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Chapter 1

Introduction

In this lecture notes we present an introduction to approximate solutions for
differential equations. A differential equation is a relation between a function
and its derivatives. In case the derivatives that appear in a differential equa-
tion are only with respect to one variable, the differential equation is called
ordinary. Otherwise it is called a partial differential equation. For example,

du

dt
− u(t) = 0, (1.0.1)

is an ordinary differetial equation, whereas

∂u

∂t
− ∂2u

∂x2
= 0, (1.0.2)

is a partial differential (PDE) equation. In (1.0.2) ∂u
∂t
, ∂2u

∂x2 denote the partial
derivatives. Here t denotes the time variable and x is the space variable. We
shall only study one space dimentional equations that are either stationary
(time-independent) or time dependent. Our focus will be on the following
equations:

1.1 Ordinary differential equations (ODE)

• An example of population dynamic as in (1.0.1)

du

dt
− λu(t) = f(t), (1.1.1)

1



2 CHAPTER 1. INTRODUCTION

where λ is a constant and f is a source function.
• A stationary (time-independent) heat equation as

−d
2u

dx2
= f(x), (1.1.2)

• A stationary convection-diffusion equation

−d
2u

dx2
+
du

dx
= f(x), (1.1.3)

where f(x) is a source function.

1.2 Partial differential equations (PDE)

• The heat equation
∂u

∂t
− ∂2u

∂x2
= f(x). (1.2.1)

• The wave equation
∂2u

∂t2
− ∂2u

∂x2
= f(x). (1.2.2)

• The time depending convection-diffusion or reaction-diffusion equation

∂u

∂t
− ∂2u

∂x2
+
∂u

∂x
= f(x). (1.2.3)

Some notation. For convenince we shall use the following notation:

u̇ =
∂u

∂t
, ü =

∂2u

∂t2
, u′ =

∂u

∂x
, u′′ =

∂2u

∂x2
.

Example 1.1 (Initial Conditions). Consider the simple equation u̇(t) = t.
Evidently, u(t) = t2/2, is a solution. But, for any constant C, t2/2 + C is
also a solution. In this way we have infintely many solutions (one for each
constant C). To determine a unique solution we need to supply the equation
with one extra condition. Since the time variable t is always assumed to be
t ≥ 0, if we know the value of u(t), e.g., at the beginning, i.e., the initial
value e.g., u(0) = 3, then u(t) = t2/2+ 3 is the unique solution to the initial
value problem: u̇(t) = t, u(0) = 3. A differential equation associated with
initial conditions is an initial value problem.
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Example 1.2 (Boundary Conditions). Likewise u(x) = −x2/2 is a solu-
tion to −u′′(x) = 1. But also all u(x) = −x2/2 + Ax + B are solutions, for
all arbitrary constants A and B. Therefore, to determine a unique solution
u(x) we need to determine some fixed values for A and B, hence we need
to supply two conditions. Here if e.g., x belongs to a bounded interval, say,
[0, 1], then given the boundary values u(0) = 1 and u(1) = 0, we get from
u(x) = −x2/2 + Ax + B that B = 1 and A = −1/2. Thus the solution to
the the initial boundary value problem: −u′′(x) = 1, u(0) = 1, u(1) = 0
is: u(x) = −x2/2 − x/2 + 1. The generale rule is that one should supply as
many conditions as the highest ordre of the derivative in each variable. So,
for example, for the hear equation u̇ − u′′ = 0, to get a unique solution we
nedd to supply one initial condition (there is one time derivative in the equa-
tion) and two boundary conditions (there are two derivatives in x), whereas
for the wave equation ü − u′′ = 0 we have to give two conditions in each
variable x and t. A differential equation with supplied boundary conditions
is a boundary value problem.

Objectives: For f being a simple elementary function (a polynomial, a
trigonometric, or exponential type function or a combination of them), the
equations (1.1.1)-(1.2.3), associated with suitable initial and boundary condi-
tions, have often closed form analytic solutions. But real problems: general
two and three dimensional problems, modeled by equations with variable
cefficients and in complex geometry, are seldom analytically solvable.

In this note our objective is to introduce numerical methods that ap-
proximate solutions for differential equations by polynomials. To check the
quality (reliability and efficiency) of these numerical methods, we choose to
apply them to the equations (1.1.1)-(1.2.3), where we already know their an-
alytic solutions. Below we shall give examples of analytic solutions to ODEs:
(1.1.1)-(1.1.3). For examples on analytic solutions for the PDEs: (1.2.1)-
(1.2.3), we refer to the separation of variables technique introduced in the
second part of our course.

Example 1.3. Determine the solution to the initial value problem

u̇(t)− λu(t) = 0, u(0) = u0, (1.2.4)

assuming that u(t) > 0, for all t, λ = 1 and u0 = 2.

Solution. Since u(t) 6= 0, for all t, we may divide the equation (1.2.4) by
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u(t) and get u̇(t)
u(t)

= λ. Relabeling t by s and integrating over (0, t) we get

∫ t

0

u̇(s)

u(s)
ds = λ

∫ t

0

ds =⇒
[
ln u(s)

]t
0
= λ[s]t0. (1.2.5)

Hence we have

ln u(t)− ln u(0) = λt or ln
u(t)

u(0)
= λt. (1.2.6)

Thus
u(t)

u(0)
= eλt, i.e. u(t) = u0e

λt. (1.2.7)

Consequently, with λ = 1 and u0 = 2 we have u(t) = 2et.
To derive solutions to our examples on a systematic way, we recall the pro-

cedure for determining a particular solution up to a second order differential
equation with constant coefficiets of the form:

u′′(x) + au′(x) + bu(x) = f(x). (1.2.8)

1. If f(x) = a polynomial of degree n. Set

i) up(x) = a0 + a1x+ · · ·+ anx
n, if b 6= 0

ii) up(x) = x(a0 + a1x+ · · ·+ anx
n), if b = 0, a 6= 0

2. If f(x) = (polynom) × eσx. Set

i) up(x) = z(x)eσx.

This gives a new differential equation for z solved by 1).

ii) up(x) = Aeσx, if polynom = constant.

This works if σ2+ aσ+ b 6= 0: i.e. σ is not a root to the
characteristic equation.

3. If f(x) = p cos(ωx) + q sin(ωx). Set

i) up(x) = C cos(ωx) +D sin(ωx), for −ω2 + aiω + b 6= 0,
i.e., if iω is not a root to the characteristic equation.

ii) up(x) = x(C cos(ωx)+D sin(ωx)) , if −ω2+aiω+b = 0.
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Example 1.4. Find all solutions to the differential equation

u′′(x)− u(x) = cos(x). (1.2.9)

Solution. Due to the highest number of derivatives (here 2 which is also
called the order of this differential equation), we shall have solutions depend-
ing on two arbitrary constants. As we mentioned earilear a unique solution
would require supplying 2 conditions, which we skip in this problem.

We note that the characteristic equation to this differentisal equatios:
r2 − 1 = 0 has the roots ω = ±1. We split the solution procedure in 3 steps:

Step 1: According to the table above we choose a particular solution up(x)
of the form

up(x) = A cos x+ B sin x. (1.2.10)

Differentiating twice and inserting in the equation (1.2.9) yeilds

u′p(x) = −A sin x+ B cos x

u′′p(x) = −A cos x−B sin x

u′′p(x)− up(x) = −2A cos x− 2B sin x = cos x

identifying the coefficients yields A = −1
2
, B = 0. Thus

up(x) = −1

2
cosx (1.2.11)

Step 2: The homogeneous solution is given by the standard ansatz

uh(x) = C1e
r1x + C2e

r2x, (1.2.12)

where C1 and C2 are arbitrary constants and r1 = 1 and r2 = −1 are the
roots of the characteristic equation. Hence

uh(x) = C1e
x + C2e

−x. (1.2.13)

Step 3: Finally, the general solution is given by adding the particular and
homogeneous solutions

u(x) = −1

2
cos x+ C1e

x + C2e
−x. (1.2.14)

In the above example we obtained general solutions depending on two con-
stants. Below we shall demonstrate an example where, supplying two bound-
ary conditions, we obtain a unique solution
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Example 1.5. Determine the unique solution of the following boundary value
problem

u′′ + 2u′ + u = 1 + x+ 2 sin x, u(0) = 1, u′(0) = 0. (1.2.15)

Homogeneous solution:
The characteristic equation for the differential equation (1.2.15) is given by

r2 + 2r + 1 = 0, and has dubbel root r1,2 = −1. (1.2.16)

This gives the homogeneous solutions as

uh = (C1 + C2x)e
−x. (1.2.17)

Particular solution:
The particula solution can be written as sum of two particular solution to
the following equations:

u′′1 + 2u′1 + u1 = 1 + x, (1.2.18)

and
u′′2 + 2u′2 + u2 = 2 sin x. (1.2.19)

Since the differential equation is linear, a concept justified by the relation

(au1 + bu2)
′ = au′1 + bu′2 and ∀a, b ∈ R,

thus u = u1 + u2 will be a particular solution for (1.2.15). Using the table of
particular solutions, we may insert u1(x) = Ax + B, as particular solution,
in (1.2.18) and get

2A+ Ax+ B = 1 + x. (1.2.20)

Identifying the coefficients in (1.2.20) gives A = 1 and B = −1. Hence

u1(x) = x− 1.

Once again using the table of particular solutions, we may insert u2(x) =
A sin x+ B cosx, as particular solution, in (1.2.19) and get

2A cos x− 2B sin x = 2 sin x. (1.2.21)

Identifying the coefficients in (1.2.21) gives A = 0 and B = −1. Hence

u2(x) = − cos x.
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Thus the general solution is given by

u = uh + u1 + u2 = (C1 + C2x)e
−x + (x− 1)− cosx. (1.2.22)

Now we use the boundary conditions and determine the coefficients C1 and
C2. Observe that

u′ = C2e
−x − (C1 + C2x)e

−x + 1 + sin x,

and we have that

u(0) = 1 =⇒ C1 − 1− 1 = 1 =⇒ C1 = 3.

Further

u′(0) = 0 =⇒ C2 − C1 + 1 = 0 =⇒ C2 = C1 − 1 =⇒ C2 = 2.

Thus the final solution is

u(x) = x− 1− cos x+ e−x(3 + 2x).

Summary: These examples of ODEs can serve as a sort of warm up. As we
mentioned the corresponding analytical solutions for our PDEs is the subject
of Fourier analysis that we cover on the second part of this course. The
remaing chapters will be devoted to the approximation methods for solution
of our ODEs and PDEs. We shall approximate the solutions with, piecewise,
polynomials. Such approximations are known as the Galerkin finite element
methods (FEM). In its final step, a finite element procedure yields a linear
system of equations (LSE) where the unknowns are the approximate values of
the solution at certain points. Then, an approximate solution is constructed
by adapting, piecewise, polynomials of certain degree to these point values.

The entries of the coefficient matrix and the right hand side of FEM’s
final linear system of equations consist of integrals which are not always
easily computable. Therefore, numerical integration are introduced to ap-
proximate such integrals. Interpolation techniques are introduced for both
accurate polynomial approximations and to derive error estimates necessary
in determining qualitative properties of the approximate solutions. That is
to show how the approximate solution approaches the exact solution as the
number of unknowns increase.
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1.2.1 Exercises

Problem 1.1. Find all solutions to the following homogeneous (their right
hand side is zero “0”) differential equations

a) u′′ − 3u′ + 2u = 0 b) u′′ + 4u = 0 c) u′′ − 6u′ + 9u = 0

Problem 1.2. Find all solutions to the following non-homogeneous (their
right hande side are non-zero ” 6= 0′′) differential equations

a) u′′+2u′+2u = (1+x)2 b) u′′+u′+2u = sin x c) u′′+3u′+2u = ex

Problem 1.3. Find a particular solution to each of the following equations
a) u′′ − 2u′ = x2 b) u′′ + u = sin x c) u′′ + 3u′ + 2u = ex + sin x.

Problem 1.4. Solve the boundary value problem for all x ∈ (0, 1),

−u′′ + u = f(x), u(0) = u(1) = 0,

a) for f(x) = 0, b) for f(x) = x, c) for f(x) = sin(πx),

Problem 1.5. Solve the following boundary value problems
a) −u′′ = x− 1, 0 < x < π, u′(0) = u(π) = 0,
b) −u′′ = x, 0 < x < π, u′(0) = u′(1) = 0.



Chapter 2

Polynomial Approximation in
1d

Our objective is to present the finite element method (FEM) as an approximation
technique for solution of differential equations using piecewise polynomials. This
chapter is devoted to some necessary mathematical environments and tools, as
well as a motivation for the unifying idea of using finite elements: A numerical
strategy arising from the need of changing a continuous problem into a discrete
one. The continuous problem will have infinitely many unknowns (if one asks for
u(x) at every x), and it cannot be solved exactly on a computer. Therefore it
has to be approximated by a discrete problem with a finite number of unknowns.
The more unknowns we keep, the better the accuracy of the approximation will
be, but at a greater computational expense.

2.1 Overture

Below we shall introduce a few standard examples of classical differential
equations and some regularity requirements.

Ordinary differential equations (ODEs)
An initial value problem (IVP), for instance a model in population dynamics
where u(t) is the size of the population at time t, can be written as

u̇(t) = λu(t), 0 < t < T, u(0) = u0, (2.1.1)

where u̇(t) = du
dt

and λ is a positive constant. For u0 > 0 this problem has
the increasing analytic solution u(t) = u0e

λ·t, which blows up as t→ ∞.

9
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• Numerical solutions of (IVP)

Example 2.1. Explicit (forward) Euler method (a finite difference method).
We discretize the IVP (2.1.1) with the forward Euler method based on a
partition of the interval [0, T ] into N subintervals, and an approximation of

t0 = 0 t1 t2 t3 tN = T

the derivative by a difference quotient at each subinterval [tk, tk+1] by u̇(t) ≈
u(tk+1)−u(tk)

tk+1−tk
. Then an approximation of (2.1.1) is given by

u(tk+1)− u(tk)

tk+1 − tk
= λ ·u(tk), k = 0, . . . , N−1, and u(0) = u0, (2.1.2)

and thus, letting ∆tk = tk+1 − tk,

u(tk+1) = (1 + λ∆tk)u(tk). (2.1.3)

Starting with k = 0 and the data u(0) = u0, the solution u(tk) would, itera-
tively, be computed at the subsequent points: t1, t2, . . . , tN = T .
For a uniform partition, where all subintervals have the same length ∆t,
(2.1.3) would be of the form

u(tk+1) = (1 + λ∆t)u(tk), k = 0, 1, . . . , N − 1. (2.1.4)

Iterating we get

u(tk+1) = (1 + λ∆t)u(tk) = (1 + λ∆t)2u(tk−1) = . . . = (1 + λ∆t)k+1u0.

Other finite difference methods for (2.1.1) are introduced in Chapter 5. There
are corresponding finite difference methods for PDE’s. Our goal, however, is
to study the Galerkin finite element method. To this approach we need to
introduce some basic tools:

Finite dimensional linear space of polynomials on an interval
Below we give an examples of finite dimensional linear space of polynomials
defined on an interval. In our study we shall consider, mainly, polynomials of
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degree 1. Higher degree polynomials are studied in some details in Chapter
3: the polynomial interpolation in 1D.

We define P (q)(a, b) := {Space of polynomials of degree ≤ q, a ≤ x ≤ b}.
A possible basis for P (q)(a, b) would be {xj}qj=0 = {1, x, x2, x3, . . . , xq}. These
are, in general, non-orthogonal polynomials and may be orthogonalized by
the Gram-Schmidt procedure. The dimension of Pq is therefore q + 1.

Example 2.2. For linear approximation we shall only need the basis func-
tions 1 and x. An alternative linear basis function on the interval [a, b] is
given by two functions λa(x) and λb(x) with the additional property

λa(x) =





1, x = a

0, x = b
and λb(x) =





1, x = b

0, x = 0.

Being linear λa(x) = Ax+B. To determine the coefficients A and B we have
that 




λa(a) = 1 =⇒ Aa+ B = 1

λa(b) = 0 =⇒ Ab+ B = 0

Subtracting the two relations above we get A(b − a) = −1 =⇒ A = −1
b−a

.

Then, from the second relation: B = −Ab we get B = b
b−a

. Thus,

λa(x) =
b− x

b− a
. Likewise λb(x) =

x− a

b− a
.

1

a b
x

λa(x) λb(x)

Figure 2.1: Linear basis functions λa(x) and λb(x).

Note that

λa(x) + λb(x) = 1, and aλa(x) + bλb(x) = x.
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Thus, we get the original basis functions: 1 and x for the linear polynomial
functions, as a linear combination of the basis functions λa(x) and λb(x).
Hence, any linear function f(x) on an interval [a, b] can be written as:

f(x) = f(a)λa(x) + f(b)λb(x). (2.1.5)

This is easily seen by the fact that the right hand side in (2.1.5) yields:

f(a)λa(a) + f(b)λb(a) = f(a)× 1 + f(b)× 0 = f(a),

f(a)λa(b) + f(b)λb(b) = f(a)× 0 + f(b)× 1 = f(b).

That is the two sides in (2.1.5) agree in two distinct points, therefore, being
linear, they represent the same function.

Example 2.3. Let [a, b] = [0, 1] then λ0(x) = 1−x and λ1(x) = x. Consider
the linear function f(x) = 3x+ 5/2. Then f(0) = 5/2, f(1) = 11/2 and

f(0)λ0(x) + f(1)λ1(x) =
5

2
(1− x) +

11

2
x = 3x+ 5/2 = f(x).

Definition 2.1. Let f(x) be a real valued function definied on R or on an
interval that contains [a, b]. A linear interpolant of f(x) on a and b is a
linear function π1f(x) such that π1f(a) = f(a) and π1f(b) = f(b).

As in verification of (2.1.5), we have also π1f(x) = f(a)λa(x)+f(b)λb(x) :

π1f(x) = f(a)
b− x

b− a
+ f(b)

x− a

b− a
.

Below, for simplicity, first we shall assume a uniform partition of the interval
[0, 1] into M + 1 subintervals of the same size h, i.e., we let xj = jh, and
consider subintervals Ij := [xj−1, xj ] = [(j − 1)h, jh] for j = 1, . . . ,M + 1.
Then setting a = xj−1 = (j − 1)h and b = xj = jh we may define

λj−1(x) = −x− jh

h
and λj(x) =

x− (j − 1)h

h
.

We denote the space of all continuous piecewise linear polynomial func-
tions on Th, by Vh. Let

V 0
h := {v : v ∈ Vh, v(0) = v(1) = 0}.
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a

π1f(x)

b
x

y

f(x)

Figure 2.2: The linear interpolant π1f(x) on a single interval.

x0 x2x1
x

y

xj−1 xj xM xM+1 = 1
h h h

Figure 2.3: An example of a function in V 0
h with uniform partition.

Applying (2.1.5), on each subinterval Ij, j = 1, . . . ,M +1, (using λj(x), j =
1, . . . ,M) we can easily construct the functions belonging V 0

h . To construct a
function v(x) ∈ Vh we shall also need additional basis functions λ0(x) and/or
λM+1(x) if v(0) 6= 0, and/or v(1) 6= 0, corresponding to non-vanishing data
in the boundary value problems.

The standard basis for piecewise linears in a uniform partition are given by
the so called hat-functions ϕj(x) with the property that ϕj(x) is a piecewise
linear function such that ϕj(xi) = δij, where

δij =





1, i = j,

0, i 6= j,
i.e. ϕj(x) =





x−(j−1)h
h

(j − 1)h ≤ x ≤ jh

(j+1)h−x
h

jh ≤ x ≤ (j + 1)h

0 x /∈ [(j − 1)h, (j + 1)h],
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with obvious modifications for j = 0 and j = M + 1. The hat function
ϕj(x) is just a combination of two basis functions λj(x) of the two adjacent
intervals Ij and Ij+1 (each of these two adjacent intervals has its own λj(x),
check this), extended by zero for x /∈ (Ij ∪ Ij+1).

x0 xj−2

1

x

y

xj−1 xj xj+1 xM xM+1

h h

ϕj(x)

Figure 2.4: A general piecewise linear basis function ϕj(x).

2.1.1 Basis function in nonuniform partition

Below we generalize the above procedure to the case of nonuniform partition.
Let now I = [0, 1] and define a partition of I into a collection of nonuniform
subintervals. For example Th : 0 = x0 < x1 < . . . < xM < xM+1 = 1, with
hj = xj − xj−1, and j = 1, . . . ,M + 1, is a partition of [0, 1] into M + 1
subintervals. Here h := h(x), known as the mesh function, is a piecewise
constant function defined as h(x) = hj for x ∈ Ij = [xj−1, xj]. We shall see
that π1f “gets closer to” f , as maxh(x) → 0. Now we may apply the concept
of the linear interpolant to a a set of nonuniform subintevals Ij := [xj−1, xj]
of a given interval I, simply by setting a = xj−1 and b = xj. Therefore, we
define

λj−1(x) =
xj − x

xj − xj−1

and λj(x) =
x− xj−1

xj − xj−1

.

The corresponding basis functions for the nonuniform case are given as

ϕj(x) =





x−xj−1

hj
xj−1 ≤ x ≤ xj

xj+1−x

hj+1
xj ≤ x ≤ xj+1

0 x /∈ [xj−1, xj+1].
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x0 x2x1
x

y

xj−1 xj xM xM+1 = 1
h2 hj hM+1

Figure 2.5: An example of a function in V 0
h .

Again with obvious modifications for j = 0 and j =M + 1.

x0 xj−2

1

x

y

xj−1 xj xj+1 xM xM+1
hj hj+1

ϕj(x)

Figure 2.6: A general piecewise linear basis function ϕj(x).

Vector spaces
To establish a framework we introduce some basic mathematical concepts:

Definition 2.2. A set V of functions or vectors is called a linear space, or
a vector space, if for all u, v ∈ V and all α ∈ R (real number), we have that

(i) u+ v ∈ V, (closed under addition)

(ii) αu ∈ V, (closed under multiplication by scalars),

(iii) ∃ (−u) ∈ V : u+ (−u) = 0, (closed under inverse),

(2.1.6)

where (i) and (ii) obey the usual rules of addition and multiplication by
scalars. Observe that α = 0 in (ii) (or (iii) and (i), with v = (−u)), implies
that 0 (zero vector) is an element of every vector space.
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Definition 2.3. A scalar product (inner product) is a real valued operator
on V ×V , viz 〈u, v〉 : V ×V → R such that for all u, v, w ∈ V and all α ∈ R,

(i) 〈u, v〉 = 〈v, u〉, (symmetry)

(ii) 〈u+ αv, w〉 = 〈u, w〉+ α〈v, w〉, (bi-linearity)

(iii) 〈v, v〉 ≥ 0, ∀v ∈ V, (positivity)

(iv) 〈v, v〉 = 0,⇐⇒ v = 0 (positive definiteness).

(2.1.7)

Definition 2.4. A vector space V is called an inner product space if V is
associated with a scalar product 〈·, ·〉, defined on V × V .

Example 2.4. A usual example of scalar product of two functions u and v
defined on an interval [a, b], known as the L2 scalar product, is defined by

〈u, v〉 :=
∫ b

a

u(x)v(x)dx. (2.1.8)

Here are examples of some vector spaces that are also linear product
spaces associated with the scalar product defined by (2.1.8).

•C(a, b): The space of continuous functions on an interval (a, b),
•P (q)[a, b]: the space of all polynomials of degree ≤ q on C[a, b] and
•Vh(a, d) and V 0

h (a, b) defined above.
The reader may easily check that all the properties (i) − (iv), in the

definition, for the scalar product are fullfiled for these spaces.

Definition 2.5. Two (real-valued) functions u(x) and v(x) are called orthog-
onal if 〈u, v〉 = 0. The orthogonality is also denoted by u ⊥ v.

Example 2.5. For the functions u(x) = 1 and v(x) = x, we have that
∫ 1

−1

u(x)v(x)dx =

∫ 1

−1

1×x dx = 0,

∫ 1

0

u(x)v(x)dx =

∫ 1

0

1×x dx = 1/2 6= 0.

Thus, 1 and x are orthogonal on the interval [−1, 1], but not on [0, 1].

Definition 2.6 (Norm). If u ∈ V then the norm of u, or the length of u,
associated with the scalar product (2.1.8) above is defined by:

‖u‖ =
√
〈u, u〉 = 〈u, u〉1/2 =

(∫ b

a

|u(x)|2dx
)1/2

. (2.1.9)

This norm is known as the L2-norm of u(x). There are other norms that we
will introduce later on.
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Now we recall one of the most useful inequalities that is frequently used in
estimating the integrals of product of two functions.

Lemma 2.1 (The Cauchy-Schwarz inequality). For all inner products with
their corresponding norms We have that

|〈u, v〉| ≤ ‖u‖‖v‖.

In particular for the L2-norm and scalar product

∣∣∣
∫
uv dx

∣∣∣ ≤
(∫

|u|2 dx
)1/2(∫

|v|2 dx
)1/2

.

Proof. A simple proof is given by using

〈u− av, u− av〉 ≥ 0, with a = 〈u, v〉/‖v‖2.

Then by the definition of the L2-norm and the symmetry property of the
scalar product we get

0 ≤ 〈u− av, u− av〉 = ‖u‖2 − 2a〈u, v〉+ a2‖v‖2.

Setting a = 〈u, v〉/‖v‖2 and rearranging the terms we get

0 ≤ ‖u‖2 − 〈u, v〉2
‖v‖4 ‖v‖2, and consequently

〈u, v〉2
‖v‖2 ≤ ‖u‖2,

which yields the desired result.

Now we shall return to approximate solution for (2.1.1) using polynomials.
To this approach we introduce the concept of weak formulation viz,

2.2 Variational formulation for (IVP)

We multiply the initial value problem (2.1.1) with test functions v in a certain
vector space V and integrate over [0, T ], to get

∫ T

0

u̇(t)v(t) dt = λ

∫ T

0

u(t)v(t) dt, ∀v ∈ V, (2.2.1)
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or equivalently

∫ T

0

(u̇(t)− λu(t))v(t)dt = 0, ∀v(t) ∈ V, (2.2.2)

which, interpreted as inner product, means that

(u̇(t)− λu(t)) ⊥ v(t), ∀v(t) ∈ V. (2.2.3)

We refer to (2.2.1) as the variational problem for (2.1.1). We shall seek a
solution for (2.2.1) in C(0, T ), or in

V := H1(0, T ) :=
{
f :

∫ T

0

(
f(t)2 + ḟ(t)2

)
dt <∞

}
.

Definition 2.7. If w is an approximation of u in the variational problem
(2.2.1), then R(w(t)) := ẇ(t)− λw(t) is called the residual error of w(t).

In general for an approximate solution w we have ẇ(t) − λw(t) 6= 0,
otherwise w and u would satisfy the same equation and by uniqueness we
would get the exact solution (w = u). Our requirement is instead that w
should satisfy (2.2.3), i.e. the equation (2.1.1) in average. In other words

R(w(t)) ⊥ v(t), ∀v(t) ∈ V. (2.2.4)

We look for an approximate solution U(t), called a trial function for (2.1.1),
in the space of polynomials of degree ≤ q:

V (q) := P (q) = {U : U(t) = ξ0 + ξ1t+ ξ2t
2 + . . .+ ξqt

q}. (2.2.5)

Hence, to determine U(t) we need to determine the coefficients ξ0, ξ1, . . . ξq.
We refer to V (q) as the trial space. Note that u(0) = u0 is given and therefore
we may take U(0) = ξ0 = u0. It remains to find the real numbers ξ1, . . . , ξq.
These are coefficients of the q linearly independent monomials t, t2, . . . , tq.
To this approach we define the test function space:

V
(q)
0 := P (q)

0 = {v ∈ P (q) : v(0) = 0}. (2.2.6)

Thus, v can be written as v(t) = c1t+ c2t
2 + . . .+ cqt

q. For an approximate
solution U , we require its residual R(U) to satisfy the condition (2.2.4):

R(U(t)) ⊥ v(t), ∀v(t) ∈ P (q)
0 .
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2.3 Galerkin finite element method for (2.1.1)

Given u(0) = u0, find the approximate solution U ∈ P (q) of (2.1.1) satisfying

∫ T

0

R(U(t))v(t)dt =

∫ T

0

(U̇(t)− λU(t))v(t)dt = 0, ∀v(t) ∈ P (q)
0 . (2.3.1)

Formally, this can be obtained requiring U to satify (2.2.2). Thus, since
U ∈ P (q), we may write U(t) = u0 +

∑q
j=1 ξjt

j, then U̇(t) =
∑q

j=1 jξjt
j−1.

Further, P (q)
0 is spanned by vi(t) = ti, i = 1, 2, . . . , q. Therefore, it suffices to

use these ti:s as test functions. Inserting these representations for U, U̇ and
v = vi, i = 1, 2, . . . , q into (2.3.1) we get

∫ 1

0

( q∑

j=1

jξjt
j−1 − λu0 − λ

q∑

j=1

ξjt
j
)
· tidt = 0, i = 1, 2, . . . , q. (2.3.2)

Moving the data to the right hand side, this relation can be rewritten as

∫ 1

0

( q∑

j=1

(jξjt
i+j−1 − λ ξjt

i+j)
)
dt = λu0

∫ 1

0

tidt, i = 1, 2, . . . , q. (2.3.3)

Performing the integration (ξj:s are constants independent of t) we get

q∑

j=1

ξj

[
j · t

i+j

i+ j
− λ

ti+j+1

i+ j + 1

]t=1

t=0
=

[
λ · u0

ti+1

i+ 1

]t=1

t=0
, (2.3.4)

or equivalently

q∑

j=1

( j

i+ j
− λ

i+ j + 1

)
ξj =

λ

i+ 1
· u0 i = 1, 2, . . . , q, (2.3.5)

which is a linear system of equations with q equations and q unknowns
(ξ1, ξ2, . . . , ξq); in the coordinates form. In the matrix form (2.3.5) reads

AΞ = b, with A = (aij), Ξ = (ξj)
q
j=1, and b = (bi)

q
i=1. (2.3.6)

But the matrix A although invertible, is ill-conditioned, i.e. difficult to invert
numerically with any accuracy. Mainly because {ti}qi=1 does not form an
orthogonal basis. For large i and j the last two rows (columns) ofA computed
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from aij =
j

i+ j
− λ

i+ j + 1
, are very close to each other resulting in a very

small value for the determinant of A.
If we insist to use polynomial basis up to certain order, then instead of
monomials, the use of Legendre orthogonal polynomials would yield a diago-
nal (sparse) coefficient matrix and make the problem well conditioned. This
however, is a rather tedious task. A better approach would be through the
use of piecewise polynomial approximations (see Chapter 5) on a partition of
[0, T ] into subintervals, where we use low order polynomial approximations
on each subinterval.

The L2-projection onto a space of polynomials

A polynomial πf interpolating a given function f(x) on an interval (a, b)
agrees with point values of f at a certain discrete set of points xi ∈ (a, b) :
πf(xi) = f(xi), i = 1, . . . , n, for some integer n. This concept can be gener-
alized to determine a polynomial Pf so that certain averages agree. These
could include the usual average of f over [a, b] defined by,

1

b− a

∫ b

a

f(x) dx,

or a generalized average of f with respect to a weight function w defined by

〈f, w〉 =
∫ b

a

f(x)w(x) dx.

x0 x2x1
x

y

xM xM+1 = 1

f

Pf

Figure 2.7: An example of a function f and its L2 projection Pf in [0, 1].
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Definition 2.8. The orthogonal projection, or L2-projection, of the function
f onto Pq(a, b) is the polynomial Pf ∈ Pq(a, b) such that

(f, w) = (Pf, w) ⇐⇒ (f − Pf, w) = 0 for all w ∈ Pq(a, b). (2.3.7)

Thus, (2.3.7) is equivalent to a (q + 1)× (q + 1) system of equations.

2.4 A Galerkin method for (BVP)

We consider Galerkin method for the following stationary (u̇ = du/dt = 0)
heat equation in one dimension:

−u′′(x) = f(x), 0 < x < 1; u(0) = u(1) = 0. (2.4.1)

Let Th : {jh}M+1
j=0 , (M + 1)h = 1 be a uniform partition of the interval [0, 1]

into the subintervals Ij = ((j − 1)h, jh), with the same length |I| = h,
j = 1, 2, . . . ,M + 1. We define the finite dimensional space V 0

h by

V 0
h := {v ∈ C(0, 1) : v is a piecewise linear function on Th, v(0) = v(1) = 0},

with the basis functions {ϕj}Mj=1 defined below (these functions will be used to
determine the values of approximate solution at the points xj, j = 1, . . . ,M.
Due to the fact that u is known at the boundary points 0 and 1; it is not
necessary to supply test functions corresponding to the values at x0 = 0 and
xM+1 = 1. However, in the case of given non-homogeneous boundary data
u(0) = u0 6= 0 and/or u(1) = u1 6= 0, to represent the trial function, one uses
the basis functions to all internal nodes as well as those corresponding to the
non-homogeneous data (i.e. at x = 0 and/or x = 1).

Remark 2.1. If the Dirichlet boundary condition is given at only one of the
boundary points; say x0 = 0 and the other one satisfies, e.g. a Neumann
condition as

−u′′(x) = f(x), 0 < x < 1; u(0) = b0, u′(1) = b1, (2.4.2)

then the function ϕ0 (at x0 = 0 ) will be unnecessary (no matter whether
b0 = 0 or b0 6= 0), whereas one needs to provide the half-base function ϕM+1

at xM+1 = 1 (dashed in (2.8) below). Note that, ϕ0 participates (as data) in
representing the trial function U (see excercises at the end of this chapter).
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x0 x1 x2

1

x

y

xj−1 xj xj+1 xM−1 xM xM+1

h h

ϕjϕ1 ϕM ϕM+1

Figure 2.8: Piecewise linear basis functions

Now we define the function space

V0 = H1
0 (0, 1) :=

{
w :

∫ 1

0

(w(x)2 + w′(x)2) dx <∞, w(0) = w(1) = 0

}
,

A variational formulation for problem (2.4.1), is based on multiplying (2.4.1)
by a test function v ∈ V0 and integrating over [0, 1):

∫ 1

0

(−u′′(x)− f(x))v(x)dx = 0, ∀v(x) ∈ V0. (2.4.3)

Integrating by parts we get

−
∫ 1

0

u′′(x)v(x)dx =

∫ 1

0

u′(x)v′(x)dx− [u′(x)v(x)]10, (2.4.4)

and since for v(x) ∈ V0; v(0) = v(1) = 0, we end up with

−
∫ 1

0

u′′(x)v(x)dx =

∫ 1

0

u′(x)v′(x) dx. (2.4.5)

Thus the variational formulation for (2.4.1) is: Find u ∈ V0 such that

∫ 1

0

u′(x)v′(x) dx =

∫ 1

0

f(x)v(x)dx, ∀v ∈ V0 (2.4.6)

This is a justification for the finite element formulation:
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The Galerkin finite element method (FEM) for the problem (2.4.1):
Find U(x) ∈ V 0

h such that

∫ 1

0

U ′(x)v′(x) dx =

∫ 1

0

f(x)v(x)dx, ∀v(x) ∈ V 0
h . (2.4.7)

Thus the Galerkin approximation U is very similar to Pu: The L2-projection
of u. We shall determine ξj = U(xj) which are the approximate values of u(x)
at the node points xj = jh, 1 ≤ j ≤ M . To this end using basis functions
ϕj(x), we may write

U(x) =
M∑

j=1

ξj ϕj(x) which implies that U ′(x) =
M∑

j=1

ξjϕ
′
j(x). (2.4.8)

Thus, (2.4.7) can be written as

M∑

j=1

ξj

∫ 1

0

ϕ′
j(x) v

′(x)dx =

∫ 1

0

f(x)v(x)dx, ∀v(x) ∈ V 0
h . (2.4.9)

Since every v(x) ∈ V 0
h is a linear combination of the basis functions ϕi(x),

it suffices to try with v(x) = ϕi(x), for i = 1, 2, . . . ,M : That is, to find ξj
(constants), 1 ≤ j ≤M such that

M∑

j=1

(∫ 1

0

ϕ′
i(x)ϕ

′
j(x)dx

)
ξj =

∫ 1

0

f(x)ϕi(x)dx, i = 1, 2, . . . ,M. (2.4.10)

This M ×M system of equations can be written in the matrix form as

Aξ = b. (2.4.11)

Here A is called the stiffness matrix and b the load vector:

A = {aij}Mi,j=1, aij =

∫ 1

0

ϕ′
i(x)ϕ

′
j(x)dx, (2.4.12)

b =




b1

b2

. . .

bM



, with bi =

∫ 1

0

f(x)ϕi(x)dx, and ξ =




ξ1

ξ2

. . .

ξM



. (2.4.13)
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To compute the entries aij of the matrix A, first we need to derive ϕ′
i(x), viz

ϕi(x) =





x−(i−1)h
h

(i− 1)h ≤ x ≤ ih

(i+1)h−x
h

ih ≤ x ≤ (i+ 1)h

0 else

ϕ′
i(x) =





1
h

(i− 1)h < x < ih

− 1
h

ih < x < (i+ 1)h

0 else

Stiffness matrix A:

If |i− j| > 1, then ϕi and ϕj have disjoint support, see Figure 2.7, and

aij =

∫ 1

0

ϕ′
i(x)ϕ

′
j(x)dx = 0.

1

x

y

xj−2 xj−1 xj xj+1 xj+2

ϕj−1 ϕj+1

Figure 2.9: ϕj−1 and ϕj+1.

As for i = j: we have that

aii =

∫ xi

xi−1

(1
h

)2

dx+

∫ xi+1

xi

(
− 1

h

)2

dx =

h︷ ︸︸ ︷
xi − xi−1

h2
+

h︷ ︸︸ ︷
xi+1 − xi

h2
=

1

h
+

1

h
=

2

h
.
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It remains to compute aij for the case of (applicable!) j = i± 1: A straight-
forward calculation (see the fig below) yields

ai,i+1 =

∫ xi+1

xi

(
− 1

h

)
· 1
h
dx = −xi+1 − xi

h2
= −1

h
. (2.4.14)

Obviously ai+1,i = ai,i+1 = − 1
h
. To summarize, we have

1

x

y

xj−1 xj xj+1 xj+2

ϕj ϕj+1

Figure 2.10: ϕj and ϕj+1.





aij = 0, if |i− j| > 1,

aii =
2
h
, i = 1, 2, . . . ,M,

ai−1,i = ai,i−1 = − 1
h
, i = 2, 3, . . . ,M.

(2.4.15)

By symmetry aij = aji, and we finally have the stiffness matrix for approxi-
mating the stationary heat conduction by piecewise linear polynomials in a
uniform mesh, as:

Aunif =
1

h
·




2 −1 0 . . . . . . 0

−1 2 −1 0 . . . . . .

0 −1 2 −1 0 . . .

. . . . . . . . . . . . . . . 0

. . . . . . 0 −1 2 −1

0 . . . . . . 0 −1 2




. (2.4.16)
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As for the components of the load vector b we have

bi =

∫ 1

0

f(x)ϕi(x) dx =

∫ xi

xi−1

f(x)
x− xi−1

h
dx+

∫ xi+1

xi

f(x)
xi+1 − x

h
dx.

2.4.1 The nonuniform version

Now let T̃h : 0 = x0 < x1 < . . . < xM < xM+1 = 1 be a partition of
the interval (0, 1) into nonuniform subintervals Ij = (xj−1, xj), with lengths
|Ij| = hj = xj − xj−1, j = 1, 2, . . . ,M + 1. We define the finite dimensional
space V 0

h by

V 0
h := {v ∈ C(0, 1) : v is a piecewise linear function on T̃h, v(0) = v(1) = 0},

with the nonuniform basis functions {ϕj}Mj=1. To compute the entries aij of
the coefficient matrix A, first we need to derive ϕ′

i(x) for the nonuniform
basis functions: i.e.,

ϕi(x) =





x−xi−1

hi
xi−1 ≤ x ≤ xi

xi+1−x
hi+1

xi ≤ x ≤ xi+1

0 else

=⇒

ϕ′
i(x) =





1
hi

xi−1 < x < xi

− 1
hi+1

xi < x < xi+1

0 else

Nonuniform stiffness matrix A:
If |i− j| > 1, then ϕi and ϕj have disjoint support, see Figure 2.9, and

aij =

∫ 1

0

ϕ′
i(x)ϕ

′
j(x)dx = 0.

As for i = j: we have that

aii =

∫ xi

xi−1

( 1

hi

)2

dx+

∫ xi+1

xi

(
− 1

hi+1

)2

dx =

hi︷ ︸︸ ︷
xi − xi−1

h2i
+

hi+1︷ ︸︸ ︷
xi+1 − xi
h2i+1

=
1

hi
+

1

hi+1

.
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For the case of (applicable!) j = i± 1:

ai,i+1 =

∫ xi+1

xi

(
− 1

hi+1

)
· 1

hi+1

dx = −xi+1 − xi
h2i+1

= − 1

hi+1

. (2.4.17)

Obviously ai+1,i = ai,i+1 = − 1
hi+1

. Thus in nonuniform case we have that





aij = 0, if |i− j| > 1,

aii =
1
hi
+ 1

hi+1
, i = 1, 2, . . . ,M,

ai−1,i = ai,i−1 = − 1
hi
, i = 2, 3, . . . ,M.

(2.4.18)

By symmetry aij = aji, and we finally have the stiffness matrix in nonuniform
mesh, for the stationary heat conduction as:

A =




1
h1

+ 1
h2

− 1
h2

0 . . . 0

− 1
h2

1
h2

+ 1
h3

− 1
h3

0 0

0 . . . . . . . . . 0

. . . 0 . . . . . . − 1
hM

0 . . . 0 − 1
hM

1
hM

+ 1
hM+1




. (2.4.19)

With a uniform mesh, i.e. hi = h we get that A = Aunif .

Remark 2.2. Unlike the matrix A for polynomial approximation of IVP in
(2.3.5), A has a more desirable structure, e.g. A is a sparse, tridiagonal and
symmetric matrix. This is due to the fact that the basis functions {ϕj}Mj=1

are nearly orthogonal.

2.5 Exercises

Problem 2.1. Prove that V
(q)
0 := {v ∈ P (q)(0, 1) : v(0) = 0}, is a subspace

of P (q)(0, 1).

Problem 2.2. Consider the ODE: u̇(t) = u(t), 0 < t < 1; u(0) = 1.
Compute its Galerkin approximation in P (q)(0, 1), for q = 1, 2, 3, and 4.
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Problem 2.3. Consider the ODE: u̇(t) = u(t), 0 < t < 1; u(0) = 1.
Compute the L2(0, 1) projection of the exact solution u into P3(0, 1).

Problem 2.4. Compute the stiffness matrix and load vector in a finite ele-
ment approximation of the boundary value problem

−u′′(x) = f(x), 0 < x < 1, u(0) = u(1) = 0,

with f(x) = x and h = 1/4.

Problem 2.5. We want to find a solution approximation U(x) to

−u′′(x) = 1, 0 < x < 1, u(0) = u(1) = 0,

using the ansatz U(x) = A sin πx+B sin 2πx.

a. Calculate the exact solution u(x).

b. Write down the residual R(x) = −U ′′(x)− 1

c. Use the orthogonality condition

∫ 1

0

R(x) sin πnx dx = 0, n = 1, 2,

to determine the constants A and B.

d. Plot the error e(x) = u(x)− U(x).

Problem 2.6. Consider the boundary value problem

−u′′(x) + u(x) = x, 0 < x < 1, u(0) = u(1) = 0.

a. Verify that the exact solution of the problem is given by

u(x) = x− sinh x

sinh 1
.

b. Let U(x) be a solution approximation defined by

U(x) = A sin πx+ B sin 2πx+ C sin 3πx,

where A, B, and C are unknown constants. Compute the residual function

R(x) = −U ′′(x) + U(x)− x.
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c. Use the orthogonality condition

∫ 1

0

R(x) sin πnx dx = 0, n = 1, 2, 3,

to determine the constants A, B, and C.

Problem 2.7. Let U(x) = ξ0φ0(x) + ξ1φ1(x) be a solution approximation to

−u′′(x) = x− 1, 0 < x < π, u′(0) = u(π) = 0,

where ξi, i = 0, 1, are unknown coefficients and

φ0(x) = cos
x

2
, φ1(x) = cos

3x

2
.

a. Find the analytical solution u(x).

b. Define the approximate solution residual R(x).

c. Compute the constants ξi using the orthogonality condition

∫ π

0

R(x)φi(x) dx = 0, i = 0, 1,

i.e., by approximating u(x) as a linear combination of φ0(x) and φ1(x)

Problem 2.8. Use the projection technique of the previous exercises to solve

−u′′(x) = 0, 0 < x < π, u(0) = 0, u(π) = 2,

assuming that U(x) = A sin x+ B sin 2x+ C sin 3x+ 2
π2x

2.

Problem 2.9. Show that (f − Phf, v) = 0, ∀v ∈ Vh, if and only if (f −
Phf, ϕi) = 0, i = 0, . . . , N ; where {ϕi}Ni=1 ⊂ Vh is the basis of hat-functions.
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Chapter 3

Interpolation, Numerical
Integration in 1d

3.1 Preliminaries

Definition 3.1. A polynomial interpolant πqf of a function f , defined on
an interval I = [a, b], is a polynomial of degree ≤ q having the nodal values
at q + 1 distinct points xj ∈ [a, b], j = 0, 1, . . . , q, coinciding with those of f ,
i.e., πqf ∈ Pq(a, b) and πqf(xj) = f(xj), j = 0, . . . , q.

Below we illustrate this definition through a simple and familiar example.

Example 3.1. Linear interpolation on an interval. We start with the
unit interval I := [0, 1] and a continuous function f : I → R. We let q = 1
and seek the linear interpolant of f on I, i.e. the linear function π1f ∈ P1,
such that π1f(0) = f(0) and π1f(1) = f(1). Thus we seek the constants C0

and C1 in the following representation of π1f ∈ P1,

π1f(x) = C0 + C1x, x ∈ I, (3.1.1)

where

π1f(0) = f(0) =⇒ C0 = f(0), and

π1f(1) = f(1) =⇒ C0 + C1 = f(1) =⇒ C1 = f(1)− f(0).
(3.1.2)

Inserting C0 and C1 into (3.1.1) it follows that

π1f(x) = f(0)+(f(1)−f(0))x = f(0)(1−x)+f(1)x := f(0)λ0(x)+f(1)λ1(x).

31
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In other words π1f(x) is represented in two different bases:

π1f(x) = C0 · 1 + C1 · x, with {1, x} as the set of basis functions and

π1f(x) = f(0)(1−x)+f(1)x, with {1−x, x} as the set of basis functions.

The functions λ0(x) = 1− x and λ1(x) = x are linearly independent, since if

0 = α0(1− x) + α1x = α0 + (α1 − α0)x, for all x ∈ I, (3.1.3)

then
x = 0 =⇒ α0 = 0

x = 1 =⇒ α1 = 0

}
=⇒ α0 = α1 = 0. (3.1.4)

1

f(x)

π1f(x)

1

λ0(x) = 1− x1

λ1(x) = x

Figure 3.1: Linear interpolation and basis functions for q = 1.

Remark 3.1. Note that if we define a scalar product on Pk(a, b) by

(p, q) =

∫ b

a

p(x)q(x) dx, ∀p, q ∈ Pk(a, b), (3.1.5)

then we can easily verify that neither {1, x} nor {1− x, x} is an orthogonal

basis for P1(0, 1), since (1, x) :=
∫ 1

0
1 · x dx = [x

2

2
] = 1

2
6= 0 and (1− x, x) :=∫ 1

0
(1− x)x dx = 1

6
6= 0.

With such background, it is natural to pose the following question:
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Question 3.1. How well does πqf approximate f? In other words how
large/small will the error be in approximating f(x) by πqf(x)?

To answer this question we need to estimate the difference between f(x) and
πqf(x). For instance for q = 1, geometrically, the deviation of f(x) from
π1f(x) (from being linear) depends on the curvature of f(x), i.e. on how
curved f(x) is. In other words, on how large f ′′(x) is, say, on an interval
(a, b). To quantify the relationship between the size of the error f −π1f and
the size of f ′′, we need to introduce some measuring instrument for vectors
and functions:

Definition 3.2. Let x = (x1, . . . , xn)
T and y = (y1, . . . , yn)

T ∈ Rn be two
column vectors (T stands for transpose). We define the scalar product of x
and y by

〈x,y〉 = xTy = x1y1 + · · ·+ xnyn,

and the vector norm for x as the Euclidean length of x:

‖x‖ :=
√
〈x,x〉 =

√
x21 + · · ·+ x2n.

Lp(a, b)-norm: Assume that f is a real valued function defined on the in-
terval (a, b). Then we define the Lp-norm (1 ≤ p ≤ ∞) of f by

Lp-norm ‖f‖Lp(a,b) :=
(∫ b

a

|f(x)|pdx
)1/p

, 1 ≤ p <∞,

L∞-norm ‖f‖L∞(a,b) := max
x∈[a,b]

|f(x)|.

For 1 ≤ p ≤ ∞ we define the Lp(a, b)-space by

Lp(a, b) := {f : ‖f‖Lp(a,b) <∞}.

Below we shall answer Question 3.1, first in the L∞-norm, and then in the
Lp-norm (mainly for p = 1, 2.)

Theorem 3.1. (L∞-error estimates for linear interpolation in an interval)
Assume that f ′′ ∈ L∞(a, b). Then, for q = 1, i.e. only 2 interpolation
nodes (e.g. end-points of the interval), there are interpolation constants,
Ci, i = 1, 2, 3., independent of the function f and the size of the interval
[a, b], such that

(1) ‖π1f − f‖L∞(a,b) ≤ C1(b− a)2‖f ′′‖L∞(a,b)
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(2) ‖π1f − f‖L∞(a,b) ≤ C2(b− a)‖f ′‖L∞(a,b)

(3) ‖(π1f)′ − f ′‖L∞(a,b) ≤ C3(b− a)‖f ′′‖L∞(a,b).

Proof. Note that every linear function, p(x) on [a, b] can be written as a
linear combination of the basis functions λa(x) and λb(x) where

λa(x) =
b− x

b− a
and λb(x) =

x− a

b− a
: (3.1.6)

p(x) = p(a)λa(x) + p(b)λb(x). (3.1.7)

Recall that linear combinations of λa(x) and λb(x) give the basis functions
{1, x} for P1:

λa(x) + λb(x) = 1, aλa(x) + bλb(x) = x. (3.1.8)

Here, π1f(x) being a linear function connecting the two points (a, f(a)) and
(b, f(b)), is represented by

π1f(x) = f(a)λa(x) + f(b)λb(x). (3.1.9)

1

a

π1f(x)

b

f(x)

a b
x

λa(x) =
b−x
b−a

λb(x) =
x−a
b−a

λa(x) + λb(x) = 1

Figure 3.2: Linear Lagrange basis functions for q = 1.

By the Taylor expansion for f(a) and f(b) about x ∈ (a, b) we can write





f(a) = f(x) + (a− x)f ′(x) +
1

2
(a− x)2f ′′(ηa), ηa ∈ [a, x]

f(b) = f(x) + (b− x)f ′(x) +
1

2
(b− x)2f ′′(ηb), ηb ∈ [x, b].

(3.1.10)
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Inserting f(a) and f(b) from (3.1.10) into (3.1.9), it follows that

π1f(x) =[f(x) + (a− x)f ′(x) +
1

2
(a− x)2f ′′(ηa)]λa(x)+

+[f(x) + (b− x)f ′(x) +
1

2
(b− x)2f ′′(ηb)]λb(x).

Rearranging the terms, using (3.1.8) and the identity (which also follows
from (3.1.8)) (a− x)λa(x) + (b− x)λb(x) = 0 we get

π1f(x) = f(x)[λa(x) + λb(x)] + f ′(x)[(a− x)λa(x) + (b− x)λb(x)]+

+
1

2
(a− x)2f ′′(ηa)λa(x) +

1

2
(b− x)2f ′′(ηb)λb(x) =

= f(x) +
1

2
(a− x)2f ′′(ηa)λa(x) +

1

2
(b− x)2f ′′(ηb)λb(x).

Consequently

|π1f(x)− f(x)| =
∣∣∣
1

2
(a− x)2f ′′(ηa)λa(x) +

1

2
(b− x)2f ′′(ηb)λb(x)

∣∣∣. (3.1.11)

To proceed, we note that for a ≤ x ≤ b both (a−x)2 ≤ (a−b)2 and (b−x)2 ≤
(a − b)2, furthermore λa(x) ≤ 1 and λb(x) ≤ 1, ∀ x ∈ (a, b). Moreover,
by the definition of the maximum norm both |f ′′(ηa)| ≤ ‖f ′′‖L∞(a,b), and
|f ′′(ηb)| ≤ ‖f ′′‖L∞(a,b). Thus we may estimate (3.1.11) as

|π1f(x)−f(x)| ≤
1

2
(a−b)2 ·1 ·‖f ′′‖L∞(a,b)+

1

2
(a−b)2 ·1 ·‖f ′′‖L∞(a,b), (3.1.12)

and hence

|π1f(x)−f(x)| ≤ (a−b)2‖f ′′‖L∞(a,b) corresponding to ci = 1. (3.1.13)

The other two estimates (2) and (3) are proved similarly.

Remark 3.2. We can show that the optimal value of C1 = 1
8
(cf Problem

3.10), i.e. the constant C1 = 1 of the proof above is not the optimal one.

An analogue to Theorem 3.1 can be proved in the Lp-norm, p = 1, 2. This
general version (concisely stated below as Theorem 3.2) is the frequently used
Lp-interpolation error estimate.
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Theorem 3.2. Let π1v(x) be the linear interpolant of the function v(x) on
(a, b). Then, assuming that v is twice differentiable (v ∈ C2(a, b)), there are
interpolation constants ci, i = 1, 2, 3 such that for p = 1, 2, ∞,

‖π1v − v‖Lp(a,b) ≤ c1(b− a)2‖v′′‖Lp(a,b), (3.1.14)

‖(π1v)′ − v′‖Lp(a,b) ≤ c2(b− a)‖v′′‖Lp(a,b), (3.1.15)

‖π1v − v‖Lp(a,b) ≤ c3(b− a)‖v′‖Lp(a,b). (3.1.16)

For p = ∞ this is just the previous Theorem 3.1.

Proof. For p = 1 and p = 2, the proof uses the integral form of the Taylor
expansion and is left as an exercise.

Below we review a simple piecewise linear interpolation procedure on a
partition of an interval:

Vector space of piecewise linear functions on an interval. Given
I = [a, b], let Th : a = x0 < x1 < x2 < . . . < xN−1 < xN = b be a
partition of I into subintervals Ij = [xj−1, xj] of length hj = |Ij| := xj−xj−1;
j = 1, 2, . . . , N . Let

Vh := {v|v is a continuous, piecewise linear function on Th}, (3.1.17)

then Vh is a vector space with the previously introduced hat functions:
{ϕj}Nj=0 as basis functions. Note that ϕ0(x) and ϕN(x) are left and right
half-hat functions, respectively. We now show that every function in Vh is a
linear combination of ϕj:s.

Lemma 3.1. We have that

∀v ∈ Vh; v(x) =
N∑

j=0

v(xj)ϕj(x). (3.1.18)

Proof. Both the left and right hand side are continuous piecewise linear func-
tions. Thus it suffices to show that they have the same nodal values: Let
x = xj, then since ϕi(xj) = δij,

RHS|xj
=v(x0)ϕ0(xj) + v(x1)ϕ1(xj) + . . .+ v(xj−1)ϕj−1(xj)

+ v(xj)ϕj(xj) + v(xj+1)ϕj+1(xj) + . . .+ v(xN)ϕN(xj)

=v(xj) = LHS|xj
.

(3.1.19)
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Definition 3.3. For a partition Th : a = x0 < x1 < x2 < . . . < xN = b of
the interval [a, b] we define the mesh function h(x) as the piecewise constant
function h(x) := hj = xj − xj−1 for x ∈ Ij = (xj−1, xj), j = 1, 2, . . . , N .

Definition 3.4. Assume that f is a continuous function in [a, b]. Then the
continuous piecewise linear interpolant of f is defined by

πhf(x) =
N∑

j=0

f(xj)ϕj(x), x ∈ [a, b].

Here the sub-index h refers to the mesh function h(x).

Hence

πhf(xj) = f(xj), j = 0, 1, . . . , N. (3.1.20)

Remark 3.3. Note that we denote the linear interpolant, defined for a single
interval [a, b], by π1f which is a polynomial of degree 1, whereas the piecewise
linear interpolant πhf is defined for a partition Th of [a, b] and is a piecewise
linear function. For the piecewise polynomial interpolants of (higher) degree
q we shall use the notation for Cardinal functions of Lagrange interpolation
(see Section 3.2).

Note that for each interval Ij, j = 1, . . . , N , we have that

(i) πhf(x) is linear on Ij =⇒ πhf(x) = c0 + c1x for x ∈ Ij.

(ii) πhf(xj−1) = f(xj−1) and πhf(xj) = f(xj).

Combining (i) and (ii) we get





πhf(xj−1) = c0 + c1xj−1 = f(xj−1)

πhf(xj) = c0 + c1xj = f(xj)
=⇒





c1 =
f(xj)−f(xj−1)

xj−xj−1

c0 =
−xj−1f(xj)+xjf(xj−1)

xj−xj−1
.

Thus, we may write





c0 = f(xj−1)
xj

xj−xj−1
+ f(xj)

−xj−1

xj−xj−1

c1x = f(xj−1)
−x

xj−xj−1
+ f(xj)

x
xj−xj−1

.
(3.1.21)
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x0 x1 x2

f(x)πhf(x)

xj xN−1 xN
x

Figure 3.3: Piecewise linear interpolant πhf(x) of f(x).

For x ∈ [xj−1, xj ], j = 1, 2, . . . , N , adding up the equations in (3.1.21) yields

πhf(x) = c0 + c1x = f(xj−1)
xj − x

xj − xj−1

+ f(xj)
x− xj−1

xj − xj−1

= f(xj−1)λj−1(x) + f(xj)λj(x),

where λj−1(x) and λj(x) are the restrictions of the piecewise linear basis
functions ϕj−1(x) and ϕj(x) to Ij.

1

xj−1 xj
x

λj−1(x) =
xj−x

xj−xj−1

λj(x) =
x−xj−1

xj−xj−1

Figure 3.4: Linear Lagrange basis functions for q = 1 on the subinterval Ij.

In the next section we shall generalize the above procedure and introduce
Lagrange interpolation basis functions.

The main result of this section can be stated as follows:
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Theorem 3.3. Let πhv(x) be the piecewise linear interpolant of the function
v(x) on the partition Th of [a, b]. Then assuming that v is sufficiently regular
(v ∈ C2(a, b)), there are interpolation constants ci, i = 1, 2, 3, such that for
p = 1, 2, ∞,

‖πhv − v‖Lp(a,b) ≤ c1‖h2v′′‖Lp(a,b), (3.1.22)

‖(πhv)′ − v′‖Lp(a,b) ≤ c2‖hv′′‖Lp(a,b), (3.1.23)

‖πhv − v‖Lp(a,b) ≤ c3‖hv′‖Lp(a,b). (3.1.24)

Proof. Recalling the definition of the partition Th, we may write

‖πhv − v‖pLp(a,b)
=

N∑

j=1

‖πhv − v‖pLp(Ij)
≤

N∑

j=1

cp1‖h2jv′′‖pLp(Ij)

≤ cp1‖h2v′′‖pLp(a,b)
,

(3.1.25)

where in the first inequality we apply Theorem 3.2 to an arbitrary partition
interval Ij and them sum over j. The other two estimates are proved similarly.

3.2 Lagrange interpolation

Consider Pq(a, b); the vector space of all polynomials of degree ≤ q on the
interval (a, b), with the basis functions 1, x, x2, . . . , xq. We have seen, in
Chapter 2, that this is a non-orthogonal basis (with respect to scalar product
(3.1.5) with, e.g. a = 0 and b = 1) that leads to ill-conditioned coefficient
matrices. We will now introduce a new set of basis functions, which being
almost orthogonal have some useful properties.

Definition 3.5 (Cardinal functions). Lagrange basis is the set of polynomials
{λi}qi=0 ⊂ P q(a, b) associated with the (q + 1) distinct points, a = x0 < x1 <
. . . < xq = b in [a, b] and determined by the requirement that: at the nodes,
λi(xj) = 1 for i = j, and 0 otherwise (λi(xj) = 0 for i 6= j), i.e. for x ∈ [a, b],

λi(x) =
(x− x0)(x− x1) . . . (x− xi−1) ↓ (x− xi+1) . . . (x− xq)

(xi − x0)(xi − x1) . . . (xi − xi−1) ↑ (xi − xi+1) . . . (xi − xq)
. (3.2.1)
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By the arrows ↓ , ↑ in (3.2.1) we want to emphasize that λi(x) =
∏

j 6=i

( x− xj
xi − xj

)

does not contain the singular factor
x− xi
xi − xi

. Hence

λi(xj) =
(xj − x0)(xj − x1) . . . (xj − xi−1)(xj − xi+1) . . . (xj − xq)

(xi − x0)(xi − x1) . . . (xi − xi−1)(xi − xi+1) . . . (xi − xq)
= δij,

and λi(x), i = 0, 1, . . . , q, is a polynomial of degree q on (a, b) with

λi(xj) = δij =





1 i = j

0 i 6= j.
(3.2.2)

Example 3.2. Let q = 2, then we have a = x0 < x1 < x2 = b, where

i = 1, j = 2 ⇒ λ1(x2) =
(x2 − x0)(x2 − x2)

(x1 − x0)(x1 − x2)
= 0

i = j = 1 ⇒ λ1(x1) =
(x1 − x0)(x1 − x2)

(x1 − x0)(x1 − x2)
= 1.

A polynomial P (x) ∈ Pq(a, b) with the values pi = P (xi) at the nodes xi,
i = 0, 1, . . . , q, can be expressed in terms of the above Lagrange basis as

P (x) = p0λ0(x) + p1λ1(x) + . . .+ pqλq(x). (3.2.3)

Using (3.2.2), P (xi) = p0λ0(xi)+p1λ1(xi)+. . .+piλi(xi)+. . .+pqλq(xi) = pi.
Recalling definition 3.1, if we choose a ≤ ξ0 < ξ1 < . . . < ξq ≤ b, as

q+1 distinct interpolation nodes on [a, b], then the interpolating polynomial
πqf ∈ Pq(a, b) satisfies

πqf(ξi) = f(ξi), i = 0, 1, . . . , q (3.2.4)

and the Lagrange formula (3.2.3) for πqf(x) reads as

πqf(x) = f(ξ0)λ0(x) + f(ξ1)λ1(x) + . . .+ f(ξq)λq(x), a ≤ x ≤ b.

Example 3.3. For q = 1, we have only the nodes a and b. Recall that

λa(x) =
b− x

b− a
and λb(x) =

x− a

b− a
, thus as in the introduction in this chapter

π1f(x) = f(a)λa(x) + f(b)λb(x). (3.2.5)
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Example 3.4. To interpolate f(x) = x3 + 1 by piecewise polynomials of
degree 2, in the partition x0 = 0, x1 = 1, x2 = 2 of the interval [0, 2], we
have

π2f(x) = f(0)λ0(x) + f(1)λ1(x) + f(2)λ2(x),

where f(0) = 1, f(1) = 2, f(2) = 9, and we may compute Lagrange basis as

λ0(x) =
1

2
(x− 1)(x− 2), λ1(x) = −x(x− 2), λ2(x) =

1

2
x(x− 1).

This yields

π2f(x) = 1 · 1
2
(x− 1)(x− 2)− 2 · x(x− 2) + 9 · 1

2
x(x− 1) = 3x2 − 2x+ 1.

3.3 Numerical integration, Quadrature rules

In the finite element approximation procedure of solving differential equa-
tions, with a given source term (data) f(x), we need to evaluate integrals
of the form

∫
f(x)ϕi(x) dx, with ϕi(x) being a finite element basis function.

Such integrals are not easily computable for higher order approximations
(e.g. with ϕi:s being Lagrange basis of high order) and more involved data.
Further, we encounter matrices with entries being the integrals of products
of these, higher order, basis functions and their derivatives. Except some
special cases (see calculations for A and Aunif in the previous chapter), such
integrations are usually performed approximately by using numerical meth-
ods. Below we briefly review some of these numerical integration techniques.

We approximate the integral I =
∫ b

a
f(x)dx using a partition of the in-

terval [a, b] into subintervals, where on each subinterval f is approximated
by polynomials of a certain degree d. We shall denote the approximate value
of the integral I by Id. To proceed we assume, without loss of generality,
that f(x) > 0 on [a, b] and that f is continuous on (a, b). Then the inte-

gral I =
∫ b

a
f(x)dx is interpreted as the area of the domain under the curve

y = f(x); limited by the x-axis and the lines x = a and x = b. We shall
approximate this area using the values of f at certain points as follows.

We start by approximating the integral over a single interval [a, b]. These
rules are referred to as simple rules.

i) Simple midpoint rule uses the value of f at the midpoint x̄ := a+b
2

of [a, b],

i.e. f
(

a+b
2

)
. This means that f is approximated by the constant function
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(polynomial of degree 0) P0(x) = f
(

a+b
2

)
and the area under the curve

y = f(x) by

I =

∫ b

a

f(x)dx ≈ (b− a)f
(a+ b

2

)
. (3.3.1)

To prepare for generalizations, if we let x0 = a and x1 = b and assume that
the length of the interval is h, then

I ≈ I0 = hf
(
a+

h

2

)
= hf(x̄) (3.3.2)

a = x0

f(b)

a+ h/2 b = x1

f(a)

P0(x)f(a+ h/2)

x

Figure 3.5: Midpoint approximation I0 of the integral I =
∫ x1

x0
f(x)dx.

ii) Simple trapezoidal rule uses the values of f at two endpoints a and b, i.e.
f(a) and f(b). Here f is approximated by the linear function (polynomial

of degree 1) P1(x) passing through the two points
(
a, f(a)

)
and

(
b, f(b)

)
.

Consequently, the area under the curve y = f(x) is approximated as

I =

∫ b

a

f(x)dx ≈ (b− a)
f(a) + f(b)

2
. (3.3.3)

This is the area of the trapezoidal between the lines y = 0, x = a and
x = b and under the graph of P1(x), and therefore is referred to as the simple
trapezoidal rule. Once again, for the purpose of generalization, we let x0 = a,
x1 = b and assume that the length of the interval is h, then (3.3.3) can be
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written as

I ≈ I1 =hf(a) +
h[f(a+ h)− f(a)]

2
= h

f(a) + f(a+ h)

2

≡h
2
[f(x0) + f(x1)].

(3.3.4)

iii) Simple Simpson’s rule uses the values of f at the two endpoints a and b,

a = x0

f(b)P1(x)

b = x1 = a+ h

f(a)

x

Figure 3.6: Trapezoidal approximation I1 of the integral I =
∫ x1

x0
f(x)dx.

and the midpoint a+b
2

of the interval [a, b], i.e. f(a), f(b), and f
(

a+b
2

)
. In this

case the area under y = f(x) is approximated by the area under the graph of

the second degree polynomial P2(x); with P2(a) = f(a), P2

(
a+b
2

)
= f

(
a+b
2

)
,

and P2(b) = f(b). To determine P2(x) we may use Lagrange interpolation
for q = 2: let x0 = a, x1 = (a+ b)/2 and x2 = b, then

P2(x) = f(x0)λ0(x) + f(x1)λ1(x) + f(x2)λ2(x), (3.3.5)

where 



λ0(x) =
(x−x1)(x−x2)

(x0−x1)(x0−x2)
,

λ1(x) =
(x−x0)(x−x2)

(x1−x0)(x1−x2)
,

λ2(x) =
(x−x0)(x−x1)

(x2−x0)(x2−x1)
.

(3.3.6)

Thus

I =

∫ b

a

f(x)dx ≈
∫ b

a

P2(x) dx =
2∑

i=0

f(xi)

∫ b

a

λi(x) dx. (3.3.7)
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Now we can easily compute the integrals

∫ b

a

λ0(x) dx =

∫ b

a

λ2(x) dx =
b− a

6
,

∫ b

a

λ1(x) dx =
4(b− a)

6
. (3.3.8)

Hence

I =

∫ b

a

f(x)dx ≈ I2 =
b− a

6
[f(x0) + 4f(x1) + f(x2)]. (3.3.9)

a = x0

f(b)

a+ h/2 b = x1

f(x)

P2(x)

f(a)

x

Figure 3.7: Simpson’s rule approximation I2 of the integral I =
∫ x1

x0
f(x)dx.

Obviously these approximations are less accurate for large intervals, [a, b]
and/or oscillatory functions f . Following Riemann’s idea we can use these
rules, instead of on the whole interval [a, b], for the subintervals in an appro-
priate partition of [a, b]. Then we get the following generalized versions.

3.3.1 Composite rules for uniform partitions

We shall use the following General algorithm to approximate the integral

I =

∫ b

a

f(x)dx.

(1) Divide the interval [a, b], uniformly, into N subintervals

a = x0 < x1 < x2 < . . . < xN−1 < xN = b. (3.3.10)
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(2) Write the integral as

∫ b

a

f(x)dx =

∫ x1

x0

f(x) dx+ . . .+

∫ xN

xN−1

f(x) dx =
N∑

k=1

∫ xk

xk−1

f(x) dx.

(3.3.11)

(3) For each subinterval Ik := [xk−1, xk], k = 1, 2, . . . , N , apply the same
integration rule (i)− (iii). Then we get the following generalizations.

(M) Composite midpoint rule: approximates f by constants (the values of
f at the midpoint of the subinterval) on each subinterval. Let

h = |Ik| =
b− a

N
, and x̄k =

xk−1 + xk
2

, k = 1, 2, . . . , N.

Then, using the simple midpoint rule for the interval Ik := [xk−1, xk],

∫ xk

xk−1

f(x) dx ≈
∫ xk

xk−1

f(x̄k) dx = hf(x̄k). (3.3.12)

Summing over k, we get the Composite midpoint rule as:

∫ b

a

f(x)dx ≈
N∑

k=1

hf(x̄k) = h[f(x̄1) + . . .+ f(x̄N)] :=MN . (3.3.13)

(T) Composite trapezoidal rule: approximates f by simple trapezoidal rule
on each subinterval Ik,

∫ xk

xk−1

f(x) dx ≈ h

2
[f(xk−1) + f(xk)]. (3.3.14)

Summing over k yields the composite trapezoidal rule

∫ b

a

f(x)dx ≈
N∑

k=1

h

2
[f(xk−1) + f(xk)]

=
h

2
[f(x0) + 2f(x1) + . . .+ 2f(xN−1) + f(xN)] := TN .

(3.3.15)
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(S) Composite Simpson’s rule: approximates f by simple Simpson’s rule
on each subinterval Ik,

∫ xk

xk−1

f(x) dx ≈ h

6

[
f(xk−1) + 4f

(xk−1 + xk
2

)
+ f(xk)

]
. (3.3.16)

To simplify, we introduce the following identification on each Ik:

z2k−2 = xk−1, z2k−1 =
xk−1 + xk

2
:= x̄k, z2k = xk, hz =

h

2
.

(3.3.17)

< >

a = z0

a = x0

z1

x̄1

z2

x1

z2k−2

xk−1

z2k−1

x̄k

z2k

xk

z2N = b

xN = b

hz

Figure 3.8: Identification of subintervals for composite Simpson’s rule

Then, summing (3.3.16) over k and using the above identification, we obtain
the composite Simpson’s rule viz,

∫ b

a

f(x)dx ≈
N∑

k=1

h

6

[
f(xk−1) + 4f

(xk−1 + xk
2

)
+ f(xk)

]

=
N∑

k=1

hz
3

[
f(z2k−2) + 4f(z2k−1) + f(z2k)

]

=
hz
3

[
f(z0) + 4f(z1) + 2f(z2) + 4f(z3) + 2f(z4)

+ . . .+ 2f(z2N−2) + 4f(z2N−1) + f(z2N)
]
:= SN .

(3.3.18)
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The figure below illustrates the starting procedure for the composite Simp-
son’s rule. The numbers in the brackets indicate the actual coefficients on
each subinterval. For instance the end of the first interval: x1 = z2, coincides
with the start of the second interval, ending to the add-up [1] + [1] = 2 as
the coefficient of f(z2). This is the case for each interior node xk, i.e. z2k:s;
k = 1, . . . , N − 1.

z0

[1]

z1

[4]

z2

[1] + [1]

z3

[4]

z4

[1]

Figure 3.9: Coefficients for composite Simpson’s rule

Remark 3.4. One can verify that the errors of these integration rules are
depending on the regularity of the function and the size of interval (in simple
rules) and the mesh size (in the composite rules). These error estimates, for
both simple and composite quadrature rules, can be found in any elementary
text book in numerical linear algebra and/or numerical analysis are read as
follows:
Eroor in simple Midpoint rule

|
∫ xk

xk−1

f(x) dx− hf(x̄k)| =
h3

24
|f ′′(η)|, η ∈ (xk−1, xk).

Error in composite Midpoint rule

|
∫ b

a

f(x) dx−MN | =
h2(b− a)

24
|f ′′(ξ)|, ξ ∈ (a, b).

Eroor in simple trapezoidal rule

|
∫ xk

xk−1

f(x) dx− h

2
[f(x̄k−1 + f(xk)]| =

h3

12
|f ′′(η)|, η ∈ (xk−1, xk).
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Error in composite trapezoidal rule

|
∫ b

a

f(x) dx− TN | =
h2(b− a)

12
|f ′′(ξ)|, ξ ∈ (a, b).

Eroor in simple Simpson’s rule

|
∫ b

a

f(x) dx−b− a

6
[f(a)+4f((a+b)/2)+f(b)]| = 1

90

(b− a

2

)5

|f (4)(η)|, η ∈ (a, b).

Error in composite Simpson’s rule

|
∫ b

a

f(x) dx− SN | =
h4(b− a)

180
max
ξ∈[a,b]

|f 4(ξ)|, h = (b− a)/N.

Remark 3.5. The rules (M), (T) and (S) use values of the function at
equally spaced points. These are not always the best approximation methods.
Below we introduce a general and more optimal approach.

3.3.2 Gauss quadrature rule

This is an approximate integration rule aimed to choose the points of eval-
uation of an integrand f in an optimal manner, not necessarily at equally
spaced points. Here, we illustrate this rule by an example:

Problem: Choose the nodes xi ∈ [a, b], and coefficients ci, 1 ≤ i ≤ n such
that, for an arbitrary integrable function f , the following error is minimal:

∫ b

a

f(x)dx−
n∑

i=1

cif(xi). (3.3.19)

Solution. The relation (3.3.19) contains 2n unknowns consisting of n nodes
xi and n coefficients ci. Therefore we need 2n equations. Thus if we replace
f by a polynomial, then an optimal choice of these 2n parameters yields a
quadrature rule (3.3.19) which is exact for polynomials, f , of degree ≤ 2n−1.

Example 3.5. Let n = 2 and [a, b] = [−1, 1]. Then the coefficients are c1 and
c2 and the nodes are x1 and x2. Thus optimal choice of these 4 parameters
should yield that the approximation

∫ 1

−1

f(x)dx ≈ c1f(x1) + c2f(x2), (3.3.20)
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is indeed exact for f(x) replaced by any polynomial of degree ≤ 3. So, we
replace f by a polynomial of the form f(x) = Ax3+Bx2+Cx+D and require
equality in (3.3.20). Thus, to determine the coefficients c1, c2 and the nodes
x1, x2, in an optimal way, it suffices to change the above approximation to
equality when f is replaced by the basis functions for polynomials of degree
≤ 3: i.e., 1, x, x2 and x3. Consequently we get the equation system

∫ 1

−1

1dx = c1 + c2 =⇒ [x]1−1 = 2 = c1 + c2

∫ 1

−1

xdx = c1 · x1 + c2 · x2 =⇒
[x2
2

]1
−1

= 0 = c1 · x1 + c2 · x2
∫ 1

−1

x2dx = c1 · x21 + c2 · x22 =⇒
[x3
3

]1
−1

=
2

3
= c1 · x21 + c2 · x22

∫ 1

−1

x3dx = c1 · x31 + c2 · x32 =⇒
[x4
4

]1
−1

= 0 = c1 · x31 + c2 · x32,

(3.3.21)

which, although nonlinear, has the unique solution presented below:




c1 + c2 = 2

c1x1 + c2x2 = 0

c1x
2
1 + c2x

2
2 =

2
3

c1x
3
1 + c2x

3
2 = 0

=⇒





c1 = 1

c2 = 1

x1 = −
√
3
3

x2 =
√
3
3
.

(3.3.22)

Hence, the approximation
∫ 1

−1

f(x)dx ≈ c1f(x1) + c2f(x2) = f
(
−

√
3

3

)
+ f

(√3

3

)
, (3.3.23)

is exact for all polynomials of degree ≤ 3.

Example 3.6. Let f(x) = 3x2 + 2x + 1. Then
∫ 1

−1
(3x2 + 2x + 1)dx =

[x3 + x2 + x]1−1 = 4, and we can easily check that f(−
√
3/3) + f(

√
3/3) = 4.

Exercises

Problem 3.1. Use the expressions λa(x) =
b−x
b−a

and λb(x) =
x−a
b−a

to show

λa(x) + λb(x) = 1, and aλa(x) + bλb(x) = x.
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Give a geometric interpretation by plotting, λa(x), λb(x), λa(x) + λb(x),
aλa(x), bλb(x) and aλa(x) + bλb(x).

Problem 3.2. Determine the linear interpolant π1f ∈ P1(0, 1) and plot f
and π1f in the same figure, when

(a) f(x) = x2, (b) f(x) = sin(πx).

Problem 3.3. Determine the linear interpolation of the function

f(x) =
1

π2
(x− π)2 − cos2(x− π

2
), −π ≤ x ≤ π.

where the interval [−π, π] is divided into 4 equal subintervals.

Problem 3.4. Assume that w′ ∈ L1(I). Let x, x̄ ∈ I = [a, b] and w(x̄) = 0.
Show that

|w(x)| ≤
∫

I

|w′|dx. (3.3.24)

Problem 3.5. Let now v(t) be the constant interpolant of ϕ on I.

v

ϕ

xa b
-

Show that ∫

I

h−1|ϕ− v| dx ≤
∫

I

|ϕ′| dx. (3.3.25)

Problem 3.6. Show that Pq(a, b) = {the set of polynomials of degree ≤ q},
is a vector space but, P q(a, b) := {p(x)|p(x) is a polynomial of degree = q},
is not a vector space.

Problem 3.7. Compute formulas for the linear interpolant of a continuous
function f through the points a and (b+a)/2. Plot the corresponding Lagrange
basis functions.
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Problem 3.8. Prove the following interpolation error estimate:

||π1f − f ||L∞(a,b) ≤
1

8
(b− a)2||f ′′||L∞(a,b).

Problem 3.9. Prove that any value of f on the sub-intervals, in a partition
of (a, b), can be used to define πhf satisfying the error bound

||f − πhf ||L∞(a,b) ≤ max
1≤i≤m+1

hi||f ′||L∞(Ii) = ||hf ′||L∞(a,b).

Prove that choosing the midpoint improves the bound by an extra factor 1/2.

Problem 3.10. Compute and graph π4

(
e−8x2

)
on [−2, 2], which interpolates

e−8x2

at 5 equally spaced points in [−2, 2].

Problem 3.11. Write down a basis for the set of piecewise quadratic poly-
nomials W

(2)
h on a partition a = x0 < x1 < x2 < . . . < xm+1 = b of (a, b)

into subintervals Ii = (xi−1, xi), where

W
(q)
h = {v : v|Ii ∈ Pq(Ii), i = 1, . . . ,m+ 1}.

Note that, a function v ∈ W
(2)
h is not necessarily continuous.

Problem 3.12. Determine a set of basis functions for the space of continuous
piecewise quadratic functions V

(2)
h on I = (a, b), where

V
(q)
h = {v ∈ W

(q)
h : v is continuous on I}.

Problem 3.13. Prove that
∫ x1

x0

f ′
(x1 + x0

2

)(
x− x1 + x0

2

)
dx = 0.

Problem 3.14. Prove that
∣∣∣
∫ x1

x0

f(x) dx− f
(x1 + x0

2

)
(x1 − x0)

∣∣∣

≤ 1

2
max
[x0,x1]

|f ′′|
∫ x1

x0

(
x− x1 + x0

2

)2

dx ≤ 1

24
(x1 − x0)

3 max
[x0,x1]

|f ′′|.

Hint: Use Taylor expansion of f about x = x1+x0

2
.
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Chapter 4

Two-point boundary value
problems

In this chapter we focus on finite element approximation procedure for two-point
boundary value problems (BVPs). For each problem we formulate a correspond-
ing variational formulation (VF) and a minimization problem (MP) and prove
that the solution to either of BVP, its VF and MP satisfies the other two as well,
i.e,

(BV P ) ” ⇐⇒ ” (V F ) ⇐⇒ (MP ).

The ⇐= in the equivalence ” ⇐⇒ ” is subject to a regularity requirement on
the solution up to the order of the underlying PDE.

4.1 A Dirichlet problem

Assume that a horizontal elastic bar which occupies the interval I := [0, 1],
is fixed at the end-points. Let u(x) denote the displacement of the bar at a
point x ∈ I, a(x) be the modulus of elasticity, and f(x) a given load function,
then one can show that u satisfies the following boundary value problem

(BV P )





−
(
a(x)u′(x)

)′
= f(x), 0 < x < 1,

u(0) = u(1) = 0.
(4.1.1)

Equation (4.1.1) is of Poisson’s type modelling also the stationary heat flux.
We shall assume that a(x) is piecewise continuous function in (0, 1),

bounded for 0 ≤ x ≤ 1 and a(x) > 0 for 0 ≤ x ≤ 1.

53
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Let v(x) and its derivative v′(x), x ∈ I, be square integrable functions, that
is: v, v′ ∈ L2(0, 1), and define the L2-based Sobolev space by

H1
0 (0, 1) :=

{
v(x) :

∫ 1

0

(v(x)2 + v′(x)2)dx <∞, v(0) = v(1) = 0
}
. (4.1.2)

The variational formulation (VF). We multiply the equation in (BVP)
by a so called test function v(x) ∈ H1

0 (0, 1) and integrate over (0, 1) to obtain

−
∫ 1

0

(a(x)u′(x))′v(x)dx =

∫ 1

0

f(x)v(x)dx. (4.1.3)

Using integration by parts we get

−
[
a(x)u′(x)v(x)

]1
0
+

∫ 1

0

a(x)u′(x)v′(x)dx =

∫ 1

0

f(x)v(x)dx. (4.1.4)

Now since v(0) = v(1) = 0 we have thus obtained the variational formulation
for the problem (4.1.1) as follows: find u(x) ∈ H1

0 such that

(VF)

∫ 1

0

a(x)u′(x)v′(x)dx =

∫ 1

0

f(x)v(x)dx, ∀v(x) ∈ H1
0 . (4.1.5)

In other words we have shown that if u satisfies (BVP), then u also satisfies
the (VF) above. We write this as (BVP) =⇒ (VF). Now the question
is whether the reverse implication is true, i.e. under which conditions can
we deduce the implication (VF) =⇒ (BVP)? It appears that this question
has an affirmative answer, provided that the solution u to (VF) is twice
differentiable. Then, modulo this regularity requirement, the two problems
are indeed equivalent. We prove this in the following theorem.

Theorem 4.1. The following two properties are equivalent

i) u satisfies (BVP)

ii) u is twice differentiable and satisfies (VF).

Proof. We have already shown that (BVP) =⇒ (VF).
It remains to prove that (VF) =⇒ (BVP). Integrating by parts on the

left hand side in (4.1.5), assuming that u is twice differentiable, f ∈ C(0, 1),
a ∈ C1(0, 1), and using v(0) = v(1) = 0 we return to the relation (4.1.3):

−
∫ 1

0

(a(x)u′(x))′v(x)dx =

∫ 1

0

f(x) v(x)dx, ∀v(x) ∈ H1
0 (4.1.6)
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which can be rewritten as∫ 1

0

{
−

(
a(x)u′(x)

)′
− f(x)

}
v(x)dx = 0, ∀v(x) ∈ H1

0 . (4.1.7)

To show that u satisfies BV P is equivalent to claim that (4.1.7) implies

−
(
a(x)u′(x)

)′
− f(x) ≡ 0, ∀x ∈ (0, 1). (4.1.8)

Suppose not. Then there exists at least one point ξ ∈ (0, 1), such that

−
(
a(ξ)u′(ξ)

)′
− f(ξ) 6= 0, (4.1.9)

where we may assume, without loss of generality, that

−
(
a(ξ)u′(ξ)

)′
− f(ξ) > 0 (or < 0). (4.1.10)

Thus, by continuity ∃δ > 0 such that

g(x) := −
(
a(x)u′(x)

)′
−f(x) > 0, for all x ∈ Iδ := (ξ−δ, ξ+δ). (4.1.11)

Now, take the test function v(x) in (4.1.7) as the hat-function v∗(x) > 0,

0

1

x

y

ξ − δ ξ ξ + δ

v∗(x)

1

g(x)

Figure 4.1: The hat function v∗(x) over the interval (ξ − δ, ξ + δ).

with v∗(ξ) = 1 and the support Iδ, see Fig 4.1. Then v∗(x) ∈ H1
0 and

∫ 1

0

{
−
(
a(x)u′(x)

)′
− f(x)

}
v∗(x)dx =

∫

Iδ

g(x)︸︷︷︸
>0

v∗(x)︸ ︷︷ ︸
>0

dx > 0.

This contradicts (4.1.7). Thus our claim is true. Note further that in (VF)
u ∈ H1

0 implies that u(0) = u(1) = 0 and hence we have also the boundary
conditions and the proof is complete.
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Corollary 4.1. (i) If f(x) is continuous and a(x) is continuously differ-
entiable: f ∈ C(0, 1) and a ∈ C1(0, 1), then (BV P ), (V F ) have the same
solution.

(ii) If a(x) is discontinuous and f ∈ L2, then (BV P ) is not always well-
defined but (V F ) has still a meaning. Therefore (V F ) covers a larger set of
data than (BV P ).

(iii) More important: in (V F ), u ∈ C1(0, 1),while (BV P ) is formulated for
u having two derivatives, i.e. u ∈ C2(0, 1).

The minimization problem (MP). For the problem (4.1.1), we may for-
mulate yet another equivalent problem, viz:

Find u ∈ H1
0 such that F (u) ≤ F (w), ∀w ∈ H1

0 , where F (w) is the total
potential energy of the displacement w(x), given by

(MP) F (w) =
1

2

∫ 1

0

a(w′)2dx

Internal (elastic) energy

−
∫ 1

0

fwdx.

Load potential

(4.1.12)

This means that the solution u minimizes the energy functional F (w). Below
we show that the above minimization problem is equivalent to the variational
formulation (VF) and hence also to the boundary value problem (BVP).

Theorem 4.2. The following two properties are equivalent

a) u satisfies the variational formulation (VF)

b) u is the solution for the minimization problem (MP)

i.e.

∫ 1

0

au′v′dx =

∫ 1

0

fvdx, ∀v ∈ H1
0 ⇐⇒ F (u) ≤ F (w), ∀w ∈ H1

0 . (4.1.13)

Proof. (=⇒): First we show that the variational formulation (VF) implies
the minimization problem (MP). To this end, for w ∈ H1

0 we let v = w − u,
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then, since H1
0 is a vector space and u ∈ H1

0 , hence v ∈ H1
0 and

F (w) = F (u+ v) =
1

2

∫ 1

0

a
(
(u+ v)′

)2

dx−
∫ 1

0

f(u+ v)dx =

=
1

2

∫ 1

0

2au′v′dx

︸ ︷︷ ︸
(i)

+
1

2

∫ 1

0

a(u′)2dx

︸ ︷︷ ︸
(ii)

+
1

2

∫ 1

0

a(v′)2dx

−
∫ 1

0

fudx

︸ ︷︷ ︸
(iii)

−
∫ 1

0

fvdx.

︸ ︷︷ ︸
(iv)

Now using (VF) we have (i) − (iv) = 0. Further by the definition of the
functional F , (ii)− (iii) = F (u). Thus

F (w) = F (u) +
1

2

∫ 1

0

a(x)(v′(x))2dx, (4.1.14)

and since a(x) > 0 we get F (w) ≥ F (u), thus we have proved ” =⇒ ” part.
(⇐=): Next we show that the minimization problem (MP) implies the vari-
ational formulation (VF). To this end, assume that F (u) ≤ F (w) ∀w ∈ H1

0 ,
and for an arbitrary function v ∈ H1

0 , set gv(ε) = F (u+εv), then by (MP), g

(as a function of ε) has a minimum at ε = 0. In other words ∂
∂ε
gv(ε)

∣∣∣
ε=0

= 0.

We have that

gv(ε) = F (u+ εv) =
1

2

∫ 1

0

a
(
(u+ εv)′

)2

dx−
∫ 1

0

f(u+ εv)dx =

=
1

2

∫ 1

0

{a(u′)2 + aε2(v′)2 + 2aεu′v′}dx−
∫ 1

0

fudx− ε

∫ 1

0

fvdx.

The derivative ∂gv
∂ε

(ε), of g(ε, v) is

∂gv
∂ε

(ε) =
1

2

∫ 1

0

{2aε(v′)2 + 2au′v′}dx−
∫ 1

0

fvdx, (4.1.15)

where ∂gv
∂ε

∣∣∣
(ε=0)

= 0, yields

∫ 1

0

au′v′dx−
∫ 1

0

fvdx = 0, (4.1.16)

which is our desired variational formulation (VF). Hence, we conclude that
F (u) ≤ F (w), ∀w ∈ H1

0 =⇒ (VF), and the proof is complete.
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We summarize the two theorems in short as

Corollary 4.2.
(BV P ) ” ⇐⇒ ” (V F ) ⇐⇒ (MP ).

Recall that ” ⇐⇒ ” is a conditional equivalence, requiring u to be twice
differentiable, for the reverse implication.

4.2 The finite element method (FEM)

We now formulate the finite element procedure for boundary value problems.
To do so we let Th = {0 = x0 < x1 < . . . < xM < xM+1 = 1} be a partition of
the interval I = [0, 1] into subintervals Ik = [xk−1, xk] and set hk = xk−xk−1.
Define the piecewise constant function h(x) := xk − xk−1 = hk for x ∈ Ik.

x0 = 0 x1 x2 xk−1 xk xM xM+1 = 1
x

hk

Let C(I, P1(Ik)) denote the set of all continuous piecewise linear functions on
Th (continuous in the whole interval I, linear on each subinterval Ik), and
define

V 0
h = {v : v ∈ C(I, P1(Ik)), v(0) = v(1) = 0}. (4.2.1)

Note that V 0
h is a finite dimensional (dimV 0

h =M) subspace of

H1
0 =

{
v(x) :

∫ 1

0

(v(x)2 + v′(x)2)dx <∞, and v(0) = v(1) = 0
}
. (4.2.2)

Continuous Galerkin of degree 1, cG(1). A finite element formulation
for our Dirichlet boundary value problem (BVP) is given by: find uh ∈ V 0

h

such that the following discrete variational formulation holds true

(FEM)

∫ 1

0

a(x)u′h(x)v
′(x)dx =

∫ 1

0

f(x)v(x)dx, ∀v ∈ V 0
h . (4.2.3)

The finite element method (FEM) is a finite dimensional version of the vari-
ational formulation (VF), where the test functions are in a finite dimensional
subspace V 0

h , of H1
0 , spanned by the hat-functions, ϕj(x), j = 1, . . . ,M .
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Thus, if in VF we restrict v to V 0
h (rather that H1

0 ) and subtract FEM from
it, we get the Galerkin orthogonality:

∫ 1

0

a(x)(u′(x)− u′h(x))v
′(x)dx = 0, ∀v ∈ V 0

h . (4.2.4)

Now the purpose is to estimate the error arising in approximating the solution
for BV P by functions in V 0

h . To this approach we need some measuring
environment for the error. We recall the definition of Lp-norms:

Lp-norm ‖v‖Lp
=

(∫ 1

0

|v(x)|pdx
)1/p

, 1 ≤ p <∞

L∞-norm ‖v‖L∞
= max

x∈[0,1]
|v(x)|,

and also introduce:

Weighted L2-norm ‖v‖a =
(∫ 1

0

a(x)|v(x)|2dx
)1/2

, a(x) > 0

Energy-norm ‖v‖E =
(∫ 1

0

a(x)|v′(x)|2dx
)1/2

,

Note that ‖v‖E = ‖v′‖a.

4.3 Error estimates in the energy norm

We shall study an a priori error estimate; where a certain norm of the error is
estimated by some norm of the exact solution u. Here, the error analysis gives
information about the size of the error, depending on the (unknown) exact
solution u, before any computational steps. An a posteriori error estimate;
where the error is estimated by some norm of the residual of the approximate
solution is also included.

Below, first we shall prove a qualitative result which states that the finite
element solution is the best approximate solution to the Dirichlet problem
in the energy norm.

Theorem 4.3. Let u(x) be the solution to the Dirichlet boundary value prob-
lem (4.1.1) and uh(x) its finite element approximation given by (4.2.3), then

‖u− uh‖E ≤ ‖u− v‖E, ∀v ∈ V 0
h . (4.3.1)

This means that the finite element solution uh ∈ V 0
h is the best approximation

of the solution u, in the energy norm, by functions in V 0
h .
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Proof. We take an arbitrary v ∈ V 0
h , then using the energy norm

‖u− uh‖2E =

∫ 1

0

a(x)(u′(x)− u′h(x))
2 dx

=

∫ 1

0

a(x)(u′(x)− u′h(x))(u
′(x)− v′(x) + v′(x)− u′h(x))dx

=

∫ 1

0

a(x)(u′(x)− u′h(x))(u
′(x)− v′(x))dx

+

∫ 1

0

a(x)(u′(x)− u′h(x))(v
′(x)− u′h(x)) dx.

(4.3.2)

Since v−uh ∈ V 0
h , by Galerkin orthogonality (4.2.4), the last integral is zero.

Thus,

‖u− uh‖2E =

∫ 1

0

a(x)(u′(x)− u′h(x))(u
′(x)− v′(x))dx

=

∫ 1

0

a(x)
1

2 (u′(x)− u′h(x))a(x)
1

2 (u′(x)− v′(x))dx

≤
(∫ 1

0

a(x)(u′(x)− u′h(x))
2dx

) 1

2
(∫ 1

0

a(x)(u′(x)− v′(x))2dx
) 1

2

= ‖u− uh‖E · ‖u− v‖E,
(4.3.3)

where, in the last estimate, we used Cauchy-Schwarz inequality. Thus

‖u− uh‖E ≤ ‖u− v‖E, ∀v ∈ V 0
h , (4.3.4)

and the proof is complete.

The next step is to show that there exists a function v(x) ∈ V 0
h such that

‖u− v‖E is not too large. The function that we have in mind is πhu(x): the
piecewise linear interpolant of u(x), introduced in Chapter 3.

Theorem 4.4. [An a priori error estimate] Let u and uh be the solutions
of the Dirichlet problem (BVP) and the finite element problem (FEM), re-
spectively. Then there exists an interpolation constant Ci, depending only on
a(x), such that

‖u− uh‖E ≤ Ci‖hu′′‖a. (4.3.5)



4.3. ERROR ESTIMATES IN THE ENERGY NORM 61

Proof. Since πhu(x) ∈ V 0
h , we may take v = πhu(x) in (4.3.1) and use, e.g.

the second estimate in the interpolation Theorem 3.3 (slightly generalized to
the weigthed norm ‖ · ‖a, see remark below) to get

‖u− uh‖E ≤ ‖u− πhu‖E = ‖u′ − (πhu)
′‖a

≤ Ci‖hu′′‖a = Ci

(∫ 1

0

a(x)h2(x)u′′(x)2 dx
)1/2

,
(4.3.6)

which is the desired result and the proof is complete.

Remark 4.1. The interpolation theorem is not stated in the weighted norm.
The a(x) dependence of the interpolation constant Ci can be shown as follows

‖u′ − (πhu)
′‖a =

(∫ 1

0

a(x)(u′(x)− (πhu)
′(x))2 dx

)1/2

≤
(
max
x∈[0,1]

a(x)1/2
)
· ‖u′ − (πhu)

′‖L2
≤ ci

(
max
x∈[0,1]

a(x)1/2
)
‖hu′′‖L2

= ci

(
max
x∈[0,1]

a(x)1/2
)(∫ 1

0

h(x)2u′′(x)2 dx
)1/2

≤ ci
(maxx∈[0,1] a(x)

1/2)

(minx∈[0,1] a(x)1/2)
·
(∫ 1

0

a(x)h(x)2u′′(x)2 dx
)1/2

.

Thus

Ci = ci
(maxx∈[0,1] a(x)

1/2)

(minx∈[0,1] a(x)1/2)
, (4.3.7)

where ci = c2 is the interpolation constant in the second estimate in Theorem
3.3.

Remark 4.2. If the objective is to divide [0, 1] into a finite number of subin-
tervals, then one can use the result of Theorem 4.4: to obtain an optimal
partition of [0, 1], where whenever a(x)u′′(x)2 gets large we compensate by
making h(x) smaller. This, however, “requires that the exact solution u(x)
is known” 1. Now we state the a posteriori error estimate, which instead of
the unknown solution u(x), uses the residual of the computed solution uh(x).

Theorem 4.5 (An a posteriori error estimate). There is an interpolation
constant ci depending only on a(x) such that the error in the finite element

1Note that when a is a given constant then, −u′′(x) = (1/a)f(x) is known.
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approximation of the Dirichlet boundary value problem (4.1.10), satisfies

‖u− uh‖E ≤ ci

(∫ 1

0

1

a(x)
h2(x)R2(uh(x))dx

)1/2

, (4.3.8)

where R(uh(x)) = f + (a(x)u′h(x))
′ is the residual, and u(x)− uh(x) ∈ H1

0 .

Proof. By the definition of the energy norm we have

‖e(x)‖2E =

∫ 1

0

a(x)(e′(x))2dx =

∫ 1

0

a(x)(u′(x)− u′h(x))e
′(x)dx

=

∫ 1

0

a(x)u′(x)e′(x)dx−
∫ 1

0

a(x)u′h(x)e
′(x)dx

(4.3.9)

Since e ∈ H1
0 the variational formulation (VF) gives that

∫ 1

0

a(x)u′(x)e′(x)dx =

∫ 1

0

f(x)e(x)dx. (4.3.10)

Hence, we can write

‖e(x)‖2E =

∫ 1

0

f(x)e(x)dx−
∫ 1

0

a(x)u′h(x)e
′(x)dx. (4.3.11)

Adding and subtracting the interpolant πhe(x) and its derivative (πhe)
′(x)

to e and e′ in the integrands above yields

‖e(x)‖2E =

∫ 1

0

f(x)(e(x)− πhe(x))dx+

∫ 1

0

f(x)πhe(x)dx

︸ ︷︷ ︸
(i)

−
∫ 1

0

a(x)u′h(x)(e
′(x)− (πhe)

′(x))dx−
∫ 1

0

a(x)u′h(x)(πhe)
′(x)dx

︸ ︷︷ ︸
(ii)

.

Since uh(x) is the solution of the (FEM) given by (4.2.3) and πhe(x) ∈ V 0
h

we have that −(ii) + (i) = 0. Hence

‖e(x)‖2E =

∫ 1

0

f(x)(e(x)− πhe(x))dx−
∫ 1

0

a(x)u′h(x)(e
′(x)− (πhe)

′(x))dx

=

∫ 1

0

f(x)(e(x)− πhe(x))dx−
M+1∑

k=1

∫ xk

xk−1

a(x)u′h(x)(e
′(x)− (πhe)

′(x))dx.
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To continue we integrate by parts in the integrals in the summation above

−
∫ xk

xk−1

a(x)u′h(x)(e
′(x)− (πhe)

′(x))dx

= −
[
a(x)u′h(x)(e(x)− πhe(x))

]xk

xk−1

+

∫ xk

xk−1

(a(x)u′h(x))
′(e(x)− πhe(x)) dx.

Now, using e(xk) = πhe(xk), k = 0, 1 . . . ,M + 1, where the xk:s are the
interpolation nodes, the boundary terms vanish and thus we end up with

−
∫ xk

xk−1

a(x)u′h(x)(e
′(x)− (πhe)

′(x))dx =

∫ xk

xk−1

(a(x)u′h(x))
′(e(x)−πhe(x))dx.

Thus, summing over k, we have

−
∫ 1

0

a(x)u′h(x)(e
′(x)− (πhe(x))

′dx =

∫ 1

0

(a(x)u′h(x))
′(e(x)− πhe(x))dx,

where (a(x)u′h(x))
′ should be interpreted locally on each subinterval [xk−1, xk].

(Since u′h(x) in general is discontinuous, u′′h(x) does not exist globally on
[0, 1].) Therefore

‖e(x)‖2E =

∫ 1

0

f(x)(e(x)− πhe(x))dx+

∫ 1

0

(a(x)u′h(x))
′(e(x)− πhe(x))dx

=

∫ 1

0

{f(x) + (a(x)u′h(x))
′}(e(x)− πhe(x))dx.

Now let R(uh(x)) = f(x) + (a(x)u′h(x))
′, i.e. R(uh(x)) is the residual error,

which is a well-defined function except in the set {xk}, k = 1, . . . ,M ; where
(a(xk)u

′
h(xk))

′ is not defined. Then, using Cauchy-Schwarz’ inequality we get
the following estimate

‖e(x)‖2E =

∫ 1

0

R(uh(x))(e(x)− πhe(x))dx =

=

∫ 1

0

1√
a(x)

h(x)R(uh(x)) ·
√
a(x)

(e(x)− πhe(x)

h(x)

)
dx

≤
(∫ 1

0

1

a(x)
h2(x)R2(uh(x))dx

)1/2(∫ 1

0

a(x)
(e(x)− πhe(x)

h(x)

)2

dx
)1/2

.
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Further, by the definition of the weighted L2-norm we have,

∥∥∥
e(x)− πhe(x)

h(x)

∥∥∥
a
=

(∫ 1

0

a(x)
(e(x)− πhe(x)

h(x)

)2

dx
)1/2

. (4.3.12)

To estimate (4.3.12) we can use the third interpolation estimate (in Theorem
5.5) for e(x) in each subinterval and get

∥∥∥
e(x)− πhe(x)

h(x)

∥∥∥
a
≤ Ci‖e′(x)‖a = Ci‖e(x)‖E, (4.3.13)

where Ci as before depends on a(x). Thus

‖e(x)‖2E ≤
(∫ 1

0

1

a(x)
h2(x)R2(uh(x))dx

)1/2

· Ci‖e(x)‖E, (4.3.14)

and the proof is complete.

Adaptivity

Below we briefly outline the adaptivity procedure based on the a posteriori
error estimate which uses the approximate solution and which can be used
for mesh-refinements. Loosely speaking, the estimate (4.3.8) predicts local
mesh refinement, i.e. indicates the regions (subintervals) which should be
subdivided further. More specifically the idea is as follows: assume that one
seeks an error less than a given error tolerance TOL > 0:

‖e‖E ≤ TOL, e(x) := u(x)− uh(x). (4.3.15)

Then, one may use the following steps as a mesh refinement strategy:

(i) Make an initial partition of the interval

(ii) Compute the corresponding FEM solution uh(x) and residual R(uh(x)).

(iii) If ‖e‖E > TOL, refine the mesh in the places where
1

a(x)
R2(uh(x)) is

large and perform the steps (ii) and (iii) again.
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4.4 FEM for convection–diffusion–absorption

BVPs

We now return to the Galerkin approximation of a solution to boundary
value problems and give a framework for the cG(1) (continuous Galerkin of
degree 1) finite element procedure leading to a linear system of equations of
the form Aξ = b. More specifically, we shall extend the approach in Chapter
2, for the stationary heat equation, to cases involving absorption and/or
convection terms. We also consider non-homogeneous Dirichlet boundary
conditions. We illustrate this procedure through the following two examples.

Example 4.1. Determine the coefficient matrix and load vector for the cG(1)
finite element approximation of the boundary value problem

−u′′(x) + 4u(x) = 0, 0 < x < 1; u(0) = α 6= 0, u(1) = β 6= 0,

on a uniform partition Th of the interval [0, 1] into n+ 1 subintervals.
Solution: The objective is to construct an approximate solution uh in a fi-
nite dimensional space spanned by the piecewise linear basis functions (hat-
functions) ϕj(x), j = 0, 1, . . . , n + 1 on the partition Th. This results in a
discrete problem represented by a linear system of equations Aξ = b, for the
unknown ξ = {cj}nj=1, (c0 = α and cn+1 = β are given in boundary data.)
The continuous solution is assumed to be in the Hilbert space

H1 =

{
w :

∫ 1

0

(
w(x)2 + w′(x)2

)
dx <∞

}
.

Since u(0) = α and u(1) = β are given, we need to take the trial functions in

V := {w : w ∈ H1, w(0) = α, w(1) = β},

and the test functions in

V 0 := H1
0 = {w : w ∈ H1, w(0) = w(1) = 0}.

We multiply the PDE by a test function v ∈ V 0 and integrate over (0, 1).
Integrating by parts we get

− u′(1)v(1) + u′(0)v(0) +

∫ 1

0

u′v′ dx+ 4

∫ 1

0

uv dx = 0 ⇐⇒

(V F ) : Find u ∈ V so that

∫ 1

0

u′v′ dx+ 4

∫ 1

0

uv dx = 0, ∀v ∈ V 0.
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The partition Th, of [0, 1] into n + 1 uniform subintervals I1 = [0, h], I2 =
[h, 2h], . . ., and In+1 = [nh, (n + 1)h], is also described by the nodes x0 =
0, x1 = h, . . . , xn = nh and xn+1 = (n+ 1)h = 1. The corresponding discrete
function spaces are (varying with h and hence with n),

Vh := {wh : wh is piecewise linear, continuous on T h, wh(0) = α, wh(1) = β},

and

V 0
h := {vh : vh is piecewise linear and continuous on T h, vh(0) = vh(1) = 0}.

Note that here, the basis functions needed to represent functions in Vh are the
hat-functions ϕj, j = 0, . . . , n+1 (including the two half-hat-functions ϕ0 and
ϕn+1), whereas the basis functions describing V 0

h are ϕi:s for i = 1, . . . , n,
i.e. all full-hat-functions but not ϕ0 and ϕn+1. This is due to the fact that
the values u(0) = α och u(1) = β are given and therefore we do not need to
determine those two nodal values approximately.

ϕ0 ϕ1 ϕn+1
ϕn

x0 = 0 x1 = h xn xn+1 = 1xj−1 xj xj+1

ϕj

Now the finite element formulation (the discrete variational formulation)
is: find uh ∈ Vh such that

(FEM)

∫ 1

0

u′hv
′ dx+ 4

∫ 1

0

uhv dx = 0, ∀v ∈ V 0
h .

We have that uh(x) = c0ϕ0(x) +
∑n

j=1 cjϕj(x) + cn+1ϕn+1(x), where c0 = α,
cn+1 = β and

ϕ0(x) =
1

h





h− x 0 ≤ x ≤ h

0, else
, ϕj(x) =

1

h





x− xj−1, xj−1 ≤ x ≤ xj

xj+1 − x xj ≤ x ≤ xj+1

0 x /∈ [xj−1, xj+1].
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and

ϕn+1(x) =
1

h





x− xn nh ≤ x ≤ (n+ 1)h

0, else.
.

Inserting uh into (FEM), and choosing v = ϕi(x), i = 1, . . . , n we get

n∑

j=1

(∫ 1

0

ϕ′
j(x)ϕ

′
i(x) dx+ 4

∫ 1

0

ϕj(x)ϕi(x) dx
)
cj

= −
(∫ 1

0

ϕ′
0(x)ϕ

′
i(x) dx+ 4

∫ 1

0

ϕ0(x)ϕi(x) dx
)
c0

−
(∫ 1

0

ϕ′
n+1(x)ϕ

′
i(x) dx+ 4

∫ 1

0

ϕn+1(x)ϕi(x) dx
)
cn+1.

In matrix form this corresponds to Aξ = b with A = S+4M , where S = Aunif

is the, previously computed, stiffness matrix:

S =
1

h




2 −1 0 0 . . . 0

−1 2 −1 0 . . . 0

0 −1 2 −1 . . . 0

. . . . . . . . . . . . . . . . . .

0 . . . . . . −1 2 −1

0 . . . . . . . . . −1 2




, (4.4.1)

and M is the mass-matrix given by

M =




∫ 1

0
ϕ1ϕ1

∫ 1

0
ϕ2ϕ1 . . .

∫ 1

0
ϕnϕ1

∫ 1

0
ϕ1ϕ2

∫ 1

0
ϕ2ϕ2 . . .

∫ 1

0
ϕnϕ2

. . . . . . . . . . . .
∫ 1

0
ϕ1ϕn

∫ 1

0
ϕ2ϕn . . .

∫ 1

0
ϕnϕn



. (4.4.2)

Note the index locations in the matrices S and M :

sij =

∫ 1

0

ϕ′
j(x)ϕ

′
i(x) dx, mij =

∫ 1

0

ϕj(x)ϕi(x) dx.
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This, however, does not make any difference in the current example, since,
as seen, both S and M are symmetric. To compute the entries of M , we
follow the same procedure as in Chapter 2, and notice that, as S, also M is
symmetric and its elements mij are

mij = mji =





∫ 1

0
ϕiϕj dx = 0, ∀i, j with |i− j| > 1

∫ 1

0
ϕ2
j(x) dx, for i = j

∫ 1

0
ϕj(x)ϕj+1(x), for i = j + 1.

(4.4.3)

1

x

y

xj−1 xj xj+1 xj+2

ϕj−1 ϕj ϕj+1 ϕj+2

Figure 4.2: ϕj and ϕj+1.

The diagonal elements are

mjj =

∫ 1

0

ϕj(x)
2 dx =

1

h2

(∫ xj

xj−1

(x− xj−1)
2 dx+

∫ xj+1

xj

(xj+1 − x)2
)

=
1

h2

[(x− xj−1)
3

3

]xj

xj−1

− 1

h2

[(xj+1 − x)3

3

]xj+1

xj

=
1

h2
· h

3

3
+

1

h2
· h

3

3
=

2

3
h, j = 1, . . . , n,

(4.4.4)
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and the two super- and sub-diagonals can be computed as

mj,j+1 = mj+1,j =

∫ 1

0

ϕjϕj+1 dx =
1

h2

∫ xj+1

xj

(xj+1 − x)(x− xj) = [PI]

=
1

h2

[
(xj+1 − x)

(x− xj)
2

2

]xj+1

xj

− 1

h2

∫ xj+1

xj

−(x− xj)
2

2
dx

=
1

h2

[(x− xj)
3

6

]xj+1

xj

=
1

6
h, j = 1, . . . , n− 1.

Thus the mass matrix in this case is

M = h




2
3

1
6

0 0 . . . 0

1
6

2
3

1
6

0 . . . 0

0 1
6

2
3

1
6

. . . 0

. . . . . . . . . . . . . . . . . .

0 . . . . . . 1
6

2
3

1
6

0 . . . . . . . . . 1
6

2
3




=
h

6




4 1 0 0 . . . 0

1 4 1 0 . . . 0

0 1 4 1 . . . 0

. . . . . . . . . . . . . . . . . .

0 . . . . . . 1 4 1

0 . . . . . . . . . 1 4




.

Hence, for i, j = 1, . . . , n, the coefficient matrix A = S + 4M is given by

[A]ij =

∫ 1

0

ϕ′
iϕ

′
j dx+ 4

∫ 1

0

ϕiϕj(x) dx =





2
h
+ 8h

3
, i = j,

− 1
h
+ 2h

3
, |i− j| = 1,

0 else.

Finally, with c0 = α och cn+1 = β, we get the load vector viz,

b1 = −(−1

h
+

2h

3
)c0 = α(

1

h
− 2h

3
),

b2 = . . . = bn−1 = 0,

bn = −(−1

h
+

2h

3
)cn+1 = β(

1

h
− 2h

3
).

Now, for each particular choice of h (i.e. n), α and β we may solve Aξ =
b to obtain the nodal values of the approximate solution uh at the inner
nodes xj, j = 1, . . . , n. That is: ξ = (c1, . . . , cn)

T := (uh(x1), . . . , uh(xn))
T .

Connecting the points (xj, uh(xj)), j = 0, . . . , n+1 by straight lines we obtain
the desired continuous piecewise linear approximation of the solution.
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Remark 4.3. An easier way to compute the above integrals mj,j+1 (as well
as mjj) is through Simpson’s rule, which is exact for polynomials of degree
≤ 2. Since ϕj(x)ϕj+1(x) = 0 at x = xj and x = xj+1, we need to evaluate
only the midterm of the Simpson’s formula, i.e.
∫ 1

0

ϕjϕj+1 dx = 4
h

6
ϕj

(xj + xj+1

2

)
· ϕj+1

(xj + xj+1

2

)
· = 4 · h

6
· 1
2
· 1
2
=
h

6
.

For a uniform partition one may use ϕ0 = 1− x/h and ϕ1 = x/h on (0, h) :

∫ 1

0

ϕ0ϕ1 dx =

∫ h

0

(1− x

h
)
x

h
dx =

[
(1− x

h
)
x2

2h

]h
0
−

∫ h

0

(−1)

h
· x

2

2h
dx =

h

6
.

Example 4.2. Below we consider a convection-diffusion problem:

−εu′′(x) + pu′(x) = r, 0 < x < 1; u(0) = 0, u′(1) = β 6= 0,

where ε and p are positive real numbers and r ∈ R. Here −εu′′ is the diffusion
term, pu′ corresponds to convection, and r is a given (here for simplicity a
constant) source (r > 0) or sink (r < 0). We would like to answer the same
question as in the previous example. This time with c0 = u(0) = 0. Then,
the test function at x = 0; ϕ0 will not be necessary. But since u(1) is not
given, we shall need the test function at x = 1: ϕn+1. The function space for
the continuous solution: the trial function space, and the test function space
are both the same:

V :=

{
w :

∫ 1

0

(
w(x)2 + w′(x)2

)
dx <∞, and w(0) = 0

}
.

We multiply the PDE by a test function v ∈ V and integrate over (0, 1).
Then, integration by parts yields

−εu′(1)v(1) + εu′(0)v(0) + ε

∫ 1

0

u′v′dx+ p

∫ 1

0

u′vdx = r

∫ 1

0

v dx.

Hence, we end up with the variational formulation: find u ∈ V such that

(VF) ε

∫ 1

0

u′v′ dx+ p

∫ 1

0

u′v dx = r

∫ 1

0

v dx+ εβv(1), ∀v ∈ V.

The corresponding discrete test and trial function space is

V 0
h := {wh : wh is piecewise linear and continuous on T h, and wh(0) = 0}.
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ϕ0 ϕ2 ϕn+1
ϕn

x0 = 0 x1 = h xn xn+1 = 1xj−1 xj xj+1

ϕj

Thus, the basis functions for V 0
h are the hat-functions ϕj, j = 1, . . . , n + 1

(including the half-hat-function ϕn+1), and hence dim(V 0
h ) = n+ 1.

Now the finite element formulation reads as follows: find uh ∈ V 0
h such that

(FEM) ε

∫ 1

0

u′hv
′ dx+ p

∫ 1

0

u′hv dx = r

∫ 1

0

v dx+ εβv(1), ∀v ∈ V 0
h .

Inserting the ansatz uh(x) =
∑n+1

j=1 ξjϕj(x) into (FEM), and choosing v =
ϕi(x), i = 1, . . . , n+ 1, we get

n+1∑

j=1

(
ε

∫ 1

0

ϕ′
j(x)ϕ

′
i(x) dx+ p

∫ 1

0

ϕ′
j(x)ϕi(x) dx

)
ξj = r

∫ 1

0

ϕi(x) dx+ εβϕi(1),

In matrix form this corresponds to the linear system of equations Aξ = b with
A = ε S̃ + pC, where S̃ is computed as Aunif and is the (n + 1) × (n + 1)-

stiffness matrix with its last diagonal element s̃n+1,n+1 =
∫ 1

0
ϕ′
n+1ϕ

′
n+1 dx =

1/h, and C is the convection matrix with the elements

cij =

∫ 1

0

ϕ′
j(x)ϕi(x) dx.

Hence we have, evidently,

S̃ =
1

h




2 −1 0 0 . . . 0

−1 2 −1 0 . . . 0

0 −1 2 −1 . . . 0

. . . . . . . . . . . . . . . . . .

0 . . . . . . −1 2 −1

0 . . . . . . . . . −1 1




.
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To compute the entries for C, we note that like, S,M and S̃, also C is a
tridiagonal matrix. But C is anti-symmetric. Its entries are





cij = 0, for |i− j| > 1

cii =
∫ 1

0
ϕi(x)ϕ

′
i(x) dx = 0, for i = 1, . . . , n

cn+1,n+1 =
∫ 1

0
ϕn+1(x)ϕ

′
n+1(x) dx = 1/2,

ci,i+1 =
∫ 1

0
ϕi(x)ϕ

′
i+1(x) dx = 1/2, for i = 1, . . . , n

ci+1,i =
∫ 1

0
ϕi+1(x)ϕ

′
i(x) dx = −1/2, for i = 1, . . . , n.

(4.4.5)

Finally, we have the entries bi of the load vector b as

b1 = . . . = bn = rh, bn+1 = rh/2 + εβ.

Thus,

C =
1

2




0 1 0 0 . . . 0

−1 0 1 0 . . . 0

0 −1 0 1 . . . 0

. . . . . . . . . . . . . . . . . .

0 . . . . . . −1 0 1

0 . . . . . . . . . −1 1




, b = rh




1

1

1

·
1

1/2




+ εβ




0

0

0

·
0

1




.

Remark 4.4. In the convection dominated case ε
p
<< 1 this standard FEM

will not work. Spurious oscillations in the approximate solution will appear.
The standard FEM has to be modified in this case.

4.5 Exercises

Problem 4.1. Consider the two-point boundary value problem

−u′′ = f, 0 < x < 1; u(0) = u(1) = 0. (4.5.1)

Let V = {v : ‖v‖+‖v′‖ <∞, v(0) = v(1) = 0}, ‖·‖ denotes the L2-norm.

a. Use V to derive a variational formulation of (4.5.1).
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b. Discuss why V is valid as a vector space of test functions.

c. Classify which of the following functions are admissible test functions

sin πx, x2, x ln x, ex − 1, x(1− x).

Problem 4.2. Assume that u(0) = u(1) = 0, and that u satisfies
∫ 1

0

u′v′ dx =

∫ 1

0

fv dx,

for all v ∈ V = {v : ‖v‖+ ‖v′‖ <∞, v(0) = v(1) = 0}.
a. Show that u minimizes the functional

F (v) =
1

2

∫ 1

0

(v′)2 dx−
∫ 1

0

fv dx. (4.5.2)

Hint: F (v) = F (u+ w) = F (u) + . . . ≥ F (u).

b. Prove that the above minimization problem is equivalent to

−u′′ = f, 0 < x < 1; u(0) = u(1) = 0.

Problem 4.3. Consider the two-point boundary value problem

−u′′ = 1, 0 < x < 1; u(0) = u(1) = 0. (4.5.3)

Let Th : xj =
j
4
, j = 0, 1, . . . , 4, denote a partition of the interval 0 < x < 1

into four subintervals of equal length h = 1/4 and let Vh be the corresponding
space of continuous piecewise linear functions vanishing at x = 0 and x = 1.

a. Compute a finite element approximation U ∈ Vh to (4.5.3).

b. Prove that U ∈ Vh is unique.

Problem 4.4. Consider once again the two-point boundary value problem

−u′′ = f, 0 < x < 1; u(0) = u(1) = 0.

a. Prove that the finite element approximation U ∈ Vh to u satisfies

‖(u− U)′‖ ≤ ‖(u− v)′‖, for all v ∈ Vh.

b. Use this result and interpolation estimate to deduce that

‖(u− U)′‖ ≤ C‖hu′′‖, (4.5.4)

where C depends on the interpolation constant.
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Problem 4.5. Consider the two-point boundary value problem

−(au′)′ = f, 0 < x < 1,

u(0) = 0, a(1)u′(1) = g1,
(4.5.5)

where a > 0 is a positive function and g1 is a constant.

a. Derive the variational formulation of (4.5.5).

b. Discuss how the boundary conditions are implemented.

Problem 4.6. Consider the two-point boundary value problem

−u′′ = 0, x ∈ I := (0, 1); u(0) = 0, u′(1) = 7. (4.5.6)

Divide I into two subintervals of length h = 1
2
and let Vh be the corresponding

space of continuous piecewise linear functions vanishing at x = 0.

a. Formulate a finite element method for (4.5.6).

b. Calculate by hand the finite element approximation U ∈ Vh to (4.5.6).

c. Study how the boundary condition at x = 1 is approximated.

Problem 4.7. Consider the two-point boundary value problem

−u′′ = 0, 0 < x < 1; u′(0) = 5, u(1) = 0. (4.5.7)

Let Th : xj = jh, j = 0, 1, . . . , N, h = 1/N be a uniform partition of the
interval 0 < x < 1 into N subintervals and let Vh be the corresponding space
of continuous piecewise linear functions.

a. Use Vh, with N = 3, and formulate a finite element method for (4.5.7).

b. Compute the finite element approximation U ∈ Vh assuming N = 3.

Problem 4.8. Consider the problem of finding a solution approximation to

−u′′ = 1, 0 < x < 1; u′(0) = u′(1) = 0. (4.5.8)

Let Th be a partition of the interval 0 < x < 1 into two subintervals of equal
length h = 1

2
and let Vh be the corresponding space of continuous piecewise

linear functions.

a. Find the exact solution to (4.5.8) by integrating twice.

b.Compute a finite element approximation U ∈ Vh to u if possible.
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Problem 4.9. Consider the two-point boundary value problem

−((1 + x)u′)′ = 0, 0 < x < 1; u(0) = 0, u′(1) = 1. (4.5.9)

Divide the interval 0 < x < 1 into 3 subintervals of equal length h = 1
3
and

let Vh be the corresponding space of continuous piecewise linear functions
vanishing at x = 0.

a. Use Vh to formulate a finite element method for (4.5.9).

b. Verify that the stiffness matrix A and the load vector b are given by

A =
1

2




16 −9 0

−9 20 −11

0 −11 11


 , b =




0

0

1


 .

c. Show that A is symmetric tridiagonal, and positive definite.

d. Derive a simple way to compute the energy norm ‖U‖2E, defined by

‖U‖2E =

∫ 1

0

(1 + x)U ′(x)2 dx,

where U ∈ Vh is the finite element solution approximation.

Problem 4.10. Consider the two-point boundary value problem

−u′′ = 0, 0 < x < 1; u(0) = 0, u′(1) = k(u(1)− 1). (4.5.10)

Let Th : 0 = x0 < x1 < x2 < x3 = 1, where x1 =
1
3
and x2 =

2
3
be a partition

of the interval 0 ≤ x ≤ 1 and let Vh be the corresponding space of continuous
piecewise linear functions, which vanish at x = 0.

a. Compute a solution approximation U ∈ Vh to (4.5.10) assuming k = 1.

b. Discuss how the parameter k influence the boundary condition at x = 1.
In particular when k → ∞ and k → 0.

Problem 4.11. Consider the finite element method applied to

−u′′ = 0, 0 < x < 1; u(0) = α, u′(1) = β,
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where α and β are given constants. Assume that the interval 0 ≤ x ≤ 1
is divided into three subintervals of equal length h = 1/3 and that {ϕj}30 is
a nodal basis of Vh, the corresponding space of continuous piecewise linear
functions.

a. Verify that the ansatz

U(x) = αϕ0(x) + ξ1ϕ1(x) + ξ2ϕ2(x) + ξ3ϕ3(x),

yields the following system of equations

1

h




−1 2 −1 0

0 −1 2 −1

0 0 −1 1







α

ξ1

ξ2

ξ3



=




0

0

β


 . (4.5.11)

b. If α = 2 and β = 3 show that (4.5.11) can be reduced to

1

h




2 −1 0

−1 2 −1

0 −1 1







ξ1

ξ2

ξ3


 =




−2h−1

0

3


 .

c. Solve the above system of equations to find U(x).

Problem 4.12. Compute a finite element solution approximation to

−u′′ + u = 1; 0 ≤ x ≤ 1, u(0) = u(1) = 0, (4.5.12)

using the continuous piecewise linear ansatz U = ξ1ϕ1(x) + ξ2ϕ2(x) where

ϕ1(x) =





3x, 0 < x < 1
3

2− 3x, 1
3
< x < 2

3
,

0, 2
3
< x < 1

ϕ2(x) =





0, 0 < x < 1
3

3x− 1, 1
3
< x < 2

3
.

3− 3x, 2
3
< x < 1
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Problem 4.13. Consider the following eigenvalue problem

−au′′ + bu = 0; 0 ≤ x ≤ 1, u(0) = u′(1) = 0, (4.5.13)

where a, b > 0 are constants. Let Th : 0 = x0 < x1 < . . . < xN = 1,
be a non-uniform partition of the interval 0 ≤ x ≤ 1 into N intervals of
length hi = xi − xi−1, i = 1, 2, . . . , N and let Vh be the corresponding space
of continuous piecewise linear functions. Compute the stiffness and mass
matrices.

Problem 4.14. Show that the FEM with the mesh size h for the problem:





−u′′ = 1 0 < x < 1

u(0) = 1 u′(1) = 0,
(4.5.14)

with

U(x) = 7ϕ0(x) + U1ϕ1(x) + . . .+ Umϕm(x). (4.5.15)

leads to the linear system of equations: Ã · Ũ = b̃, where

Ã =
1

h




−1 2 −1 0

0 −1 2 −1 . . .

. . . . . . . . . . . .

0 . . . 0 . . .



,

m× (m+ 1)

Ũ =




7

U1

. . .

Um



,

(m+ 1)× 1

b̃ =




h

. . .

h

h/2



,

m× 1

. which is reduced to AU = b, with

A =
1

h




2 −1 0 . . . 0

−1 2 −1 0 . . .

. . . . . . . . . . . . . . .

. . . 0 −1 2 −1

0 0 0 −1 2




, U =




U1

U2

. . .

Um



, b =




h+ 7
h

h

. . .

h

h/2




.
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Problem 4.15. Prove an a priori error estimate for the cG(1) finite element
method for the problem

−u′′ + αu = f, in I = (0, 1), u(0) = u(1) = 0,

where the coefficient α = α(x) is a bounded positive function on I, (0 ≤
α(x) ≤ K, x ∈ I).

Problem 4.16. a) Formulate a cG(1) method for the problem





(a(x)u′(x))′ = 0, 0 < x < 1,

a(0)u′(0) = u0, u(1) = 0.

and give an a priori error estimate.

b) Let u0 = 3 and compute the approximate solution in a) for a uniform
partition of I = [0, 1] into 4 intervals and

a(x) =





1/4, x < 1/2,

1/2, x > 1/2.

c) Show that, with these special choices, the computed solution is equal to the
exact one, i.e. the error is equal to 0.

Problem 4.17. Prove an a priori error estimate for the finite element
method for the problem

−u′′(x) + u′(x) = f(x), 0 < x < 1, u(0) = u(1) = 0.

Problem 4.18. (a) Prove an a priori error estimate for the cG(1) approxi-
mation of the boundary value problem

−u′′ + cu′ + u = f in I = (0, 1), u(0) = u(1) = 0,

where c ≥ 0 is constant.

(b) For which value of c is the a priori error estimate optimal?
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Problem 4.19. Let U be the piecewise linear finite element approximation
for

−u′′(x) + 2xu′(x) + 2u(x) = f(x), x ∈ (0, 1), u(0) = u(1) = 0,

in a partition Th of the interval [0, 1]. Set e = u−U and derive a priori error
estimates in the energy-norm:

||e||2E = ||e′||2 + ||e||2, where ||w||2 =
∫ 1

0

w(x)2 dx.



80 CHAPTER 4. TWO-POINT BOUNDARY VALUE PROBLEMS



Chapter 5

Scalar Initial Value Problems

This chapter is devoted to numerical methods for time discretizations. Here, we
shall consider problems depending on the time variable, only. The approximation
techniques developed in this chapter, combined with those of the previous chap-
ter for boundary value problems, can be used for the numerical study of initial
boundary value problems; such as, e.g. the heat and wave equations.

As a model problem we shall consider the classical example of population
dynamics described by the following ordinary differential equation (ODE)

(DE)

(IV)





u̇(t) + a(t)u(t) = f(t), 0 < t ≤ T,

u(0) = u0,
(5.0.1)

where f(t) is the source term and u̇(t) =
du

dt
. The coefficient a(t) is a bounded

function. If a(t) ≥ 0 the problem (5.0.1) is called parabolic, while a(t) ≥ α > 0
yields a dissipative problem, in the sense that, with increasing t, perturbations
of solutions to (5.0.1), e.g. introduced by numerical discretization, will decay.
In general, in numerical approximations for (5.0.1), the error accumulates when
advancing in time, i.e. the error of previous time steps adds up to the error of
the present time step. The different types of error accumulation/perturbation
growth are referred to as stability properties of the initial value problem.

81
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5.1 Solution formula and stability

Theorem 5.1. The solution of the problem (5.0.1) is given by

u(t) = u0 · e−A(t) +

∫ t

0

e−(A(t)−A(s))f(s)ds, (5.1.1)

where A(t) =
∫ t

0
a(s)ds and eA(t) is the integrating factor.

Proof. Multiplying the (DE) by the integrating factor eA(t) we have

u̇(t)eA(t) + Ȧ(t)eA(t)u(t) = eA(t)f(t), (5.1.2)

where we used that a(t) = Ȧ(t). Equation (5.1.2) can be rewritten as

d

dt

(
u(t)eA(t)

)
= eA(t)f(t).

We denote the variable by s and integrate from 0 to t to get
∫ t

0

d

ds

(
u(s)eA(s)

)
ds =

∫ t

0

eA(s)f(s)ds,

i.e.

u(t)eA(t) − u(0)eA(0) =

∫ t

0

eA(s)f(s)ds.

Now since A(0) = 0 and u(0) = u0 we get the desired result

u(t) = u0e
−A(t) +

∫ t

0

e−(A(t)−A(s))f(s)ds. (5.1.3)

This representation of u is known as the Variation of constants formula.

Theorem 5.2 (Stability estimates). Using the solution formula, we can de-
rive the following stability estimates:

(i) If a(t) ≥ α > 0, then |u(t)| ≤ e−αt|u0|+
1

α
(1− e−αt) max

0≤s≤t
|f(s)|,

(ii) If a(t) ≥ 0 (i.e. α = 0; the parabolic case), then

|u(t)| ≤ |u0|+
∫ t

0

|f(s)|ds or |u(t)| ≤ |u0|+ ‖f‖L1(0,t). (5.1.4)
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Proof. (i) For a(t) ≥ α > 0 we have that A(t) =

∫ t

0

a(s)ds is an increasing

function of t, A(t) ≥ αt and

A(t)− A(s) =

∫ t

0

a(r) dr −
∫ s

0

a(r) dr =

∫ t

s

a(r) dr ≥ α(t− s). (5.1.5)

Thus e−A(t) ≤ e−αt and e−(A(t)−A(s)) ≤ e−α(t−s). Hence, using (5.1.3) we get

|u(t)| ≤ |u0|e−αt +

∫ t

0

e−α(t−s)|f(s)|ds, (5.1.6)

which yields

|u(t)| ≤ e−αt|u0|+ max
0≤s≤t

|f(s)|
[ 1
α
e−α(t−s)

]s=t

s=0
, i.e.

|u(t)| ≤ e−αt|u0|+
1

α
(1− e−αt) max

0≤s≤t
|f(s)|.

(ii) Let α = 0 in (5.1.6) (which is true also in this case: for α = 0), then

|u(t)| ≤ |u0|+
∫ t

0

|f(s)|ds, and the proof is complete.

Remark 5.1. (i) expresses that the effect of the initial data u0 decays expo-
nentially with time, and that the effect of the source term f on the right hand
side does not depend on the length of the time interval, only on the maximum
value of f , and on the value of α. In case (ii), the influence of u0 remains
bounded in time, and the integral of f indicates an accumulation in time.

5.2 Finite difference methods

Let us first continue as in Example 2.1 and give the other two, very common,
finite difference approaches, for numerical solution of (5.0.1): Let

Tk := {0 = x0 < x1 <, . . . < xN−1 < xN = T},

be a partition of the time interval [0, T ] into the subintervals Ik := [xk−1, xk], k =
1, . . . N as in the Example 2.1:
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t0 = 0 t1 t2 t3 tN = T

Example 5.1. Now we discretize the IVP (5.0.1), for a(t) being positive
constant, with the backward Euler method, on the partition Tk, approximat-
ing the derivative u̇(t) by a backward-difference quotient at each subinterval

Ik = (tk−1, tk] by u̇(t) ≈ u(tk)−u(tk−1)

tk−tk−1
. Then an approximation of (5.0.1), with

f(t) ≡ 0 is given by

u(tk)− u(tk−1)

tk − tk−1

= −a · u(tk), k = 1, . . . , N, and u(0) = u0. (5.2.1)

(Note that in forward Euler, we would have −au(tk−1) on the right hand side
of (5.2.1)). Letting ∆tk = tk − tk−1, (5.2.1) yields

(1 + a∆tk)u(tk) = u(tk−1). (5.2.2)

Starting with k = 1 and the data u(0) = u0, the solution u(tk) would, itera-
tively, be computed at the subsequent points: t1, t2, . . . , tN = T .
For a uniform partition, where all subintervals have the same length ∆t, and
since for a > 0, 1 + a∆t > 0 ( 6= 0), (5.2.2) can be written as

u(tk) = (1 + a∆t)−1u(tk−1), k = 1, 2, . . . , N. (5.2.3)

Iterating we get the Backward or Implicit Euler method for (5.0.1):

u(tk) = (1 + a∆t)−1u(tk−1) = (1 + a∆t)−2u(tk−2) = . . . = (1 + a∆t)−ku0.

Remark 5.2. Note that, for the problem (5.0.1), with f(t) ≡ 0, in the
Example 2.1 we just replace λ with −a, and get the forward (explicit) Euler
method:

u(tk) = (1− a∆t)ku0. (5.2.4)

Example 5.2. Now we introduce the Crank-Nicolson method for the finite
difference approximation of (5.0.1). Here, first we integrate the equation
(5.0.1) over Ik = [tk−1, tk] to get

u(tk)− u(tk−1) + a

∫ tk

tk−1

u(t) dt =

∫ tk

tk−1

f(t) dt. (5.2.5)



5.2. FINITE DIFFERENCE METHODS 85

Then, approximate the integral term by the simple trapezoidal rule we get

u(tk)− u(tk−1) + a
∆tk
2

(u(tk) + u(tk−1)) =

∫ tk

tk−1

f(t) dt. (5.2.6)

Rearranging the terms yields

(
1 + a

∆tk
2

)
u(tk) =

(
1− a

∆tk
2

)
u(tk−1) +

∫ tk

tk−1

f(t) dt.

Or, equivalently,

u(tk) =
1− a∆tk/2

1 + a∆tk/2
u(tk−1) +

1

1 + a∆tk/2

∫ tk

tk−1

f(t) dt.

Let us assume a zero source term (f = 0), and uniform partition, i.e. ∆tk =
∆t for k = 1, 2, . . . , N , then we have the following Crank-Nicolson method:

u(tk) =
(1− a∆t/2

1 + a∆t/2

)k

u0. (5.2.7)

Example 5.3. Consider the initial value problem:

u̇(t) + au(t) = 0, t > 0, u(0) = 1.

a) Let a = 40, and the time step k = 0.1. Draw the graph of Un :=
U(nk), k = 1, 2, . . . , approximating u using (i) explicit (forward) Euler, (ii)
implicit (Backward) Euler, and (iii) Crank-Nicolson methods.

b) Consider the case a = i, (i2 = −1), having the complex solution u(t) = e−it

with |u(t)| = 1 for all t. Show that this property is preserved in Crank-
Nicolson approximation, (i.e. |Un| = 1 ), but NOT in any of the Euler
approximations.
Solution: a) With a = 40 and k = 0.1 we get the explicit Euler:




Un − Un−1 + 40× (0.1)Un−1 = 0,

U0 = 1.
=⇒





Un = −3Un−1, n = 1, 2, . . . ,

U0 = 1.

Implicit Euler:




Un = 1
1+40×(0.1)

Un−1 =
1
5
Un−1, n = 1, 2, 3, . . . ,

U0 = 1.
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Cranck-Nicolson:




Un =
1− 1

2
×40×(0.1)

1+ 1

2
×40×(0.1)

Un−1 = −1
3
Un−1, n = 1, 2, 3, . . . ,

U0 = 1.

10

1

k 2k 3k

1

k 2k 3k

1

k 2k 3k

E.E.
I.E.

C.N.

1/5

−1/3−3

b) With a = i we get
Explicit Euler

|Un| = |1− (0.1)× i||Un−1| =
√
1 + 0.01|Un−1| =⇒ |Un| ≥ |Un−1|.

Implicit Euler

|Un| =
∣∣∣

1

1 + (0.1)× i

∣∣∣|Un−1| =
1√

1 + 0.01
|Un−1| ≤ |Un−1|.

Crank-Nicolson

|Un| =
∣∣∣
1− 1

2
(0.1)× i

1 + 1
2
(0.1)× i

∣∣∣|Un−1| = |Un−1|.

5.3 Galerkin finite element methods for IVP

The polynomial approximation procedure introduced in Chapter 2, along
with (2.2.5)-(2.3.5), for the initial value problem (2.1.1), or (5.0.1), being
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over the whole time interval (0, T ) is referred as the global Galerkin method.
In this section, first we introduce two versions of the global Galerkin method
and then extend them to partitions of the interval (0, T ) using piecewise
polynomial test (multiplier) and trial (solution) functions. Here, we shall
focus on two simple, low degree polynomial, approximation cases.

• The continuous Galerkin method of degree 1; cG(1). In this case the trial
functions are piecewise linear and continuous while the test functions are
piecewise constant and discontinuous, i.e. unlike the cG(1) for BVP, here
the trial and test functions belong to different polynomial spaces.

• The discontinuous Galerkin method of degree 0; dG(0). Here both the trial
and test functions are chosen to be piecewise constant and discontinuous.

5.3.1 The continuous Galerkin method

Recall the global Galerkin method of degree q; (2.3.1), for the initial value
problem (5.0.1): find U ∈ Pq(0, T ), with U(0) = u0 such that

∫ T

0

(U̇ + aU)vdt =

∫ T

0

fv dt, ∀v ∈ Pq(0, T ), with v(0) = 0. (5.3.1)

We formulate the following alternative formulation: Find U ∈ Pq(0, T )
with U(0) = u0 such that

∫ T

0

(U̇ + aU)vdt =

∫ T

0

fvdt, ∀v ∈ Pq−1(0, T ), (5.3.2)

Note that in (5.3.1) we have that v ∈ span{t, t2, . . . , tq}, whereas in (5.3.2)
the test functions v ∈ span{1, t, t2, . . . , tq−1}. Hence, the difference between
these two formulations lies in the choice of their test function spaces. We
shall focus on (5.3.2), due to the fact that, actually, this method yields a
more accurate approximation of degree q than the original method (5.3.1).
The following example illustrates the phenomenon

Example 5.4. Consider the IVP




u̇(t) + u(t) = 0, 0 ≤ t ≤ 1,

u(0) = 1.
(5.3.3)
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The exact solution is given by u(t) = e−t. The continuous piecewise linear
approximation, with the ansatz U(t) = 1 + ξ1t in,

∫ 1

0

(U̇(t) + U(t))v(t) dt = 0, (5.3.4)

and v(t) = t (i.e. (5.3.1)) yields

∫ 1

0

(ξ1 + 1 + ξ1t)t dt = 0 =⇒
[
(ξ1 + 1)

t2

2
+ ξ1

t3

3

]1
0
= 0 =⇒ ξ= − 3/5.

Hence in this case the approximate solution, that we denote by U1 is given
by U1(t) = 1− (3/5)t. Whereas (5.3.2) for this problem means v(t) = 1 and
gives

∫ 1

0

(ξ1 + 1 + ξ1t) dt = 0 =⇒
[
(ξ1 + 1)t+ ξ1

t2

2

]1
0
= 0 =⇒ ξ= − 2/3.

In this case the approximate solution that we denote by U2 is given as U2(t) =
1− (2/3)t. As we can see in the figure below U2 is a better approximation for
e−t than U1.

1

1

U1(t)

U2(t)

t

u(t) = e−t

Figure 5.1: Two continuous linear Galerkin approximations of e−t.

Before generalizing (5.3.2) to piecewise polynomial approximation, which
is the cG(q) method, we consider a canonical example of(5.3.2).
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Example 5.5. Consider (5.3.2) with q = 1, then choosing v ≡ 1, yields

∫ T

0

(U̇ + aU)vdt =

∫ T

0

(U̇ + aU)dt = U(T )− U(0) +

∫ T

0

aU(t)dt (5.3.5)

Here U(t), as a linear function, is given by

U(t) = U(0)
T − t

T
+ U(T )

t

T
. (5.3.6)

Inserting (5.3.6) into (5.3.5) we get

U(T )− U(0) +

∫ T

0

a
(
U(0)

T − t

T
+ U(T )

t

T

)
dt =

∫ T

0

f dt, (5.3.7)

which is an equation for the unknown quantity U(T ). Thus, using (5.3.6) with
a given U(0), we get the linear approximation U(t) for all t ∈ [0, T ]. Below
we generalize this example to piecewise linear approximation and demonstrate
the iteration procedure for the cG(1) scheme.

The cG(1) Algorithm
For a partition Tk of the interval [0, T ] into subintervals Ik = (tk−1, tk], we
perform the following steps:

(1) Given U(0) = U0 = u0 and a source term f , apply (5.3.7) to the first
subinterval (0, t1] and compute U(t1). Then, using (5.3.6) one gets
U(t), ∀t ∈ [0, t1].

(2) Assume that we have computed Uk−1 := U(tk−1). Hence, Uk−1 and
f are now considered as data. Now we consider the problem on the
subintervals Ik = (tk−1, tk], and compute the unknown Uk := U(tk)
from the local version of (5.3.7),

Uk − Uk−1 +

∫ tk

tk−1

a
( tk − t

tk − tk−1

Uk−1 +
t− tk−1

tk − tk−1

Uk

)
dt =

∫ tk

tk−1

fdt.

Having both Uk−1 and Uk, by linearity, we get U(t) for t ∈ Ik. To get the
continuous piecewise linear approximation in the whole interval [0, tN ],
step (2) is performed in successive subintervals Ik, k = 2, . . . , N .
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The cG(q) method

The Global continuous Galerkin method of degree q, formulated on a parti-
tion Tk, 0 = t0 < t1 < . . . < tN = T of the interval (0, T ), is referred to as

the cG(q) method and reads as: find U(t) ∈ V
(q)
k , such that U(0) = u0, and

∫ tN

0

(U̇ + aU)wdt =

∫ tN

0

fwdt, ∀w ∈ W
(q−1)
k , (5.3.8)

where

V
(q)
k = {v : v continuous, piecewise polynomial of degree ≤ q on Tk},

W
(q−1)
k = {w : w discontinuous, piecewise polynomial, deg w ≤ q − 1 on Tk}.

So, the difference between the global continuous Galerkin method and cG(q)
is that now we have piecewise polynomials on a partition of [0, T ] rather than
global polynomials in the whole interval [0, T ].

5.3.2 The discontinuous Galerkin method

We start presenting the global discontinuous Galerkin method of degree q:
find U(t) ∈ Pq(0, T ) such that

∫ T

0

(U̇ + aU)vdt+ (U(0)− u(0))v(0) =

∫ T

0

fvdt, ∀v ∈ Pq(0, T ). (5.3.9)

This approach gives up the requirement that U(t) satisfies the initial condi-
tion. Instead, the initial condition is imposed in a variational sense by the
term (U(0) − u(0))v(0). As in the cG(q) case, to derive the discontinuous
Galerkin method of degree q: dG(q) scheme, the above strategy can be for-
mulated for the subintervals in a partition Tk. To this end, we recall the
notation for the right/left limits: v±n = lim

s→0+
v(tn ± s) and the corresponding

jump term [vn] = v+n − v−n at time level t = tn. Then, the dG(q) method for
(5.0.1) reads as follows: for n = 1, . . . , N ; find U(t) ∈ Pq(tn−1, tn) such that

∫ tn

tn−1

(U̇ + aU)vdt+ U+
n−1v

+
n−1 =

∫ tn

tn−1

fvdt+ U−
n−1v

+
n−1, ∀v ∈ Pq(tn−1, tn).

(5.3.10)
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tn−1 tn tn+1
t

kn

v−n
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v+n

◦ •

◦ •

Figure 5.2: The jump [vn] and the right and left limits v±n

Example 5.6 (dG(0)). Let q = 0, then v is constant generated by the single
basis function: v ≡ 1. Further, we have U(t) = Un = U+

n−1 = U−
n on

In = (tn−1, tn], and U̇ ≡ 0. Thus, for q = 0 (5.3.10) yields the following
dG(0) formulation: for n = 1, . . . , N ; find piecewise constants Un such that

∫ tn

tn−1

aUndt+ Un =

∫ tn

tn−1

fdt+ Un−1. (5.3.11)

Summing over n in (5.3.10), we get the following general dG(q) formulation:

Find U(t) ∈ W
(q)
k , with U−

0 = u0 such that

N∑

n=1

∫ tn

tn−1

(U̇ + aU)wdt+
N∑

n=1

[Un−1]w
+
n−1 =

∫ tN

0

fwdt, ∀w ∈ W
(q)
k . (5.3.12)

Remark 5.3. One can show that cG(1) converges faster than dG(0), whereas
dG(0) has better stability properties than cG(1): More specifically, in the
parabolic case when a > 0 is constant and (f ≡ 0) we can easily verify
that (see Exercise 6.10 at the end of this chapter) the dG(0) solution Un

corresponds to the Backward Euler scheme

Un =
( 1

1 + ak

)n

u0,

and the cG(1) solution Ũn is given by the Crank-Nicolson scheme:

Ũn =
(1− 1

2
ak

1 + 1
2
ak

)n

u0,

where k is the constant time step.
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5.4 Exercises

Problem 5.1. (a) Derive the stiffness matrix and load vector in piecewise
polynomial (of degree q) approximation for the ODE of population dynamics:

u̇(t) = λu(t), for 0 < t ≤ 1, u(0) = u0.

(b) Let λ = 1 and u0 = 1 and determine the approximate solution U(t), for
q = 1 and q = 2.

Problem 5.2. Consider the initial value problem

u̇(t) + a(t)u(t) = f(t), 0 < t ≤ T, u(0) = u0.

Show that if a(t) = 1, f(t) = 2 sin(t), then we have
u(t) = sin(t)− cos(t) =

√
2 sin(t− π/2).

Problem 5.3. Compute the solution for

u̇(t) + a(t)u(t) = t2, 0 < t ≤ T, u(0) = 1,

corresponding to
(a) a(t) = 4, (b) a(t) = −t.

Problem 5.4. Compute the cG(1) approximation for the differential equa-
tions in the above problem. In each case, determine the condition on the step
size that guarantees that U exists.

Problem 5.5. Without using the solution Theorem 5.1, prove that if a(t) ≥ 0
then, a continuously differentiable solution of (5.0.1) is unique.

Problem 5.6. Consider the initial value problem

u̇(t) + a(t)u(t) = f(t), 0 < t ≤ T, u(0) = u0.

Show that for a(t) > 0, and for N = 1, 2, . . . , the piecewise linear approxi-
mate solution U for this problem satisfies the error estimate

|u(tN)− UN | ≤ max
[0,tN ]

|k(U̇ + aU − f)|, k = kn, for tn−1 < t ≤ tn.
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Problem 5.7. Consider the initial value problem

u̇(t) + au(t) = 0, t > 0, u(0) = u0, (a = constant).

Assume a constant time step k and verify the iterative formulas for dG(0)
and cG(1) approximations U and Ũ , respectively: i.e.

Un =
( 1

1 + ak

)n

u0, Ũn =
(1− ak/2

1 + ak/2

)n

u0.

Problem 5.8. Assume that
∫

Ij

f(s) ds = 0, for j = 1, 2, . . . ,

where Ij = (tj−1, tj), tj = jk with k being a positive constant. Prove that if
a(t) ≥ 0, then the solution for (5.0.1) satisfies

|u(t)| ≤ e−A(t)|u0|+ max
0≤s≤t

|kf(s)|.

Problem 5.9. Formulate a continuous Galerkin method using piecewise poly-
nomials based on the original global Galerkin method.

Problem 5.10. Formulate the dG(1) method for the differential equations
specified in Problem 5.3.

Problem 5.11. Write out the a priori error estimates for the equations
specified in Problem 5.3.

Problem 5.12. Use the a priori error bound to show that the residual of the
dG(0) approximation satisfies R(U) = O(1).

Problem 5.13. Prove the following stability estimate for the dG(0) method
described by (5.3.12),

|UN |2 +
N−1∑

n=0

|[Un]|2 ≤ |u0|2.
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Chapter 6

Initial Boundary Value
Problems in 1d

A large class of phenomena in nature, science and technology, such as seasonal
periods, heat distribution, wave propagation, etc, are varying both in space and
time. To describe these phenomena in a physical domain requires the knowledge
of their initial status, as well as information on the boundary of the domain, or
asymptotic behavior in the case of unbounded domains. Problems that model
such properties are called initial boundary value problems. In this chapter we shall
study the two most important equations of this type: namely, the heat equation
and the wave equation in one space dimension. We also address (briefly) the
one-space dimensional time-dependent convection-diffusion problem.

6.1 Heat equation in 1d

In this section we focus on some basic L2-stability and finite element error es-
timates for the, time-dependent, one-space dimensional heat equation. Here,
to illustrate, we consider an example of an initial boundary value problem
(IBVP) for the one-dimensional heat flux, viz





u̇− u′′ = f(x, t), 0 < x < 1, t > 0,

u(x, 0) = u0(x), 0 < x < 1,

u(0, t) = ux(1, t) = 0, t > 0.

(6.1.1)

95
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u(x, t)

x

t

u0(x)

tn−1

tn

Figure 6.1: A decreasing temperature profile with data u(0, t) = u(1, t) = 0.

Example 6.1. Describe the physical meaning of the functions and parame-
ters in the problem (6.1.1), when f = 20− u.

Answer: The problem is an example of heat conduction where

u(x, t), means the temperature at the point x and time t.

u(x, 0) = u0(x), is the initial temperature at time t = 0.

u(0, t) = 0, means fixed temperature at the boundary point x = 0.

u′(1, t) = 0, means isolated boundary at the boundary point x = 1

(where no heat flux occurs).

f = 20− u, is the heat source, in this case a control system to force

u→ 20.

Remark 6.1. Observe that it is possible to generalize (6.1.1) to a u dependent
source term f , e.g. as in the above example where f = 20− u.

6.1.1 Stability estimates

We shall derive a general stability estimate for the mixed (Dirichlet at one
end point and Neumann in the other) initial boundary value problem above,
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prove a one-dimensional version of the Poincare inequality and finally derive
some stability estimates in the homogeneous (f ≡ 0) case.

Theorem 6.1. The IBVP (6.1.1) satisfies the stability estimates

||u(·, t)|| ≤ ||u0||+
∫ t

0

||f(·, s)|| ds, (6.1.2)

||u′(·, t)||2 ≤ ||u′0||2 +
∫ t

0

||f(·, s)||2 ds, (6.1.3)

where u0 and u′0 are assumed to be L2(I) functions with I = (0, 1). Note
further that, here || • (·, t)|| is the time dependent L2 norm:

||w(·, s)|| := ||w(·, s)||L2(0,1) =
(∫ 1

0

||w(x, s)||2 dx
)1/2

.

Proof. Multiply the equation in (6.1.1) by u and integrate over (0, 1) to get

∫ 1

0

u̇u dx−
∫ 1

0

u′′u dx =

∫ 1

0

fu dx. (6.1.4)

Note that u̇u = 1
2

d
dt
u2. Hence, integration by parts in the second integral

yields

1

2

d

dt

∫ 1

0

u2 dx+

∫ 1

0

(u′)2 dx− u′(1, t)u(1, t) + u′(0, t)u(0, t) =

∫ 1

0

fu dx.

Then, using boundary conditions and Cauchy-Schwarz’ inequality yields

||u|| d
dt
||u||+ ||u′||2 =

∫ 1

0

fu dx ≤ ||f || ||u||. (6.1.5)

Now since ||u′||2 ≥ 0, consequently ||u|| d
dt
||u|| ≤ ||f || ||u||, and thus

d

dt
||u|| ≤ ||f ||. (6.1.6)

Relabeling the variable from t to s, and integrating over time we end up with

||u(·, t)|| − ||u(·, 0)|| ≤
∫ t

0

||f(·, s)|| ds, (6.1.7)
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which yields the first assertion (6.1.2) of the theorem. To prove (6.1.3) we
multiply the differential equation by u̇, integrate over (0, 1), and use integra-
tion by parts so that we have on the left hand side
∫ 1

0

(u̇)2 dx−
∫ 1

0

u′′u̇ dx = ||u̇||2 +
∫ 1

0

u′u̇′ dx− u′(1, t)u̇(1, t) + u′(0, t)u̇(0, t).

Then, since u(0, t) = 0 =⇒ u̇(0, t) = 0, we have

||u̇||2 + 1

2

d

dt
||u′||2 =

∫ 1

0

fu̇ dx ≤ ||f || ||u̇|| ≤ 1

2

(
||f ||2 + ||u̇||2

)
, (6.1.8)

where in the last step we used Cauchy-Schwarz’ inequality. Hence,

1

2
||u̇||2 + 1

2

d

dt
||u′||2 ≤ 1

2
||f ||2, (6.1.9)

and therefore, evidently,
d

dt
||u′||2 ≤ ||f ||2. (6.1.10)

Finally, integrating over (0, t) we get the second assertion of the theorem:

||u′(·, t)||2 − ||u′(·, 0)||2 ≤
∫ t

0

||f(·, s)||2 ds, (6.1.11)

and the proof is complete.

To proceed we give a proof of the Poincare inequality (in 1d) which is one
of the most useful inequalities in PDE and analysis.

Theorem 6.2 (The Poincare inequality in 1 − d). Assume that u and u′

are square integrable functions on an interval [0, L]. Then, there exists a
constant CL, independent of u, but dependent on L, such that if u(0) = 0,

∫ L

0

u(x)2 dx ≤ CL

∫ L

0

u′(x)2 dx, i.e. ||u|| ≤
√
CL||u′||. (6.1.12)

Proof. For x ∈ [0, L] we may write

u(x) =

∫ x

0

u′(y) dy ≤
∫ x

0

|u′(y)| dy =

∫ x

0

|u′(y)| · 1 dy

≤
(∫ x

0

|u′(y)|2 dy
)1/2

·
(∫ x

0

12dy
)1/2

≤
(∫ L

0

|u′(y)|2 dy
)1/2

·
(∫ L

0

12dy
)1/2

=
√
L
(∫ L

0

|u′(y)|2 dy
)1/2

,
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where in the last step we used the Cauchy-Schwarz inequality. Thus, squaring
both sides and integrating, we get

∫ L

0

u(x)2 dx ≤
∫ L

0

L
(∫ L

0

|u′(y)|2 dy
)
dx = L2

∫ L

0

|u′(y)|2 dy, (6.1.13)

and hence

||u|| ≤ L||u′||. (6.1.14)

Remark 6.2. The constant CL = L2 indicates that the Poincare inequality
is valid for arbitrary bounded intervals, but not for unbounded intervals. If
u(0) 6= 0 and, for simplicity L = 1, then by a similar argument as above we
get the following version of the one-dimensional Poincare inequality:

||u||2L2(0,1)
≤ 2

(
u(0)2 + ||u′||2L2(0,1)

)
. (6.1.15)

Theorem 6.3 (Stability of the homogeneous heat equation). The initial
boundary value problem for the heat equation





u̇− u′′ = 0, 0 < x < 1, t > 0

u(0, t) = ux(1, t) = 0, t > 0

u(x, 0) = u0(x), 0 < x < 1,

(6.1.16)

satisfies the following stability estimates

a)
d

dt
||u||2 + 2||u′||2 = 0, b) ||u(·, t)|| ≤ e−t||u0||.

Proof. a) Multiply the equation by u and integrate over x ∈ (0, 1), to get

0 =

∫ 1

0

(u̇−u′′)u dx =

∫ 1

0

u̇u dx+

∫ 1

0

(u′)2 dx−u′(1, t)u(1, t)+u′(0, t)u(0, t),

where we used integration by parts. Using the boundary data we then have

1

2

d

dt

∫ 1

0

u2 dx+

∫ 1

0

(u′)2 dx =
1

2

d

dt
||u||2 + ||u′||2 = 0.
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This gives the proof of a). As for the proof of b), using a) and the Poincare
inequality, with L = 1, i.e., ||u|| ≤ ||u′|| we get

d

dt
||u||2 + 2||u||2 ≤ 0. (6.1.17)

Multiplying both sides of (6.1.17) by the integrating factor e2t yields

d

dt

(
||u||2e2t

)
=

( d
dt
||u||2 + 2||u||2

)
e2t ≤ 0. (6.1.18)

We replace t by s and integrate with respect to s, over (0, t), to obtain

∫ t

0

d

ds

(
||u||2e2s

)
ds = ||u(·, t)||2e2t − ||u(·, 0)||2 ≤ 0. (6.1.19)

This yields

||u(·, t)||2 ≤ e−2t||u0||2 =⇒ ||u(·, t)|| ≤ e−t||u0||, (6.1.20)

and completes the proof.

6.1.2 FEM for the heat equation

We consider the one-dimensional heat equation with Dirichlet boundary data:





u̇− u′′ = f, 0 < x < 1, t > 0,

u(0, t) = u(1, t) = 0, t > 0,

u(x, 0) = u0(x), 0 < x < 1.

(6.1.21)

The Variational formulation for this problem reads as follows: For every time
interval In = (tn−1, tn], find u(x, t), x ∈ (0, 1), t ∈ In, such that

∫

In

∫ 1

0

(u̇v + u′v′)dxdt =

∫

In

∫ 1

0

fvdxdt, ∀v : v(0, t) = v(1, t) = 0. (VF)

A piecewise linear Galerkin finite element method: cG(1) − cG(1) is then
formulated as: for each time interval In := (tn−1, tn], with tn − tn−1 = kn, let

U(x, t) = Un−1(x)Ψn−1(t) + Un(x)Ψn(t), (6.1.22)
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where

Ψn(t) =
t− tn−1

kn
, Ψn−1(t) =

tn − t

kn
, (6.1.23)

and

Uñ(x) = Uñ,1ϕ1(x) + Uñ,2ϕ2(x) + . . .+ Uñ,mϕm(x), ñ = n− 1, n (6.1.24)

with ϕj being the usual continuous, piecewise linear finite element basis
functions (hat-functions) corresponding to a partition of Ω = (0, 1), with
0 = x0 < · · · < xℓ < xℓ+1 < · · · < xm+1 = 1, and ϕj(xi) := δij. Now the
Galerkin method (FEM) is to determine the unknown coefficients Un,ℓ in the
above representation for U (U is a continuous, piecewise linear function both
in space and time variables) that satisfies the following discrete variational
formulation: Find U(x, t) given by (6.1.22) such that

∫

In

∫ 1

0

(U̇ϕi + U ′ϕ′
i) dxdt =

∫

In

∫ 1

0

fϕi dxdt, i = 1, 2, . . . ,m. (6.1.25)

Note that, on In = (tn−1, tn] and with Un(x) := U(x, tn) and Un−1(x) :=
U(x, tn−1),

U̇(x, t) = Un−1(x)Ψ̇n−1(t) + Un(x)Ψ̇n(t) =
Un − Un−1

kn
. (6.1.26)

Further differentiating (6.1.22) with respect to x we have

U ′(x, t) = U ′
n−1(x)Ψn−1(t) + U ′

n(x)Ψn(t). (6.1.27)

Inserting (6.1.26) and (6.1.27) into (6.1.25) we get using the identities,
∫
In
dt =

kn and
∫
In
Ψndt =

∫
In
Ψn−1dt = kn/2 that,

∫ 1

0

Unϕidx

︸ ︷︷ ︸
M ·Un

−
∫ 1

0

Un−1ϕi dx

︸ ︷︷ ︸
M ·Un−1

+

∫

In

Ψn−1 dt

︸ ︷︷ ︸
kn/2

∫ 1

0

U ′
n−1ϕ

′
i dx

︸ ︷︷ ︸
S·Un−1

+

∫

In

Ψn dt

︸ ︷︷ ︸
kn/2

∫ 1

0

U ′
nϕ

′
i dx

︸ ︷︷ ︸
S·Un

=

∫

In

∫ 1

0

fϕi dxdt

︸ ︷︷ ︸
Fn

.

(6.1.28)
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This can be written in a compact form as the Crank-Nicolson system

(
M +

kn
2
S
)
Un =

(
M − kn

2
S
)
Un−1 + Fn, (CNS)

with the solution Un given by the data Un−1 and F , viz

Un =
(
M +

kn
2
S
)−1

︸ ︷︷ ︸
B−1

(
M − kn

2
S
)

︸ ︷︷ ︸
A

Un−1 +
(
M +

kn
2
S
)−1

︸ ︷︷ ︸
B−1

Fn, (6.1.29)

whereM and S (computed below) are known as themass-matrix and stiffness-
matrix, respectively, and

Un =




Un,1

Un,2

. . .

Un,m



, F =




Fn,1

Fn,2

. . .

Fn,m



, Fn,i =

∫

In

∫ 1

0

fϕi dx dt. (6.1.30)

Thus, given the source term f we can determine the vector Fn and then,
for each n = 1, . . . N , given the vector Un−1 (the initial value is given by
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U0,j := u0(xj)) we may use the CNS to compute Un,ℓ, ℓ = 1, 2, . . . m (m
nodal values of U at the xj : s, and at the time level tn).

We now return to the computation of the matrix entries for M and S, for
a uniform partition (all subintervals are of the same length) of the interval
I = (0, 1). Note that differentiating (6.1.24) with respect to x, yields

U ′
n(x) = Un,1ϕ

′
1(x) + Un,2ϕ

′
2(x) + . . .+ Un,mϕ

′
m(x). (6.1.31)

Hence, for i = 1, . . . ,m, the rows in the system of equations are given by

∫ 1

0

U ′
nϕ

′
i =

(∫ 1

0

ϕ′
iϕ

′
1

)
Un,1 +

(∫ 1

0

ϕ′
iϕ

′
2

)
Un,2 + . . .+

(∫ 1

0

ϕ′
iϕ

′
m

)
Un,m,

which can be written in matrix form as

SUn =




∫ 1

0
ϕ′
1ϕ

′
1

∫ 1

0
ϕ′
1ϕ

′
2 . . .

∫ 1

0
ϕ′
1ϕ

′
m

∫ 1

0
ϕ′
2ϕ

′
1

∫ 1

0
ϕ′
2ϕ

′
2 . . .

∫ 1

0
ϕ′
2ϕ

′
m

. . . . . . . . . . . .
∫ 1

0
ϕ′
mϕ

′
1

∫ 1

0
ϕ′
mϕ

′
2 . . .

∫ 1

0
ϕ′
mϕ

′
m







Un,1

Un,2

. . .

Un,m



. (6.1.32)

Thus, S is just the stiffness matrix Aunif computed in Chapter 2:

S =
1

h




2 −1 0 0 . . . 0

−1 2 −1 0 . . . 0

. . . . . . . . . . . . . . . . . .

0 . . . . . . −1 2 −1

0 . . . . . . . . . −1 2




. (6.1.33)

A non-uniform partition yields a matrix of the form A in Chapter 2.
Similarly, recalling the notation for the mass matrix M i in (6.1.28), we have

[MUn]i =

∫ 1

0

Unϕi, i = 1, . . . ,m. (6.1.34)

Hence, to compute the mass matrix M one should drop all derivatives from
the general form of the matrix for S given by (6.1.32). In other words unlike
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the form [SUn]i =
∫ 1

0
U ′
nϕ

′
i, MUn does not involve any derivatives, neither in

Un nor in ϕi. Consequently

M =




∫ 1

0
ϕ1ϕ1

∫ 1

0
ϕ1ϕ2 . . .

∫ 1

0
ϕ1ϕm

∫ 1

0
ϕ2ϕ1

∫ 1

0
ϕ2ϕ2 . . .

∫ 1

0
ϕ2ϕm

. . . . . . . . . . . .
∫ 1

0
ϕmϕ1

∫ 1

0
ϕmϕ2 . . .

∫ 1

0
ϕmϕm



. (6.1.35)

For a uniform partition, we have computed this mass matrix in Chapter 4:

M = h




2
3

1
6

0 0 . . . 0

1
6

2
3

1
6

0 . . . 0

. . . . . . . . . . . . . . . . . .

0 . . . . . . 1
6

2
3

1
6

0 . . . . . . . . . 1
6

2
3




=
h

6




4 1 0 0 . . . 0

1 4 1 0 . . . 0

. . . . . . . . . . . . . . . . . .

0 . . . . . . 1 4 1

0 . . . . . . . . . 1 4




.

6.1.3 Exercises

Problem 6.1. Derive a system of equations, as (6.1.29), for cG(1)−dG(0):
with the discontinuous Galerkin approximation dG(0) in time with piecewise
constants.

Problem 6.2. Let ‖ · ‖ denote the L2(0, 1)-norm. Consider the problem




−u′′ = f, 0 < x < 1,

u′(0) = v0, u(1) = 0.

a) Show that |u(0)| ≤ ‖u′‖ and ‖u‖ ≤ ‖u′‖.
b) Use a) to show that ‖u′‖ ≤ ‖f‖+ |v0|.
Problem 6.3. Assume that u = u(x) satisfies

∫ 1

0

u′v′dx =

∫ 1

0

fv dx, for all v(x) such that v(0) = 0. (6.1.36)

Show that −u′′ = f for 0 < x < 1 and u′(1) = 0.
Hint: See previous chapters.
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Problem 6.4 (Generalized Poincare). Show that for a continuously differ-
entiable function v defined on (0, 1) we have that

||v||2 ≤ v(0)2 + v(1)2 + ||v′||2.
Hint: Use partial integration for

∫ 1/2

0
v(x)2 dx and

∫ 1

1/2
v(x)2 dx and note that

(x− 1/2) has the derivative 1.

Problem 6.5. Let ‖ · ‖ denote the L2(0, 1)-norm. Consider the following
heat equation





u̇− u′′ = 0, 0 < x < 1, t > 0,

u(0, t) = ux(1, t) = 0, t > 0,

u(x, 0) = u0(x), 0 < x < 1.

a) Show that the norms: ||u(·, t)|| and ||u′(·, t)|| are non-increasing in time.

||u|| =
( ∫ 1

0
u(x)2 dx

)1/2

.

b) Show that ||u′(·, t)|| → 0, as t→ ∞.

c) Give a physical interpretation for a) and b).

Problem 6.6. Consider the inhomogeneous problem:




u̇− εu′′ = f, 0 < x < 1, t > 0,

u(0, t) = ux(1, t) = 0, t > 0,

u(x, 0) = u0(x), 0 < x < 1.

where f = f(x, t).
a) Show the stability estimate

||u(·, t)|| ≤
∫ t

0

||f(·, s)|| ds.

b) Show that for the corresponding stationary (u̇ ≡ 0) problem we have

||u′|| ≤ 1

ε
||f ||.

Problem 6.7. Give an a priori error estimate for the following problem:

(au′′)′′ = f, 0 < x < 1, u(0) = u′(0) = u(1) = u′(1) = 0,

where a(x) > 0 on the interval I = (0, 1).
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6.2 The wave equation in 1d

The theoretical study of the wave equation has some basic differences com-
pared to that of the heat equation. Some important aspects in this regard
are given in extended version of these notes. In our study here, the finite
element procedure for the wave equation is, mainly, the same as for that of
the heat equation outlined in the previous section. We start with an example
of the homogeneous wave equation, as an initial-boundary value problem:





ü− u′′ = 0, 0 < x < 1 t > 0 (DE)

u(0, t) = 0, u(1, t) = 0 t > 0 (BC)

u(x, 0) = u0(x), u̇(x, 0) = v0(x), 0 < x < 1. (IC)

(6.2.1)

Theorem 6.4 (conservation of energy). For the equation (6.2.1) we have

1

2
||u̇||2 + 1

2
||u′||2 = 1

2
||v0||2 +

1

2
||u′0||2 = Constant, (6.2.2)

where

||w||2 = ||w(·, t)||2 =
∫ 1

0

|w(x, t)|2 dx. (6.2.3)

Proof. We multiply the equation by u̇ and integrate over I = (0, 1) to get

∫ 1

0

ü u̇dx−
∫ 1

0

u′′ u̇ dx = 0. (6.2.4)

Using integration by parts and the boundary data we obtain

∫ 1

0

1

2

∂

∂t

(
u̇
)2

dx+

∫ 1

0

u′ (u̇)′ dx−
[
u′(x, t)u̇(x, t)

]1
0

=

∫ 1

0

1

2

∂

∂t

(
u̇
)2

dx+

∫ 1

0

1

2

∂

∂t

(
u′
)2

dx

=
1

2

d

dt

(
||u̇||2 + ||u′||2

)
= 0.

(6.2.5)

Thus, we have that the quantity

1

2
||u̇||2 + 1

2
||u′||2 = Constant, independent of t. (6.2.6)
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Therefore the total energy is conserved. We recall that 1
2
||u̇||2 is the kinetic

energy, and 1
2
||u′||2 is the potential (elastic) energy.

Problem 6.8. Show that ‖(u̇)′‖2 + ‖u′′‖2 = constant, independent of t.
Hint: Differentiate the equation with respect to x and multiply by u̇, . . . .
Alternatively: Multiply (DE): ü− u′′ = 0, by −(u̇)′′ and integrate over I.

Problem 6.9. Derive a total conservation of energy relation using the Robin
type boundary condition: u′ + u = 0.

6.2.1 Wave equation as a system of PDEs

We rewrite the wave equation as a system of differential equations. To this
approach, we consider solving





ü− u′′ = 0, 0 < x < 1, t > 0,

u(0, t) = 0, u′(1, t) = g(t), t > 0,

u(x, 0) = u0(x), u̇(x, 0) = v0(x), 0 < x < 1,

(6.2.7)

where we let u̇ = v, and reformulate the problem as:





u̇− v = 0, (Convection)

v̇ − u′′ = 0, (Diffusion).
(6.2.8)

We may now set w = (u, v)t and rewrite the system (6.2.8) as ẇ + Aw = 0:

ẇ + Aw =


 u̇

v̇


+


 0 −1

− ∂2

∂x2 0





 u

v


 =


 0

0


 . (6.2.9)

In other words, the matrix differential operator is given by

A =


 0 −1

− ∂2

∂x2 0


 .
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6.2.2 The finite element discretization procedure

We follow the same procedure as in the case of the heat equation, and let
Sn = Ω × In, n = 1, 2, . . . , N , with In = (tn−1, tn]. Then, for each n we
define, on Sn, the piecewise linear approximations





U(x, t) = Un−1(x)Ψn−1(t) + Un(x)Ψn(t),

V (x, t) = Vn−1(x)Ψn−1(t) + Vn(x)Ψn(t),
0 < x < 1, t ∈ In,

(6.2.10)
where, e.g.





Uñ(x) = Uñ,1ϕ1(x) + . . .+ Uñ,mϕm(x), ñ = n− 1, n

Vñ(x) = Vñ,1ϕ1(x) + . . .+ Vñ,mϕm(x), ñ = n− 1, n.
(6.2.11)

1

ψn(t) ϕ j (x)

t n-1 t n tn+1 x x xj-1 j+1j

For u̇− v = 0 and t ∈ In we write the general variational formulation
∫

In

∫ 1

0

u̇ϕ dxdt−
∫

In

∫ 1

0

vϕ dxdt = 0, for all ϕ(x, t). (6.2.12)

Likewise, v̇ − u′′ = 0 yields a variational formulation, viz
∫

In

∫ 1

0

v̇ϕ dxdt−
∫

In

∫ 1

0

u′′ϕdxdt = 0. (6.2.13)

Integrating by parts in x, in the second term, and using the boundary con-
dition u′(1, t) = g(t) we get
∫ 1

0

u′′ϕdx = [u′ϕ]10 −
∫ 1

0

u′ϕ′ dx = g(t)ϕ(1, t)− u′(0, t)ϕ(0, t)−
∫ 1

0

u′ϕ′ dx.
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Inserting the right hand side in (6.2.13) we get for all ϕ with ϕ(0, t) = 0:

∫

In

∫ 1

0

v̇ϕ dxdt+

∫

In

∫ 1

0

u′ϕ′ dxdt =

∫

In

g(t)ϕ(1, t) dt. (6.2.14)

The corresponding cG(1)cG(1) finite element method reads as follows: For
each n, n = 1, 2, . . . , N , find continuous piecewise linear functions U(x, t)
and V (x, t), in a partition, 0 = x0 < x1 < · · · < xm = 1 of Ω = (0, 1), such
that

∫

In

∫ 1

0

Un(x)− Un−1(x)

kn
ϕj(x) dxdt

−
∫

In

∫ 1

0

(
Vn−1(x)Ψn−1(t) + Vn(x)Ψn(t)

)
ϕj(x) dxdt = 0,

for j = 1, 2, . . . ,m,

(6.2.15)

and

∫

In

∫ 1

0

Vn(x)− Vn−1(x)

kn
ϕj(x) dxdt

+

∫

In

∫ 1

0

(
U ′
n−1(x)Ψn−1(t) + U ′

n(x)Ψn(t)
)
ϕ′
j(x) dxdt

=

∫

In

g(t)ϕj(1) dt, for j = 1, 2, . . . ,m,

(6.2.16)

where U̇ , U ′, V̇ , and V ′ are computed using (6.2.10) with

ψn−1(t) =
tn − t

kn
, ψn(t) =

t− tn−1

kn
, kn = tn − tn−1.

Thus, the equations (6.2.15) and (6.2.16) are reduced to the iterative forms:

∫ 1

0

Un(x)ϕj(x)dx

︸ ︷︷ ︸
MUn

−kn
2

∫ 1

0

Vn(x)ϕj(x)dx

︸ ︷︷ ︸
MVn

=

∫ 1

0

Un−1(x)ϕj(x)dx

︸ ︷︷ ︸
MUn−1

+
kn
2

∫ 1

0

Vn−1(x)ϕj(x) dx

︸ ︷︷ ︸
MVn−1

, j = 1, 2, . . . ,m,
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and

∫ 1

0

Vn(x)ϕj(x)dx

︸ ︷︷ ︸
MVn

+
kn
2

∫ 1

0

U ′
n(x)ϕ

′
j(x) dx

︸ ︷︷ ︸
SUn

=

∫ 1

0

Vn−1(x)ϕj(x) dx

︸ ︷︷ ︸
MVn−1

−kn
2

∫ 1

0

U ′
n−1(x)ϕ

′
j(x) dx

︸ ︷︷ ︸
SUn−1

+gn, j = 1, 2, . . . ,m,

respectively, where we used (6.2.11) and as we computed earlier

S =
1

h




2 −1 . . . 0

−1 2 −1 . . .

. . . . . . . . . . . .

0 −1 2 −1

0 0 −1 1




, M =
h

6




4 1 . . . 0

1 4 1 . . .

. . . . . . . . . . . .

. . . 1 4 1

0 . . . 1 2




,

where

gn = (0, . . . , 0, gn,m)
T , where gn,m =

∫

In

g(t) dt.

In compact form the vectors Un and Vn are determined by solving the linear
system of equations:





MUn − kn
2
MVn =MUn−1 +

kn
2
MVn−1

kn
2
SUn +MVn = −kn

2
SUn−1 +MVn−1 + gn,

(6.2.17)

which is a system of 2m equations with 2m unknowns:


 M −kn

2
M

kn
2
S M




︸ ︷︷ ︸
A


 Un

Vn




︸ ︷︷ ︸
W

=


 M kn

2
M

−kn
2
S M




 Un−1

Vn−1


+


 0

gn




︸ ︷︷ ︸
b

,

with W = A−1b, Un = W (1 : m) and Vn = W (m+ 1 : 2m).



6.2. THE WAVE EQUATION IN 1D 111

6.2.3 Exercises

Problem 6.10. Derive the corresponding linear system of equations in the
case of time discretization with dG(0).

Problem 6.11 (discrete conservation of energy). Show that cG(1)-cG(1) for
the wave equation in system form with g(t) = 0, conserves energy: i.e.

‖U ′
n‖2 + ‖Vn‖2 = ‖U ′

n−1‖2 + ‖Vn−1‖2. (6.2.18)

Hint: Multiply the first equation by (Un−1 + Un)
tSM−1 and the second equa-

tion by (Vn−1+Vn)
t and add up. Use then, e.g., the fact that U t

nSUn = ‖U ′
n‖2,

where

Un =




Un,1

Un,2

. . .

Un,m



, and Un = Un(x) = Un,1(x)ϕ1(x) + . . .+ Un,m(x)ϕm(x).

Problem 6.12. Consider the wave equation




ü− u′′ = 0, x ∈ R, t > 0,

u(x, 0) = u0(x), x ∈ R,

u̇(x, 0) = v0(x), x ∈ R.

(6.2.19)

Plot the graph of u(x, 2) in the following cases.
a) v0 = 0 and

u0(x) =





1, x < 0,

0, x > 0.

b) u0 = 0, and

v0(x) =





−1, −1 < x < 0,

1, 0 < x < 1,

0, |x| > 0.
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Problem 6.13. Compute the solution for the wave equation




ü− 4u′′ = 0, x > 0, t > 0,

u(0, t) = 0, t > 0,

u(x, 0) = u0(x), u̇(x, 0) = 0, x > 0.

(6.2.20)

Plot the solutions for the three cases t = 0.5, t = 1, t = 2, and with

u0(x) =





1, x ∈ [2, 3]

0, else
(6.2.21)

Problem 6.14. Apply cG(1) time discretization directly to the wave equation
by letting

U(x, t) = Un−1Ψn−1(t) + Un(x)Ψn(t), t ∈ In. (6.2.22)

Note that U̇ is piecewise constant in time and comment on:
∫

In

∫ 1

0

Üϕj dxdt

︸ ︷︷ ︸
?

+

∫

In

∫ 1

0

u′ϕ′
j dxdt

︸ ︷︷ ︸
k
2
S(Un−1+Un)

=

∫

In

g(t)ϕj(1)dt

︸ ︷︷ ︸
gn

, j = 1, 2, . . . ,m.

Problem 6.15. Construct a FEM for the problem




ü+ u̇− u′′ = f, 0 < x < 1, t > 0,

u(0, t) = 0, u′(1, t) = 0, t > 0,

u(x, 0) = 0, u̇(x, 0) = 0, 0 < x < 1.

(6.2.23)

Problem 6.16. Determine the solution for the wave equation




ü− c2u′′ = f, x > 0, t > 0,

u(x, 0) = u0(x), ut(x, 0) = v0(x), x > 0,

ux(1, t) = 0, u(0, t) = 0 t > 0,

in the following cases:

a) f = 0.

b) f = 1, u0 = 0, v0 = 0.
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Problem 6.17. Prove that the solution u of the convection-diffusion problem

−uxx + ux + u = f, in I = (0, 1), u(0) = u(1) = 0,

satisfies the following estimate
(∫

I

u2φ dx
)1/2

≤
(∫

I

f 2φ dx
)1/2

.

where φ(x) is a positive weight function defined on (0, 1) satisfying φ′(x) ≤ 0
and −φ′(x) ≤ φ(x) for 0 ≤ x ≤ 1.

Problem 6.18. Let φ be a solution of the problem

−εφ′′ − 3φ′ + 2φ = e, φ′(0) = φ(1) = 0.

Let ‖ · ‖ denote the L2-norm on I. Show that there is a constant C such that

|φ(0)| ≤ C‖e‖, ‖εφ′′‖ ≤ C‖e‖.
Problem 6.19. Use relevant interpolation theory estimates and prove an a
priori error estimate for the cG(1) finite element method for the problem

−u′′ + u′ = f, in I = (0, 1), u(0) = u(1) = 0.

Problem 6.20. Prove an a priori error estimate for the cG(1) finite element
method for the problem

−u′′ + u′ + u = f, in I = (0, 1), u(0) = u(1) = 0.

Problem 6.21. Consider the problem

−εu′′ + xu′ + u = f, in I = (0, 1), u(0) = u′(1) = 0,

where ε is a positive constant, and f ∈ L2(I). Prove that

||εu′′|| ≤ ||f ||.
Problem 6.22. We modify the problem 6.21 above according to

−εu′′ + c(x)u′ + u = f(x) 0 < x < 1, u(0) = u′(1) = 0,

where ε is a positive constant, the function c satisfies c(x) ≥ 0, c′(x) ≤ 0,
and f ∈ L2(I). Prove that there are positive constants C1, C2 and C3 such
that

√
ε||u′|| ≤ C1||f ||, ||cu′|| ≤ C2||f ||, and ε||u′′|| ≤ C3||f ||,

where || · || is the L2(I)-norm.
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Problem 6.23. Consider the convection-diffusion-absorption problem

−εu′′ + u′ + u = f, in I = (0, 1), u(0) = 0,
√
εu′(1) + u(1) = 0,

where ε is a positive constant, and f ∈ L2(I). Prove the following stability
estimates for the solution u

‖
√
εu′‖+ ‖u‖+ |u(1)| ≤ C‖f‖,

‖u′‖+ ‖εu′′‖ ≤ C‖f‖,
where ‖ · ‖ denotes the L2(I)-norm, I = (0, 1), and C is an appropriate
constant.



Appendix A

Answers to Exercises

Chapter 1

1.1 a) u(x) = C1e
x + C2e

2x b) u(x) = C1 cos 2x + C2 sin 2t c) u(x) =
(C1 + C2x)e

3x

1.2 a) u(x) = x2/2 + e−x(A cos x+ B sin x)

b) u(x) = 1
2
(sin x− cos x) + e−x/2(cos(

√
7/2)x+ sin(

√
7/2)x)

c) u(x) = C1e
−x + C2e

−2x + 1
6
ex.

1.3 a) u(x) = −1
6
x3 − 1

4
x2 − 1

4
x b) u(x) = −1

2
x cos x

c) u(x) = 1
6
ex + 1

10
(sin x− 3 cos x).

1.5 b) No solution.

Chapter 2.

2.2 q = 1, U(t) = 1 + 3t. q = 2, U(t) = 1 + 8
11
t+ 10

11
t2.

q = 3, U(t) = 1 + 30
29
t+ 45

116
t2 + 35

116
t3.

q = 4, U(t) ≈ 1 + 0.9971t+ 0.5161t2 + 0.1311t3 + 0.0737t4.

2.3

Pu(t) ≈ 0.9991 + 1.083t+ 0.4212t2 + 0.2786t3.

115
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2.4

A =




8 −4 0

−4 8 −4

0 −4 8


 , b = (bi)

3
i=1, bi =

i

16
.

2.5 a. u(x) = 1
2
x(1− x)

b. R(x) = π2A sin πx+ 4π2B sin 2πx− 1

c. A = 4/π3 and B = 0.

2.6 a.

b. R(x) = (π2+1)A sin πx+(4π2+1)B sin 2πx+(9π2+1)C sin 3πx−x

c. A =
2

π(π2 + 1)
, B = − 1

π(4π2 + 1)
and C =

2

3π(9π2 + 1)
.

2.7 a. u(x) = 1
6
(π3 − x3) + 1

2
(x2 − π2)

b. R(x) = −U ′′(x)− x+ 1 = 1
4
ξ0 cos

x
2
+ 9

4
ξ1 cos

3x
2

c. ξ0 = 8(2π − 6)/π and ξ1 =
8
9
(2
9
− 2

3
π)/π.

2.8 U(x) = (16 sin x+ 16
27
sin 3x)/π3 + 2x2/π2.

Chapter 3.

3.2 (a) x, (b) 0.

3.3

Π1f(x) =





4− 11(x+ π)/(2π), −π ≤ x ≤ −π
2
,

5/4− (x+ π
2
)/(2π), −π

2
≤ x ≤ 0,

1− 7x/(2π), 0 ≤ x ≤ π
2
,

3(x− π)/(2π), π
2
≤ x ≤ π.

3.6 Check the conditions required for a Vector space.

3.7

Π1f(x) = f(a)
2x− a− b

a− b
+ f(

a+ b

2
)
2(x− a)

b− a
.
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3.8 Hint: Use the procedure in the proof of Theorem 3.1, with somewhat
careful estimates at the end.

3.10
π4

(
e−8x2

)
≈ 0.25x4 − 1.25x2 + 1.

3.11 For example we may choose the following basis:

ϕi,j(x) =





0, x ∈ [xi−1, xi],

λi,j(x), i = 1, . . . ,m+ 1, j = 0, 1, 2.

λi,0(x) =
(x− ξi)(x− xi)

(xi−1 − ξi)(xi−1 − xi)
, λi,1(x) =

(x− xi−1)(x− xi)

(ξi − xi−1)(ξi − xi)
,

λi,2(x) =
(x− xi−1)(x− ξi)

(xi − xi−1)(xi − ξi)
, ξi ∈ (xi−1, xi).

3.12 This is a special case of problem 2.13.

3.13 This is “trivial”.

3.14 Hint: Use Taylor expansion of f about x = x1+x2

2
.

Chapter 4.

4.1 c) sin πx, x ln x and x(1−x) are test functions of this problem. x2 and
ex − 1 are not test functions.

4.3 a) U is the solution for

AU = f ⇐⇒ 1/h




2 −1 0

−1 2 −1

0 −1 2







ξ1

ξ2

ξ3


 = h




1

1

1




with h = 1/4.

b) A is invertible, therefore U is unique.
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4.6 a) ξ is the solution for

2


 2 −1

−1 1





 ξ1

ξ2


 =


 0

7




b) (ξ1, ξ2) = 7(1/2, 1) and U(x) = 7x (same as the exact solution).

4.7 a) In case of N = 3, ξ is the solution for

Aξ = f ⇐⇒ 1/h




2 −1 0

−1 2 −1

0 −1 2







ξ0

ξ1

ξ2


 =




−5

0

0




with h = 1/3. That is: (ξ0, ξ1, ξ2) = −1
3
(15, 10, 5).

b) U(x) = 5x− 5 (same as the exact solution).

4.8 a) No solution!

b) Trying to get a finite element approximation ends up with the matrix
equation

Aξ = f ⇐⇒




2 −2 0

−2 4 −2

0 −2 2







ξ0

ξ1

ξ2


 =

1

4




1

2

1




where the coefficient matrix is singular (detA = 0). There is no finite
element solution.

4.9 d) ||U ||2E = ξTAξ (check spectral theorem, linear algebra!)

4.10 For an M + 1 partition (here M = 2) we get aii = 2/h, ai,i+1 = −1/h
except aM+1,M+1 = 1/h− 1, bi = 0, i = 1, . . . ,M and bM+1 = −1:

a) U = (0, 1/2, 1, 3/2).

b) e.g, U3 = U(1) → 1, as k → ∞.



119

4.11 c) Set α = 2 and β = 3 in the general FEM solution:

ξ = α
3
(−1, 1, 1)T + β(0, 0, 2)T :




ξ1

ξ2

ξ3


 = 2/3




−1

1

1


+ 3




0

0

2


 .

4.12

3


 2 −1

−1 2




 ξ1

ξ2


+

1

18


 4 1

1 4




 ξ1

ξ2


 =

1

3


 1

1




⇐⇒ (MATLAB) ξ1 = ξ2 = 0.102.

4.13 Just follow the procedure in the theory.

4.15 a priori: ||e||E ≤ ||u− πhu||E.

4.16 a) ||e′||a ≤ Ci||h(aU ′)′||1/a.
b) The matrix equation:




1 −1 0 0

−1 2 −1 0

0 −1 3 −2

0 0 2 4







ξ0

ξ1

ξ2

ξ3




=




−3

0

0

0



,

which yields the approximate solution U = −3(1/2, 1, 2, 3)T .

c) Since a is constant and U is linear on each subinterval we have that

(aU ′)′ = a′U ′ + aU ′′ = 0.

By the a posteriori error estimate we have that ||e′||a = 0, i.e. e′ = 0.
Combining with the fact that e(x) is continuous and e(1) = 0, we get
that e ≡ 0, which means that the finite, in this case, coincides with the
exact solution.
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4.17 a priori: ||e||H1 ≤ Ci

(
||hu′′||+ ||h2u′′||

)
.

4.18 a) a priori: ||e||E ≤ ||u − v||E(1 + c), and a posteriori: ||e||E ≤
Ci||hR(U)||L2(I).

b) Since c ≥ 0, the a priori error estimate in a) yields optimality for
c ≡ 0, i.e. in the case of no convection (does this tell anything to you?).

4.19 a priori: ||e||H1 ≤ Ci

(
||hu′′||+ 4||h2u′′||

)
.

Chapter 5.

5.1 a) aij =
j

j+i
− 1

j+i+1
, bi =

1
i+1
, i, j = 1, 2, . . . ,

b) q = 1 : U(t) = 1 + 3t. q = 2 : U(t) = 1 + 8
11
t+ 10

11
t2.

5.3 a) u(t) = e−4t + 1
32
(8t2 − 4t+ 1).

b) u(t) = e
1

2
t2 − t+

√
π√
2
e

1

2
t2erf( t√

2
), erf(x) = 2√

π

∫ x

0
e−y2 dy.

5.4 a) Ui(xi) =
[(x3

i−x3
i−1

)/3]−Ui(xi−1)·(2(xi−xi−1)−1)

1+2(xi−xi−1)

Chapter 6.

6.8 ||e|| ≤ ||h2uxx||

6.14

u(x, t) =





1
2
(u0(x+ 2t) + u0(x− 2t)), x ≥ 2t

1
2
(u0(2t+ x) + u0(2t− x)), x < 2t

6.16 a) u(x, t) = 1
2
[u0(x+ ct) + u0(ct− x)] + 1

2c

( ∫ x+ct

0
v0 +

∫ ct−x

0
v0

)
.

b) u(x, t) = 1
2c

∫ t

0
2c(t− s) ds = t2/2.

6.19 a priori: ||e||H1 ≤ Ci

(
||hu′′||+ ||h2u′′||

)
.

6.20 a priori: ||e||E ≤ Ci

(
||hu′′||+ ||h2u′′||

)
.



Appendix B

Algorithms and MATLAB
Codes

To streamline the computational aspects, we have gathered suggestions for
some algorithms and Matlab codes that can be used in implementations.
These are simple specific Matlab codes on the concepts such as

• The L2-projection.

• Numerical integration rules: Midpoint, Trapezoidal, Simpson.

• Finite difference Methods: Forward Euler, Backward Euler, Crank-Nicolson.

• Matrices/vectors: Stiffness- Mass-, and Convection Matrices. Load vector.

The Matlab codes are not optimized for speed, but rather intended to be easy
to read.

121
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An algorithm for L2-projection:

1. Choose a partition Th of the interval I into N sub-intervals, N+1 nodes,
and define the corresponding space of piece-wise linear functions Vh.

2. Compute the (N + 1) × (N + 1) mass matrix M and the (N + 1) × 1
load vector b, viz

mij =

∫

I
ϕjϕi dx, bi =

∫

I
fϕi dx.

3. Solve the linear system of equations

Mξ = b.

4. Set

Phf =

N∑

j=0

ξjϕj .

Below are two versions of Matlab codes for computing the mass matrix M:

function M = MassMatrix(p, phi0, phiN)

%--------------------------------------------------------------------

% Syntax: M = MassMatrix(p, phi0, phiN)

% Purpose: To compute mass matrix M of partition p of an interval

% Data: p - vector containing nodes in the partition

% phi0 - if 1: include basis function at the left endpoint

% if 0: do not include a basis function

% phiN - if 1: include basis function at the right endpoint

% if 0: do not include a basis function

%--------------------------------------------------------------------

N = length(p); % number of rows and columns in M

M = zeros(N, N); % initiate the matrix M

% Assemble the full matrix (including basis functions at endpoints)
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for i = 1:length(p)-1

h = p(i + 1) - p(i); % length of the current interval

M(i, i) = M(i, i) + h/3;

M(i, i + 1) = M(i, i + 1) + h/6;

M(i + 1, i) = M(i + 1, i) + h/6;

M(i + 1, i + 1) = M(i + 1, i + 1) + h/3;

end

% Remove unnecessary elements for basis functions not included

if ˜phi0

M = M(2:end, 2:end);

end

if ˜phiN

M = M(1:end-1, 1:end-1);

end

A Matlab code to compute the mass matrix M for a non-uniform mesh:

Since now the mesh is not uniform (the sub-intervals have different lengths), we
compute the mass matrix assembling the local mass matrix computation for each
sub-interval. To this end we can easily compute the mass matrix for the standard

interval I1 = [0, h] with the basis functions ϕ0 = (h − x)/h and ϕ1 = x/h: Then,

1

x0 = 0 x1 = h
x

ϕ0(x)
ϕ1(x)

Figure B.1: Standard basis functions ϕ0 = (h− x)/h and ϕ1 = x/h.

the standard mass matrix is given by

M I1 =




∫
I1
ϕ0ϕ0

∫
I1
ϕ0ϕ1

∫
I1
ϕ1ϕ0

∫
I1
ϕ1ϕ1


 .



124 APPENDIX B. ALGORITHMS AND MATLAB CODES

Inserting for ϕ0 = (h− x)/h and ϕ1 = x/h we compute M I1 as

M I1




∫ h
0 (h− x)2/h2 dx

∫ h
0 (h− x)x/h2 dx

∫ h
0 x(h− x)/h2 dx

∫ h
0 x2/h2 dx


 =

h

6


 2 1

1 2


 . (B.0.1)

Thus, for an arbitrary sub-interval Ik := [xk−1, xk] with the mesh size hk, and
basis functions ϕk and ϕk−1 (see Fig. 3.4.), the local mass matrix is given by

M Ik =




∫
Ik
ϕk−1ϕk−1

∫
Ik
ϕk−1ϕk

∫
Ik
ϕkϕk−1

∫
Ik
ϕk1ϕk


 =

hk
6


 2 1

1 2


 (B.0.2)

where hk is the length of the interval Ik. Note that, assembling, the diagonal
elements in the Global mass matrix will be multiplied by 2 (see Example 4.1).
These elements are corresponding to the interior nodes and are the result of adding
their contribution for the intervals in their left and right. The assembling is through
the following Matlab routine:

A Matlab routine to compute the load vector b:

To solve the problem of the L2-projection, it remains to compute/assemble the
load vector b. To this end we note that b depends on the unknown function f ,
and therefore will be computed by some of numerical integration rules (midpoint,
trapezoidal, Simpson or general quadrature). Below we shall introduce Matlab
routines for these numerical integration methods.

function b = LoadVector(f, p, phi0, phiN)

%--------------------------------------------------------------------

% Syntax: b = LoadVector(f, p, phi0, phiN)

% Purpose: To compute load vector b of load f over partition p

% of an interval

% Data: f - right hand side funcion of one variable

% p - vector containing nodes in the partition

% phi0 - if 1: include basis function at the left endpoint

% if 0: do not include a basis function

% phiN - if 1: include basis function at the right endpoint

% if 0: do not include a basis function

%--------------------------------------------------------------------

N = length(p); % number of rows in b

b = zeros(N, 1); % initiate the matrix S
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% Assemble the load vector (including basis functions at both endpoints)

for i = 1:length(p)-1

h = p(i + 1) - p(i); % length of the current interval

b(i) = b(i) + .5*h*f(p(i));

b(i + 1) = b(i + 1) + .5*h*f(p(i + 1));

end

% Remove unnecessary elements for basis functions not included

if ˜phi0

b = b(2:end);

end

if ˜phiN

b = b(1:end-1);

end

The data function f can be either inserted as f=@(x) followed by some ex-
pression in the variable x, or more systematically through a separate routine, here
called “Myfunction” as in the following example

Example B.1 (Calling a data function f(x) = x2 of the load vector).
function y= Myfunction (p)

y=x.ˆ2

\vskip 0.3cm

Then, we assemble the corresponding load vector, viz:

\begin{verbatim}

b = LoadVector (@Myfunction, p, 1, 1)

Alternatively we may write

f=@(x)x.ˆ2

b = LoadVector(f, p, 1, 1)

Now we are prepared to write a Matlab routine “My1DL2Projection” for com-

puting the L2-projection.



126 APPENDIX B. ALGORITHMS AND MATLAB CODES

Matlab routine to compute the L2-projection:

function pf = L2Projection(p, f)

M = MassMatrix(p, 1, 1); % assemble mass matrix

b = LoadVector(f, p, 1, 1); % assemle load vector

pf = M\b; % solve linear system

plot(p, pf) % plot the L2-projection

The above routine for assembling the load vector uses the Composite trapezoidal

rule of numerical integration. Below we gather examples of the numerical integra-
tion routines:

A Matlab routine for the composite midpoint rule

function M = midpoint(f,a,b,N)

h=(b-a)/N

x=a+h/2:h:b-h/2;

M=0;

for i=1:N

M = M + f(x(i));

end

M=h*M;

A Matlab routine for the composite trapezoidal rule

function T=trapezoid(f,a,b,N)

h=(b-a)/N;

x=a:h:b;

T = f(a);

for k=2:N

T = T + 2*f(x(k));

end

T = T + f(b);

T = T * h/2;
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A Matlab routine for the composite Simpson’s rule

function S = simpson(a,b,N,f)

h=(b-a)/(2*N);

x = a:h:b;

p = 0;

q = 0;

for i = 2:2:2*N % Define the terms to be multiplied by 4

p = p + f(x(i));

end

for i = 3:2:2*N-1 % Define the terms to be multiplied by 2

q = q + f(x(i));

end

S = (h/3)*(f(a) + 2*q + 4*p + f(b)); % Calculate final output

The precomputations for standard and local stiffness and convection matrices:

SI1 =




∫
I1
ϕ′
0ϕ

′
0

∫
I1
ϕ′
0ϕ

′
1

∫
I1
ϕ′
1ϕ

′
0

∫
I1
ϕ1′ϕ′

1


 =




∫
I1

−1
h

−1
h

∫
I1

−1
h

1
h∫

I1
1
h
−1
h

∫
I1

1
h
1
h


 =

1

h


 1 −1

−1 1


 .

As in the assembling of the mass-matrix, even here, for the global stiffness matrix,
each interior node has contributions from both intervals that the node belongs.
Consequently, assembling we have 2/h as the interior diagonal elements in the
stiffness matrix (rather than 1/h in the single interval computes above). For the
convection matrix C, however, because of the skew-symmetry the contributions
from the two adjacent interior intervals will cancel out:

CI1 =




∫
I1
ϕ′
0ϕ0

∫
I1
ϕ0ϕ

′
1

∫
I1
ϕ1ϕ

′
0

∫
I1
ϕ1′ϕ1


 =




∫
I1

−1
h

h−x
h

∫
I1

h−x
h

1
h∫

I1
x
h
−1
h

∫
I1

x
h
1
h




=
1

2


 −1 1

−1 1


 .

A thorough computation of all matrix elements, for both interior and bound-
ary nodes, in the case of continuous piece-wise linear approximation, for Mass-,
stiffness- and convection-matrices are demonstrated in Examples 4.1 and 4.2.
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A Matlab routine assembling the stiffness matrix:

function S = StiffnessMatrix(p, phi0, phiN)

%---------------------------------------------------------------------

% Syntax: S = StiffnessMatrix(p, phi0, phiN)

% Purpose: To compute the stiffness matrix S of a partition p of an

% interval

% Data: p - vector containing nodes in the partition

% phi0 - if 1: include basis function at the left endpoint

% if 0: do not include a basis function

% phiN - if 1: include basis function at the right endpoint

% if 0: do not include a basis function

%---------------------------------------------------------------------

N = length(p); % number of rows and columns in S

S = zeros(N, N); % initiate the matrix S

% Assemble the full matrix (including basis functions at endpoints)

for i = 1:length(p)-1

h = p(i + 1) - p(i); % length of the current interval

S(i, i) = S(i, i) + 1/h;

S(i, i + 1) = S(i, i + 1) - 1/h;

S(i + 1, i) = S(i + 1, i) - 1/h;

S(i + 1, i + 1) = S(i + 1, i + 1) + 1/h;

end

% Remove unnecessary elements for basis functions not included

if ˜phi0

S = S(2:end, 2:end);

end

if ˜phiN

S = S(1:end-1, 1:end-1);

end
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A Matlab routine to assemble the convection matrix:

function C = ConvectionMatrix(p, phi0, phiN)

%--------------------------------------------------------------------------

% Syntax: C = ConvectionMatrix(p, phi0, phiN)

% Purpose: To compute the convection matrix C of a partition p of an

% interval

% Data: p - vector containing nodes in the partition

% phi0 - if 1: include a basis function at the left endpoint

% if 0: do not include a basis function

% phiN - if 1: include a basis function at the right endpoint

% if 0: do not include a basis function

%--------------------------------------------------------------------------

N = length(p); % number of rows and columns in C

C = zeros(N, N); % initiate the matrix C

% Assemble the full matrix (including basis functions at both endpoints)

for i = 1:length(p)-1

C(i, i) = C(i, i) - 1/2;

C(i, i + 1) = C(i, i + 1) + 1/2;

C(i + 1, i) = C(i + 1, i) - 1/2;

C(i + 1, i + 1) = C(i + 1, i + 1) + 1/2;

end

% Remove unnecessary elementC for basis functions not included

if ˜phi0

C = C(2:end, 2:end);

end

if ˜phiN

C = C(1:end-1, 1:end-1);

end
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Finally, below we gather the Matlab routines for finite difference approxima-
tions (also cG(1) and dG(0) ) for the time discretizations.

Matlab routine for Forward-, Backward-Euler and Crank-Nicolson:

function [] = three_methods(u0, T, dt, a, f, exactexists, u)

% Solves the equation du/dt + a(t)*u = f(t)

% u0: initial value; T: final time; dt: time step size

% exactexists = 1 <=> exact solution is known

% exactexists = 0 <=> exact solution is unknown

timevector = [0]; % we build up a vector of

% the discrete time levels

U_explicit_E = [u0]; % vector which will contain the

% solution obtained using "Forward Euler"

U_implicit_E = [u0]; % vector which will contain the

% solution with "Backward Euler"

U_CN = [u0]; % vector which will contain the

% solution using "Crank-Nicolson"

n = 1; % current time interval

t_l = 0; % left end point of the current

% time interval, i.e. t_{n-1}

while t_l < T

t_r = n*dt; % right end point of the current

% time interval, i.e. t_{n}

% Forward Euler:

U_v = U_explicit_E(n); % U_v = U_{n-1}

U_h = (1-dt*a(t_l))*U_v+dt*f(t_l); % U_h = U_{n};

U_explicit_E(n+1) = U_h;

% Backward Euler:

U_v = U_implicit_E(n); % U_v = U_{n-1}
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U_h = (U_v + dt*f(t_r))/(1 + dt*a(t_r)); % U_h = U_{n}

U_implicit_E(n+1) = U_h;

% Crank-Nicolson:

U_v = U_CN(n); % U_v = U_{n-1}

U_h = ((1 - dt/2*a(t_l))*U_v + dt/2*(f(t_l)+f(t_r))) ...

/ (1 + dt/2*a(t_r)); % U_h = U_{n}

U_CN(n+1) = U_h;

timevector(n+1) = t_r;

t_l = t_r; % right end-point in the current time interval

% becomes the left end-point in the next time interval.

n = n + 1;

end

% plot (real part (in case the solutions become complex))

figure(1)

plot(timevector, real(U_explicit_E), ’:’)

hold on

plot(timevector, real(U_implicit_E), ’--’)

plot(timevector, real(U_CN), ’-.’)

if (exactexists)

% if known, plot also the exact solution

u_exact = u(timevector);

plot(timevector, real(u_exact), ’g’)

end

xlabel(’t’)

legend(’Explicit Euler’, ’Implicit Euler’, ’Crank-Nicolson’, 0)

hold off

if (exactexists)
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% if the exact solution is known, then plot the error:

figure(2)

plot(timevector, real(u_exact - U_explicit_E), ’:’)

hold on

plot(timevector, real(u_exact - U_implicit_E), ’--’)

plot(timevector, real(u_exact - U_CN), ’-.’)

legend(’Explicit Euler’, ’Implicit Euler’, ’Crank-Nicolson’, 0)

title(’Error’)

xlabel(’t’)

hold off

end

return

Example B.2. Solving u′(t) + u(t) = 0 with three_methods

a= @(t) 1;

f= @(t) 0;

u= @(t) exp(-t)

u_0=1;

T= 1;

dt=0.01;

three_methods (u_0, T, dt, a, f, 1, u)
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Table of Symbols

Symbol reads Definition

∀ for all, for every ∀x, cos2 x+ sin2 x = 1

∃ There exists see below

: such that ∃x : x > 3

∨ or x ∨ y (x or y)

∧ or & and x ∧ y (x and y) also x & y

∈ belongs
√
2 ∈ R (

√
2 is a real numbers R)

/∈ not belongs
√
2 /∈ Q (

√
2 is not a rational number )

⊥ orthogonal to u ⊥ v (u and v are orthogonal)

:= defines as I :=

∫ b

a

f(x) dx (I defines as integralen in RHS)

=: defines

∫ b

a

f(x) dx =: I (The integral in LHS defines I)

≈ approximates A ≈ B (A approximates B) or A is approximately equal B.

=⇒ implies A =⇒ B (A implies B.)

⇐⇒ equivalent A⇐⇒ B (A is equivalent to B.)

ODE Ordinary Differential Equation

PDE Partial Differential Equation

IVP Initial Value Problem

BVP Boundary Value Problem

VF Variational Formulation

MP Minimization Problem

Pq(I) p ∈ Pq(I) p(x) is a polynomial of degree ≤ q for x ∈ I.

H1(I) v ∈ H1(I) if

∫ b

a

(
v(x)2 + v′(x)2

)
dx <∞, I = [a, b].

Vh(I) v ∈ Vh(I) the space of piecewise linear functions on a partition of I.

V 0
h (I) v ∈ V 0

h (I) v ∈ Vh(I) and v is 0 at both or one of the boundary points.
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Symbol reads Exempel/Definition

||f ||p, ||f ||Lp(I) Lp-norm of f on I ||f ||p :=





(∫

I

|f(x)|p dx
)1/p

, 1 ≤ p <∞

maxx∈I |f(x)|, p = ∞

Lp(I) Lp-space f ∈ Lp(I) iff ||f ||p <∞

||v||a weighted L2-norm ||v||a :=
(∫

I

a(x)|v(x)|2 dx
)1/2

, a(x) > 0

||v||E the energy norm ||v||E :=
(∫

I

a(x)|v(x)′|2 dx
)1/2

, ||v||E = ||v′||a.

∏
product

N∏

i=1

i = 1 · 2 · 3 · . . . ·N =: N !

∑
sum

N∑

i=1

i = 1 + 2 + 3 + . . .+N =: N(N + 1)/2

(u, v) or 〈u, v〉 skalar/inner product
(u, v) := u1v1 + u2v2 + . . .+ uNvN , u, v ∈ RN

(u, v) :=

∫

I

u(x)v(x) dx for u, v ∈ L2(I).

Phf L2-projection (f, w) = (Phf, w), ∀w ∈ Pq(a, b).

Th(I) a partition of I Th[a, b] : a = x0 < x1 < . . . < xN = b.

πhf interpolant of f πhf(xi) = f(xi) in a partition Th of I = [a, b].

FDM Finite Difference Method

FE Forward Euler Forward Euler FDM

BE Backward Euler Backward Euler FDM ⇐⇒ dG(0)

CN Crank-Nicolson Crank-Nicolson FDM ⇐⇒ cG(1)

FEM Finite Element Method/Galerkin Method

cG(1) continuous Galerkin continuous, piecewise linear Galerkin approx

dG(0) discont. Galerkin discontinuous, piecewise constant Galerkin

cG(1)cG(1) continuous Galerkin space time continuous, piecewise linear Galerkin

Ci Interpolation Constant

Cs Stability constant

TOL Error TOLerance
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A
Adaptivity 64,

B
boundary condition 3, 5, 7, 55, 74,

75, 97, 107, 108
Dirichlet 21, 53, 58, 59,
60, 61, 96, 100

Neumann 21, 96
boundary value problem 3, 6, 8, 13,

28, 29, 53, 56, 58, 59, 61, 64, 65,
72-7, 78, 81, 95, 96, 99, 106

Two point bvp 53, 72-75

C
Cauchy-Schwarz 17, 61, 63, 97-99
Conservation of energy 106, 107,

111,
Convection 2, 64, 71, 72, 95,

120, 121, 127-129
Convection-diffusion 2, 64, 70, 107,

113, 114

Convection matrix 70, 127, 129
Crank-Nicolson 84-86, 91, 102, 121,

130-132

D
differential equation V, 1-8, 41, 92,

93, 98, 107,
ordinary differential equation 1, 9,

81,
partial differential equation 1-3,

5, 7

Diffusion 2, 64, 70, 95, 107, 113,

114

E

Error estimates 7, 33, 59, 95

a priori error estimates 79, 93

Interpolation error 35, 51,

F

Finite dimensional spaces 21, 26,

65,

Finite Element Method V, 7, 9,

10, 19, 23, 58, 74, 75, 78,

86, 100, 109, 113

Continuous Galerkin 58, 64, 87,

90, 93, 104,

disontinuous Galerkin 87, 90,

104,

G

Galerkin Method BVP 21,

Gauss quadrature 48

H

hat function 13, 14, 30, 36, 55, 59,

66, 70, 101,

I

Interpolation

Lagrange interpolation

37-39, 43,

linear interpolation 31, 33, 36,
50,

polynomial interpolation 11,

135
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Initial Boundary Value Problem

(IBVP) 3, 81, 95, 96, 99, 106,

Initial value problem 2, 3, 9, 17, 81,

(IBVP) 85-87, 92, 93

J, K

L

Lagrange basis 34,38-41, 50,

linear space 10, 15,

L2-projection 20, 21, 23, 121, 122,

124-126

M

Mass Matrix 67, 69, 102-104,

122-124, 126, 127

Minimization problem 53, 56, 57,

73,

Mixed bvp 96,

N

Neumann problem/data 21, 96,

Numerical integration 7, 31, 41, 121,

124, 126,

Composite midpoint 45

Composite trapezoidal 45

Composite Simpson’s 46

Simple midpoint 41, 45, 47

Simple trapezoidal 42, 45, 47,

85

Simple Simpson’s 43, 46, 48

Norm 16

L2-norm 16, 17, 63, 72, 97, 104,

105, 113, 114

Lp-norm 33, 35

vector norm 33

maximum norm 33, 35

energy norm 59, 60, 62, 75, 79

O

Ordinary Differential Equations

(ODE) 1, 7, 9, 28, 81 , 92
Orthogonality 16, 29, 30, 59, 60

P
Partial Differential Equations

(PDE) 1-3, 7, 10, 53, 65, 70, 98,
107,
heat equation 2, 21, 64, 95, 99,
100, 105, 106, 108,
wave equation 2, 3, 81, 95, 106,
107, 111, 112

partition 10, 12-14, 20, 21, 26, 36,
37, 39, 41, 44, 51, 58, 61, 64,
65, 70, 73-75, 77-79, 83-85.

Poincare inequality 97-100, 105

Q

R
Residual 18, 29, 30, 59, 61-64, 93

S
Scalar initial value problem, 81
Scalar product 16, 17, 32, 33, 39
stability 81, 82, 91, 93, 95-97, 99,

105, 115
Stiffness matrix, 23-26, 28, 67, 71,

75, 92, 103, 127, 128

T
test function 17-19, 21, 22, 54, 55,

58, 65, 70, 73, 87, 117
trial function 18, 21, 65, 70, 87,

U

V/W
Variational formulation 17, 22, 53.

XYZ


