Mathematics Chalmers \& GU

TMA462/MMA410: Fourier and Wavelet Analysis, 2017-01-09; kl 08:30-12:30.

Telephone: Mohammad Asadzadeh: 031-7723517
A sapling of formulas will be attached to the exam sheet.
Each problem gives max 5p. Breakings: 3: 10-14p, 4: 15-19p och 5: 20p-
For GU students G:10-17p, VG: 18p- (if applicable)
For solutions and gradings information see the couse diary in:
http://www.math.chalmers.se/Math/Grundutb/CTH/tma462/1617/index.html

1. Determine the two-dimensional Fourier transform of the function

$$
e^{-\left(\left|x_{1}-x_{2}\right|+\left|x_{1}+x_{2}\right|\right)}
$$

Hint: A change of coordinates might help.
2. Let H and G be the low-pass and high-pass filter functions in an orthogonal MRA. Assume that

$$
H(\omega)=\left(1+\omega^{M_{1}} h_{1}(\omega)\right)+i \omega^{M_{2}} h_{2}(\omega), \quad \text { and } \quad G(\omega)=\omega^{N} g(\omega)
$$

where $h_{i}(0) \neq 0, g(0) \neq 0$ and M_{1}, M_{2}, N are integeres ≥ 1. Prove that $M_{1}=2 N$ and $M_{2} \geq N$.
Hint: For an orthogonal MRA we have that $|H(\omega)|^{2}+|G(\omega)|^{2}=1$.
3. Show that $(\cdot)^{2} T=0, T \in \mathcal{S}^{\prime}$, implies that $T=a D \delta+b \delta$.
4. To prove that, in an orthogonal MRA, $|\hat{\varphi}(0)|=1$ if $\hat{\varphi}$ is continuous, it suffices to show that

$$
\left.\sum_{k}\left|<f, \varphi_{j, k}>\left.\right|^{2} \rightarrow\right| \hat{\varphi}(0)\right|^{2}, \quad \text { as } \quad j \rightarrow+\infty
$$

for f with $\hat{f}(\omega)=1_{(-\pi, \pi)}(\omega)$. Prove the limit statement.
5. Prove the Poisson's summation formula:

$$
\sum_{k \in \mathbb{Z}} \hat{\varphi}(k+\xi)=\sum_{k \in \mathbb{Z}} \varphi(k) e^{-2 \pi i k \xi}, \quad \varphi \in \mathcal{S}
$$

MA
void!

TMA462/MMA410: Fourier and Wavelet Analysis, 2017-01-09; kl 08:30-12:30..

Lösningar/Solutions.

1. We have for

$$
f\left(x_{1}, x_{2}\right)=e^{-\left(\left|x_{1}-x_{2}\right|+\left|x_{1}+x_{2}\right|\right)},
$$

that

$$
\hat{f}(u, v)=\iint_{\mathbb{R}} f\left(x_{1}, x_{2}\right) e^{-2 \pi i\left(x_{1} u+x_{2} v\right)} d x_{1} d x_{2}
$$

Let now $x=x_{1}-x_{2}, y=x_{1}+x_{2}$, so that $x_{1}=(x+y) / 2, x_{2}=(y-x) / 2$ and

$$
\frac{d\left(x_{1}, x_{2}\right)}{d(x, y)}=\left|\begin{array}{ll}
1 / 2 & 1 / 2 \\
-1 / 2 & 1 / 2
\end{array}\right|=\frac{1}{4}+\frac{1}{4}=\frac{1}{2} .
$$

Then,

$$
\begin{aligned}
\hat{f}(u, v) & =\iint_{\mathbb{R}} e^{-(|x|+|y|)} e^{-2 \pi i\left(\frac{x+y}{2} u+\frac{y-x}{2} v\right)} \frac{1}{2} d x d y \\
& =\frac{1}{2} \int_{\mathbb{R}} e^{-|x|} e^{-2 \pi i\left(\frac{u}{2}-\frac{v}{2}\right) x} d x \cdot \int_{\mathbb{R}} e^{-|y|} e^{-2 \pi i\left(\frac{u}{2}+\frac{v}{2}\right) y} d y \\
& =\frac{1}{2} \mathcal{F}_{x}\left[e^{-|x|}\right]\left(\frac{u}{2}-\frac{v}{2}\right) \cdot \mathcal{F}_{y}\left[e^{-|y|}\right]\left(\frac{u}{2}+\frac{v}{2}\right) .
\end{aligned}
$$

Using the one dimensional Fourier transform

$$
\mathcal{F}\left[e^{-|x|}\right](s)=\frac{2}{1+(2 \pi s)^{2}},
$$

we finally have that

$$
\hat{f}(u, v)=\frac{1}{2} \cdot \frac{2}{1+\pi^{2}(u-v)^{2}} \cdot \frac{2}{1+\pi^{2}(u+v)^{2}}=\frac{2}{\left(1+\pi^{2}(u-v)^{2}\right)\left(1+\pi^{2}(u+v)^{2}\right)}
$$

2. Using the condition of the orthogonal MRA

$$
|H(\omega)|^{2}+|G(\omega)|^{2}=1
$$

for the data

$$
H(\omega)=\left(1+\omega^{M_{1}} h_{1}(\omega)\right)+i \omega^{M_{2}} h_{2}(\omega), \quad \text { and } \quad G(\omega)=\omega^{N} g(\omega)
$$

where $h_{i}(0) \neq 0, g(0) \neq 0$ and M_{1}, M_{2}, N are integeres ≥ 1, we have that

$$
\left[1+\omega^{M_{1}} h_{1}(\omega)\right]^{2}+\left[\omega^{M_{2}} h_{2}(\omega)\right]^{2}+\omega^{2 N}|g(\omega)|^{2}=1
$$

i.e.

$$
1+\omega^{2 M_{1}} h_{1}^{2}(\omega)+2 \omega^{M_{1}} h_{1}(\omega)+\omega^{2 M_{2}} h_{2}^{2}(\omega)+\omega^{2 N}|g(\omega)|^{2}=1
$$

This gives that

$$
\omega^{2 M_{1}} h_{1}^{2}(\omega)+2 \omega^{M_{1}} h_{1}(\omega)+\omega^{2 M_{2}} h_{2}^{2}(\omega)+\omega^{2 N}|g(\omega)|^{2}=0, \quad \forall \omega
$$

which, dividing by $\omega^{M_{1}}$ can be written as

$$
\omega^{M_{1}} h_{1}^{2}(\omega)+2 h_{1}(\omega)+\omega^{2 M_{2}-M_{1}} h_{2}^{2}(\omega)+\omega^{2 N-M_{1}}|g(\omega)|^{2}=0, \quad \forall \omega,
$$

and yields the desired result.
3. Note that $\quad x^{2} T=0, \quad x(x T)=0, \quad \Longrightarrow \quad x T=a \delta$.

We have also $\quad(x D \delta)(\varphi)=(D \delta)(x \varphi)=-\delta\left((x \varphi)^{\prime}\right)=-\delta\left(x \varphi^{\prime}+\varphi\right)=-\varphi(0)=-\delta(\varphi)$, or $\quad 0=D(x \delta)=x D \delta+\delta$, so that $x(T+a D \delta)=0$. But

$$
x(T+a D \delta)=0, \quad \Longrightarrow T+a D \delta=b \delta, \quad \Longrightarrow T=-a D \delta+b \delta .
$$

Alternatively:

$$
\mathcal{F}\left[x^{2} T\right]=\left(\frac{i}{2 \pi}\right)^{2} D^{2} \hat{T}=0, \quad \Longrightarrow \quad D^{2} \hat{T}=0, \quad \Longrightarrow \hat{T}=a s+b, \quad \Longrightarrow \quad T=\frac{a}{2 \pi i} \delta^{\prime}+b \delta .
$$

4. We assume that φ is a scaling function in an orthogonal MRA, and $\hat{\varphi}$ is continuous. Then, $\{\varphi(t-n)\}_{n \in \mathbb{Z}}$ is an orthonormal basis for $V_{0}, \varphi_{j, k}(t)=2^{j / 2} \varphi\left(2^{j} t-k\right)$ and $\left\{\varphi_{j, k}\right\}_{k \in \mathbb{Z}}$, is a basis for V_{j}. Further, $f_{j}=\sum_{k}<f, \varphi_{j, k}>\varphi_{j, k}, \quad$ is an orthogonal projection on $V_{j} . f_{j} \rightarrow f\left(\right.$ in $\left.L_{2}\right)$ as $j \rightarrow \infty$ by the properties of an MRA.

$$
\left\|f_{j}\right\|^{2}=\sum_{k}\left|<f, \varphi_{j, k}>\right|^{2} \rightarrow\|f\|^{2}=\frac{1}{2 \pi}\|\hat{f}\|^{2}
$$

For

$$
\hat{f}(\omega)=\left\{\begin{array}{ll}
1, & |\omega|<\pi \tag{1}\\
0, & |\omega|>\pi
\end{array} \quad \text { we have }\|\hat{f}\|^{2}=\int_{-\pi}^{\pi} d \omega=2 \pi, \quad\left\|f_{j}\right\|^{2} \rightarrow 1\right.
$$

Note that $\quad \hat{\varphi}_{j, k}(\omega)=2^{j / 2} 2^{-j} e^{-i k \omega 2^{-j}} \hat{\varphi}\left(\omega 2^{-j}\right)$. Thus

$$
\begin{aligned}
\sum_{k}\left|<f, \varphi_{j, k}>\right|^{2} & =\left.\sum_{k} \frac{1}{(2 \pi)^{2}}\left|<\hat{f}, \hat{\varphi}_{j, k}>\left.\right|^{2}=\frac{1}{4 \pi^{2}} \sum_{k}\right| \int_{-\pi}^{\pi} 2^{-j / 2} e^{-i k \omega 2^{-j}} \hat{\varphi}\left(\omega 2^{-j}\right) d \omega\right|^{2} \\
& =\left[2^{-j} \omega=\omega^{\prime}\right]=\frac{1}{4 \pi^{2}} \sum_{k}\left|\int_{-\pi 2^{-j}}^{\pi 2^{-j}} 2^{-j / 2} e^{-i k \omega^{\prime}} \hat{\varphi}\left(\omega^{\prime}\right) 2^{j} d \omega^{\prime}\right|^{2}=2^{j} \sum_{k}\left|C_{j, k}\right|^{2},
\end{aligned}
$$

where

$$
C_{j, k}=\frac{1}{2 \pi} \int_{-\pi 2^{-j}}^{\pi 2^{-j}} \hat{\varphi}(\omega) e^{-i k \omega} d \omega
$$

Assume that $j \geq 0$ so that $\pi 2^{-j} \leq \pi$.

$$
g(\omega)= \begin{cases}\hat{\varphi}(\omega), & |\omega|<\pi 2^{-j} \\ 0, & \pi 2^{-j} \leq|\omega| \leq \pi\end{cases}
$$

and g is 2π periodic, then

$$
C_{j, k}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} g(\omega) e^{-i k \omega} d \omega
$$

are the Fourier coefficients of g. By Parseval's relation

$$
\sum_{k}\left|C_{j, k}\right|^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|g(\omega)|^{2} d \omega=\frac{1}{2 \pi} \int_{-\pi 2^{-j}}^{\pi 2^{-j}}|\hat{\varphi}(\omega)|^{2} d \omega
$$

Thus

$$
\left.\sum_{k}\left|<f, \varphi_{j, k}>\left.\right|^{2}=\frac{1}{2 \pi} 2^{j} \int_{-\pi 2^{-j}}^{\pi 2^{-j}}\right| \hat{\varphi}(\omega)\right|^{2} d \omega=\left|\hat{\varphi}\left(\xi_{j}\right)\right|^{2}
$$

for some ξ_{j} with $\left|\xi_{j}\right| \leq \pi 2^{-j}$. Thus

$$
\left\|f_{j}\right\|^{2}=\left.\sum_{k}\left|<f, \varphi_{j, k}>\left.\right|^{2} \rightarrow\right| \hat{\varphi}(0)\right|^{2}, \quad \text { as } j \rightarrow \infty
$$

But this limit was also $1(\operatorname{see}(1))$; hence $|\hat{\varphi}(0)|=1$.
5. See lecture notes.

