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Abstract, Singular integral equation method is one of the mos
effective numerical methods solving a plane crack problem in frac-
tnre mechanics, Depending on the choice of the density function,
vary often a higher order of sigularity appears in the equation, and
wo necd to give a proper meaning of the integration. In this article
wo address the Hadamard finite part integral and how it is used to
solve the plane erack problems. Properties of the Hadamard finite
part integral will be summarized and compared with other type
of mtegrals, Some numerical results for crack problems by using
Hadamard fiuite part integral will be provided,
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1 Introduction

In general, the solution to the crack problems in the Huear
elastic fracture mechanies (LEFN) often leads to a system
of Cauchy type singular integral equations [4, 5, 16
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and the kernels b, (e f) ave bounded in the closed domain
() € (e d] = [eod]. Each function p,(r) is known and
given by the bouudary condition(s). Funetions @i(r) are
the unkunowns of the probleins, also called by the density
functions which often are the derivatives of the displace-
ments, However, i the anknown density function is cho-

where e < o< doay, by (7 - 1) are real constants.

sen to he the displacement. say w, (), then the order of

singularity increases, Thus, a formulation of (a system
of ) hypersingular integral equations is made.

The choice of different inknown density function in the
formulation leads to different order of singularity for the
integral equation. For instance. consider a mode T erack
problem in a nonhomogeneous clastic medinm with the
shear modulus variation G(r) = Gue™ (illustrated in
Figure 1), then the governing a partial differential equa-
tion (PDE) in terms of the » component of the displace-
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Figure 1 Antiplane shear problem for a nonhomogenecons
material. Shear modulus G(e) = Goe? ¢ and d repre-
sent the left and right crack tip, respectively: a is the half
crack length.
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with the mixed boundary conditions
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where p(a) is the traction function along the erack sur-
faces (e.d). By a process of Fourier integral transform
PDE (1) can be reduced to a hypersingular integral equa-
tion [2]:
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where ¢ < 0 < d, and N(r ¢) takes an integral form
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with A6 ) = €2+ 3% and B(£.3) e e Une
less a proper meaning of integration is given , the first
integral in equations (3) is mweaningless: the integral is
regularized by “Hadamard finite part integral™, and we
have nsed “dounble-bar integral™ to denote it. Hadamard
finite part (HFP) integral was fivst introduced by Jacqnes
Hadamard [8] to solve some linear PDIE, which can he con-
sidered as a generalization of the Canchy principal value
(CPV) integral [6].

2 HFP and CPV Integrals
HEFP integral is a generalization of CPV integral, thus let
us ook at CPV integeal fivst,

2.1 CPV Integral

Equations that involve integrals of the type
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in not integrable in the ordinary (Riemann or Lebesgae
integral) sense because of the kernel /(4 ) s not in-
tegrable over any interval that inelndes the point ¢ = r.
Thus, it is regularized by CPV integral {10, 13}:
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where ¢ « o < d. Notice that the e-neighborhood about
the singular point o = £ must be symmetric, and it is how
CPV integral works out for canceling off the singularity.

For the existence of the CPV integral, the function o(r)
in (5) needs 1o be at least Holder continnous on {c, ), that
is, o(r) € OV (e d), This requirement of regularity can
he easily checked by following manipulatiou:
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Thus, for any ¢ © ("% q > 0, the first integral on the
right side of (6) iy an ordinary Ricmann integral and the
second futegral is

(0)

Although Canchy principal value integral is defined for
an interior point in (e, d) above, it can be evaluated sep-
arately on hoth sides of the end points:
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where » » ¢, and
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where @ < d.

2.2 HFP Integral

CPV integral does not work for a higher singularity. For
instance, consider ¢(f) = 1 and » = 0 in

that is,
< () <ol
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The integral is not convergent, neither does the principal
vadue exist, since
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is not finite. Hadamard finite part integral is defined by
disregarding the infinire part. . and keeping the finite
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Definition 1 ( Hadamard finite part integral ) Let e >
0. and denote

2/¢

(8)

Fle, x) == / fu o a)de, e d,
N A ]

where the singularity appears at the point U= . If (e x)
w decomposed into

Fle, )

and
lim Fyy(e, @) <,
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then the finite part integral is defined by keeping the ~finite
part”, i.c.
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Notice that HFP integral can be considered as a gon-
eralization of the CPV integral in the sense that if the
principal value integral exists, then they give the same
result [6]. We shall define the HEP integral for integrals
with quadratic singularity as in (7). Denote by ¢ (e d)
the space of functions whose m-th derivatives are Holder
comtinons on (¢.d) with index 0 < o < 1.

Definition 2 Jf ¢(x) € e d). then




The condition o(r) € CH (e d) is required for the exis

tence of the defined HFP integral [12],
Following observation may help to understand Defini-
tion 2 for HEFP. By a step of integration by-parts, the first

integral wnder the limit ¢ = 0 in (9) can be written as
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Thus, the tern ~20(r) /¢ in (9) will kill the singularity
[olr = )+ o(r 4+ o) fe. and under the assumption that
o) & CH (e d) Definition 2 indeed takes the finite part
of the integral according to Definition 1. )

Another direction of viewing Definition 2 is by raking
diveet diferentiation d/de vo (5) with Leibnitg's rule, e
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Comparing (10) with (9), one can conclude

Proposition 1 [fole) € Choleody, then
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Alternatively, one can define fiuite part integrals by
cquation (11) and deduce Definition 2 as property. Thus,
for general n, HEP integrals can be defined recursively as
follows.

Definition 3 ( Fiuite part integral ) Denote
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By means of (6) and the (recursive) definition of finite
part integrals, oue can deduce [15]

Proposition 2

For o ¢ ("(c.d)yn L', the first integral on the right
side of (13) is an ordinary Ricmann integral. Also. with
(13) in hand, integration by-parts formula holds for finite
part integrals [15].
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2.3 Remark on HFP Integrals

The most commonly used integration in mathematical
analvsis is Lebesgue integration. Not all the properties
for Lebesgue integral can be carried onto finite part inte-
aral. For example, properties that involve inequality (e.g.
monotone convergence theorem, Farou's lennma, bounded
convergence theorem) may not be true for finite pare in-
tegral anymore, A simple demonstration is (see cquation
(%) and Reference [9])

clearly,
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is NOT true for finite part integral! This is a very
wnpleasant outcowe from HFP integral: however, fortu-
nately, the most relying formula, integration hy-parts. is
true for finite part integral.

3 Hypersingular Kernels
For the derivation of hypersingular kernels, we use three
basic ingredients:

e [inite part integrals.

e Identity

PRGN IR S
dy' Ly it —x)| drr

e Plemelj formulas [3. 16]
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The key point of identity (14) is that it allows one to
switeh the differentiation from o /dr to d/dy, and vice
versa; HFEP integral has been defined and addressed in
previous section: for the sake of completeness. we shall
briefly address Plemelj formulas.




3.1 Plemelj Formulas

In general, the Cauchy prineipal value tvpe of integrals
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is evaluated indireetly by using complex function the-
ory [11, 13]. Define

o< d
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with 2 not on the integration contour. The principal value
is then recovered by sending = to the point @ on the inter-

val (¢, ), zmd the result is different as 2 -~ & from above
and helow. Say, define
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Equations (15) and (16) are Plamelj formulas [11], some-
times called by the Sokhetski formulas, Tt is (15) that we
will be using in the derivation of hypersingular kernels.
Notice that &(a) ean be recovered from Plemelj formulas,
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3.2 Arise of Hypersingular Kernels

To demonstrate how the hypersingular kernels arise, we
wo hack to the PDE (13, and through Forier transform
wlor. y) can be expressed as {2
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where
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and a(&) is 1o be determined by the boundary condi-
tions (2). To satisfy the far field boundary condition,
Jin s (e y) = 00 we choose the root A(E) to be the

non-positive real part:
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is taken,
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that is, w(r. 07) is the inverse Fourier transforn of a(&).
By inverting the Fourier transforn, one obtains

where the first boundary condition in (2) and a change of
duwmny variable (e < 1) have heen applied,

Delining
K (& y) = A M, (23)
anc using the second boundary condition in (2). one
reaches that for ¢ < o < d
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0% = AE) and by a step of decomposi-

Let K (&) = K (¢,

tion
K(&) = [N(& N9+ Kt (26)
one ohtaing a closed form expressions of
Kef€) = [¢] (27)

This Ko (£) gives rise to the quadratic hypersingular (and
Canchy singular) kernels by the following
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3.3 Higher Order Hypersingular Kernels

,,,,,,,,,,,,

For a more general and higher ovder of hypersingular ker-
nels, they can be derived hy observing that
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where the Plemelj formula and the definition of finite part
integrals have beeu used. Note that, when n is an odd
integer,
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where the Plemelj fornnula is nsed again,

3.4 St
I addition to the choice of unknown density function, the
nnderlying elasticity theory also gives rise to higher order
hypersingular kernels,  For instance, in strain gradient
clasticity higher order of stugular integral equations often
arise [1, 7, 18], The higher order singularity is actually

-ain Gradient Elasticity

linked to its governing PDE~ a fourth order instead of
second order:
5 e
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I a factored form PDE (30) can be written as
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where € s a length parameter in the strain gradient elas-
ticity theory {1 X‘

After Fourier integral transform and asyinptotic anal-
viis, the corresponding hypersingnlar kernel, as in (27).
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Through the analysis as described in section 3.3, we have
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where () denotes the Dirac delta functon,  Thus

one can reach following hypersingular integroditferential
equation:
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Che density function o(e) nsed in (33) s lh(' strain fie-
tion, that is‘ o) = dw(w 0)/de with ¢ < < d.

[ndder the case that 3 o= 0 and - f’ -0, integral
cquation (33) has an exact solution 7. Figure 2 shows
thiat strain is finite at the two crack-rips, which is different
from the conventional lincar elasticity
singularity. A crack suwrface displacement in an infinite
nonhomogeneous plane nnder uniform crack surface shear
loading is shown in Figure 3, in which one can see that
the tangent line at the two crack-tips has infinite slope.

strain has 1/
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Figure 2: Numerical solution vs. closed form solution
for antiplane shear problem under the case J = 0 and
£ = " = (. All variables have been normalized by the
half erack length a.

4 Conclusions

In this paper we have investigated how the hypersin-
gular integral equations arise either due to the choice
of unknown density function or the underlying clastic-
ity theory. The hypersingular integral is regulavized by
the Hadamard finite part integral. and it leads to a very
stable numerical approximation,
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Figure 3: Crack surface displacement in an infinite nonho-
mogeneous plane under uniform crack surface shear load-
ing o, (r.0) po and shear modulus Gy = Goetr,

Here a = (d - ¢) /2 denotes the half erack length.
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