en = (14 kpa) ™ (en_1 + pn)

tn

where p, := kpau,(t) — a / u(t)dt. Thus in order to estimate the error e, we
th—1

need an iteration procedure and an estimate of p,:

Lemma 9.1. We have that

1 .
|on| < 5 lal|kn|? max |a(t)|
2 In

Proof. Recalling the definition we have that p, = kpau,(t)—a [ u(t)dt. Thus

tnfl
1
Uy — —— udt‘.
" ‘kn| In

Using a Taylor expansion of the integrand u(t) about t,:

lpn| <

u(t) = up +0(€)(t — t,), for some &, 1,1 <& <t,

yields
1 .
ol < lallal | = - [l i€) ¢~ )

n JI,
1 1 (t — tn)?tn

< faf kol = -t = a“(f)[ .

1. k2 I o1 .
= lallkal| = -6 [0 = 5] = lal kal| = (€)= lallkaP5la(€)

Thus we get the final estimate for p,:

1 )
lon| < 5 lallkn|* max[a(t)] O
2 In

To simplify the estimate for e,, we split, and gather, the proof of technical details
in the following lemma:

14



Lemma 9.2. For k,|a| <1/2, n > 1 we have
(i) (1—knlal)! < enlal,

N
1
(ii) Let 7, =ty — t,_1 then |ey| < 5 2(62|“|T"|a|kn) max kn|t|L,.
n=1 -

N tN
(iii) 262‘“|T"|a\kn < e/ la|e?ledr.
n=1 0

We postphone the proof of this lemma and first show that using these results we
can obtain a bound for the error ey (our main result) viz,

Theorem 9.4: If k,|a| < 1,n > 1 then the error of the dG(0) approximation U
satisfies

[ulty) = Ultn)] = len] < (2 = 1) max knfis(®)s,:

1<n<N

Proof: Using the estimates (ii) and (iii) of lemma 9.2 we have that

I
len| < = Z (€29 a| k) max knltlr, < 5(6/ \a\eQ“"TdT) maXNk iy, =
0

1<

2 T
= 16[ i j| ¥ . max k |u( )|I = E(€2|a|tN — 1) max k |’LL( )|I .0
2 2 lo 1<n<N " 4 1<n<N n

e
Note that the stability constant 1 (62“"“" — 1) may grow depending on |a| and
tn, and then this result may not be satisfactory at all.

Now we return to the proof of our technical results:
Proof of Lemma 9.2:

(i) For 0 <z < 1/2, we have that 1/2 <1 -z <land 0 <1-2z <1 We
1
can now multiply both side of the first claim: 1= <e*®byl—xz>1/2>0to

obtain the equivalent relation
(17) f(z) = (1 —z)e* > 1.
Note that f(0) = 1 and since f'(z) = (1 — 2x)e?® > 0 the relation (17) is valid.

(ii) Recall that e, = (1+kna) "' (en_1+pn). To deal with the coefficient (14k,a)~*
first we note that (1 + k,a) ' < (1 — kpa) ' if @ > 0. Thus (1 + kpla|) * <

15



1
(1 = kypla))™!, a € R. Further the assumption k,|a| < g M > 1, combined with
(i), implies that (1 — ky|a|) ™ < e*»1* n > 1. Thus we have

2kN|a\

1
(18) |€N| < |6N71‘ + m‘p]\]‘ < ‘eNfl‘ . erN\a| + |pN| -e

1
1-— kN|CI,‘
Changing, e.g. N to N — 1 we get

len—1] < en—a| - ¥4 4 | py_y| - 2PNt = e%N_l‘a'(‘eN—ﬂ + \PN—1|>’
which inserting in (18) gives that

(19) len| < eFnielg?hn—ial (\eN—z\ + \PN_1|) + | pw | - e?lel,
Similarly we have |ey o < eZkN*2‘“|(|eN,3\ + |,0N,2|). Now iterating (19) and
using the fact that eg = 0 we get,

len]| §e2kN|a\62kN—1|a|€2kN—2|a\ len_3| + e2knlal g2kn—1la| 2k —2]al lpn_2|

+ ezl oy | 4 [py] - el <L <

N
<R g| + 3 ke,

n=1

N
=D ezt g,
n=1

1
Invoking by Lemma 9.1: |p,| < §\a||kn|2 max |4(t)| we have

N
1
2la| N _ km T 2 .
ex| <Y e Sl e ()
n=1
Note that
N
Z km = (tn —tn—1) + (tnsr — tn) + (bnro — tng1) +- -+ (Iv —tn-1) =ty — taos-

Hence we have shown the assertion (ii) of the lemma:

N N
1 . 1 )
len] < 3 el —ton) ol P max ()] = 5 (2 alky) max ki, O

n=1 n=1

(iii) To prove this part we note that

Tn =In —th—1 = (tN - tn) + (tn - tn—l) = Tp41 + kn:

16



and since |a|k, < 1/2 we have 2|a|7, = 2|a|T,41 + 2|alk, < 2|a|T,11 + 1. Further
for 7,41 < 7 < 7,, we can write

Tn
e2lalmn gy < / eClamni+l) g
+1 Tn+1

Tn
e2lelm . kn = /
.

n

Tn Tn
= / el - ePlalmgr < e/ e?7dr.
Tn+1 Tn+1

Multiplying (20) by |a| and summing over n we get

(20)

ZeQ|“‘T"|a\k <e Z 2‘@'% |a\

Tn+1

T1 12y
= e/ 97 a|dr = e/ lale? T dr,
TN+1 0

which is the desired result and the proof is complete. [J

Parabolic case, (a(t) > 0).

Theorem 9.5: Consider the dG(0) approximation U for @ + au = f,a(t) > 0.

1. .
Assume that kjlal;; < 3 Vj, then we have the error estimates

— <
[ulty) = Unl < 3 max |ku| if a(t) 2 0
0<t<tn

Proof:

Let e = u— U = (u — mpu) + (mpu — U) := € + €, where € is the interpolation
error with m,u being the Ly-projection into Wk(o)

To estimate €, we use the discrete dual problem (DDP):

Find ® € W”, such that forn=N,N —1,..., 1.

th
/ (= + a(t)®)vdt — [ = 0, Vo e WO
tn—l

(1)4]\'[ =Oyp = (mu—U)y =en

(DDP)

Let now v = e, then

N-1

tn
(21) Nk —Z/ —® +alt edt—Z[@ én + Pney.

n=1
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We now use € = (mgu — U) = (mpu — u + u — U) and write (21) as
len|? = Z/ —& + a(t)®) (mpu — u +u — U)dt
tn—1

— Z[Cbn](wku—u+u—U)n+<I>N(7rku—u+u— U)N

Using Galerkin orthogonality we replace u by U. Therfore the total contributiuon
from the terms with the factor v — U is identical to zero. Thus, using the fact
that ® = 0 on each subinterval, we have the error representation formula:

N-1

ex? = Z/t " (< + a(t)®) (mpu — u)di — S (@) (mku — ) + By (et — )y
= /0 N(a(t)q))(u — mpu) dt + 2_:@”](1& — ) — P (u — Tpu) N

To continue we need the following results:

Lemma 9.3. If [a(t)] < A,Vt € (0,ty) and kja|;; < 35,7 =1,2,..., N, then the
solution of the discrete dual problem satisfies

() @] < P00 Dley |

N-1
(i) Y |[@a]] < P ]en].
n=1

tn
(iii) Z/ (1)@, |dt < eV |ey.

tn—1
(iv) If a(t) > 0 then Max(\tb LN @l SN [ alt) @, dt) < |ew].
Proof: We show the last estimate (iv), (the proofs of (i)-(iii) are similar to that
of the stability factor in Theorem 9.2).

Consider the discrete dual problem with v = 1:

tn
/ (= + a(t)®)vdt — [Buon = 0,Y0 € WO
tn—l

(I)N—f—l = (7rku — U)N = en-

(DDP)
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For dG(0) this becomes

By + P+ 8y [i* a(t) =0, n=N,N-1,...,1
N+1 = €n, ¢, =9|,.

(DDP) {

Iterating we get
N -1
(22) H (1 + / dt) Byt

-1
For a(t) > 0 we have (1 +/ a(t)dt) < 1, thus (22) implies that

I.
(23) Dol < By = [enl.
Further we have using (22) that

B, = H (1+/ dt) By = (1+/ a(t)dt)_lcbn <o,

j=n—1 n—1

which implies that
[®,]=® —®, =&, — D, >0.

Thus

Djz

(24) Q]| =Py — PN+ Py —Pyy ...+ Dy — Dy

S
Il
—

=&y — D < Pyyy < en].

Finally in the discrete equation:
tn
(25) / (b + a()®)vdt — [@p]vn =0, Vo e WO
tn—1
we have v =1 and ® = 0 for the dG(0). Hence (25) can be rewritten as

/ " Dyt = (@],

which gives, summing over n, that

(26) Z/t ), dt < Z[@ | < |&n)-

n=1
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Combining (23), (24), and (26) the proof of (iv) is now complete.

As we mentioned earlier (i)-(iii) are proved in a similar way as Theorem 9.2(a).
We omit the details. [

Quadrature of f: (Assume that a=constant)

Then the error representation formula, combining dG(0), with the quadrature
role for f is as follows:

N tn
e = Z (/ (f —aU)(p — mpp)dt — [Up—1](¢ — Tep)p_1
n=1 tn—1
tn
+ frppdt — (fﬂkw)nkn)
tn—l
quadratﬁre error
| g(tn) for-the-endpoint-rule
where g, = { g(t(n—1 /2)) for-the-midpoint-rule
Definition:

If ¢ is the solution of the dual problem

{ —p+ap=0, for ty>t>0
p(tn) = en

t
~ Y lpo|dt
then S(ty) = Jo" lpldt

e is called the weak stability factor.
EN

Note. 7 is piecewise constant and

/ k() < / p(B)]d.

We have the following relations between the two stability factors:
S(ty) < tn(1+ S(ty)).

If a > 0 is sufficiently small, then S(tx) >> S(tn).

Theorem 9.7: (The modified a posteriori estimate for dG(0)),

The dG(0) approximation U(t) computed using quadrature on terms involving f
satisfies for N =1,2,...

u(tn) — Un| < S(ta)|KR(U)|(0n) + S (tn)Cs K7 fO)

(0t )
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where
= |Un = Un-s|
ky,

and j = 1 for the rectangle rule, j = 2 for the midpoint rule, C; =1, C; =
L fW=fand f®=Ff.

R(U) +|f—aU|, on I,

21



