Mathematics Chalmers \& GU

TMA462/MMA410: Fourier and Wavelet Analysis, 2017-04-18; kl 08:30-12:30.

Telephone: Gustav Kettil: ankn 5325
A sapling of formulas will be attached to the exam sheet.
Each problem gives max 5p. Breakings: 3: 10-14p, 4: 15-19p och 5: 20p-
For GU students G:10-17p, VG: 18p- (if applicable)
For solutions and gradings information see the couse diary in:
http://www.math.chalmers.se/Math/Grundutb/CTH/tma462/1617/index.html

1. Let $v=(\downarrow 3) x$, i.e. $v(k)=x(3 k)$. Write down $V(\omega)$ in terms of X.
2. Show that the convolution $\phi_{1}(t) * \phi_{2}(t)$ satisfies a dilation equation with coefficients from $H_{1} * H_{2}$.
3. If $w(t)$ has p vanishing moments, show that its Fourier transform has a p-th order zero at $\omega=0$. Then factoring $(i \omega)^{p}$ from \hat{w} gives the transform \hat{I}_{p} of the p-fold integral of $w(t)$.
4. Let $f \in \mathcal{S}^{\prime}$ be a function such that $|f(T)|=f(0)$ and $|f(x)|<f(0)$ for $0<x<T$. Show that $\mathcal{F} f=\sum_{n} c_{n} \delta_{(n+\alpha) / T}$ for some $\alpha \in[0,1]$.
5. Prove the following version of "Heisenberg inequality":

$$
\left(\int_{\mathbb{R}} x^{2}|f|^{2} d x /\|f\|^{2}\right)\left(\int_{\mathbb{R}} \xi^{2}|\hat{f}|^{2} d x /\|\hat{f}\|^{2}\right) \geq \frac{1}{16 \pi^{2}}
$$

Hint: You may use the Cauchy-Schwarts inequality:

$$
\left|\int f g^{\star} d x\right|^{2} \leq \int|f(x)|^{2} d x \int|g(x)|^{2} d x
$$

MA
void!

TMA462/MMA410: Fourier and Wavelet Analysis, 2017-04-18; kl 08:30-12:30..

Lösningar/Solutions.

1. Following the procedure for $(\downarrow 2) x$ let
(1)

$$
\begin{aligned}
u(n) & = \begin{cases}x(n / 3), & n=3 k, k \in \mathbb{Z} \\
0 & \text { otherwise }\end{cases} \\
& =\frac{1}{3}\left(1+e^{-2 \pi i n / 3}+e^{-4 \pi i n / 3}\right) x(n) .
\end{aligned}
$$

Hence

$$
U(\omega)=\frac{1}{3}(X(\omega)+X(\omega+2 \pi / 3)+X(\omega+4 \pi / 3))
$$

and

$$
V(\omega)=U(\omega / 3)=\frac{1}{3}(X(\omega / 3)+X((\omega+2 \pi / 3) / 3)+X((\omega+4 \pi / 3) / 3))
$$

2. Let the two scaling functions satisfy refinement equations of the form:

$$
\begin{align*}
& \phi_{1}(x)=2 \sum_{k} h_{1}(k) \phi_{1}(2 x-k) \tag{2}\\
& \phi_{2}(x)=2 \sum_{l} h_{2}(l) \phi_{1}(2 x-l)
\end{align*}
$$

then

$$
\left(\phi_{1} * \phi_{2}\right)(x)=4 \int \phi_{1}(X) \phi_{2}(x-X) d X=4 \sum_{k} \sum_{l} h_{1}(k) h_{2}(l) \int \phi_{1}(2 X-k) \phi_{2}(2 x-2 X-l) d X
$$

Let $2 X-k=Y$ and $k+l=n$. The above expression can now be simplified as:

$$
\left.\left(\phi_{1} * \phi_{2}\right)(x)=2 \sum_{k} \sum_{l} h_{1} / n-l\right) h_{2}(l) \int \phi_{1}(Y) \phi_{2}(2 x-Y-n) d Y
$$

Hense the filter in the refinement relation is $H_{1} * H_{2}$.
This problem can also be solved taking the Fourier transforms of both sides of equation (2).
3. By assumption

$$
\int t^{k} w(t) d t=0 \quad k=0,1, \ldots, p-1
$$

The Fourier transform of $w(t)$ can be written as

$$
W(\omega)=\int w(t) e^{-i \omega t} d t
$$

Let $\theta=-i \omega$ and expand the exponential term as

$$
e^{-i \omega t}=e^{\theta t}=\sum_{k=0}^{\infty} \frac{\theta^{k} t^{k}}{k!}
$$

Hence

$$
W(\omega)=\sum_{k=0}^{\infty} \frac{1}{k!} \theta^{k} \int w(t) t^{k} d t=\theta^{p} \sum_{k=0}^{\infty} \frac{1}{(k+p)!} \theta^{k} \int w(t) t^{k+p} d t
$$

Note that interchanging the integration and the infinite sum can be justified by a careful application of Fubini's theorem. We can therefore observe that $W(\omega)$ has p zeros at $\omega=0$.
4. We have that $f \in \mathcal{S}^{\prime}$ is a function such that $|f(T)|=f(0)$ and $|f(x)|<f(0)$, for $0<x<T$. Thus we can put $f(T)=e^{2 \pi i \alpha} f(0)$ for some $\alpha, 0 \leq \alpha<1$.
Now consider

$$
g(x)=e^{-2 \pi i \alpha x / T} f(x)
$$

Then

$$
g(0)=f(0), g(T)=e^{-2 \pi i \alpha} f(T)=f(0)=g(0)
$$

Further,

$$
|g(x)|=|f(x)|<f(0)=g(0) \quad \text { for } \quad 0<x<T
$$

This means that g is T-periodic. In that case

$$
\hat{g}=\sum_{n} c_{n} \delta_{n / T}
$$

and $f(x)=e^{2 \pi i \alpha x / T} g(x)$ gives

$$
\hat{f}=\hat{g}_{\alpha / T}=\sum_{n} c_{n} \delta_{\frac{n}{T}+\frac{\alpha}{T}}=\sum_{n} c_{n} \delta_{(n+\alpha) / T} .
$$

5. See lecture notes.

MA

