Mathematics Chalmers & GU
TMA372/MMG800: Partial Differential Equations, 2010—-03-08; kl 8.30-13.30.

Telephone: Oskar Hamlet: 0703-088304

Calculators, formula notes and other subject related material are not allowed.

Each problem gives max 7p. Valid bonus poits will be added to the scores.
Breakings: 3: 20-29p, 4: 30-39p och 5: 40p- For GU G students :20-35p, VG: 36p-
For solutions and gradings information see the couse diary in:
http://www.math.chalmers.se/Math/Grundutb/CTH /tma372/0910/index.html

1. Let f € C?(a,b) and prove the following interpolation error estimate in the L., norm,
1f =T fll Lty < 0= )| " Lo ()

2. Consider the initial value problem: 4(t) + au(t) =0, ¢>0, wu(0)=1.

a) Let a = 40, and the time step k¥ = 0.1. Draw the graph of U, := U(nk), k = 1,2,...,
approximating u using (i) explicit Euler, (i¢) implicit Euler, and (z4¢) Cranck-Nicholson methods.
b) Consider the case a = i, (i> = —1), having the complex solution u(t) = e~ with |u(t)| = 1 for
all t. Show that this property is preserved in Cranck-Nicholson approximation, i.e. |[U,| = 1, but
not in any of the Euler approximations.

3. Let a and (3 be positive constants. Give the piecewise linear finite element approximation
procedure and derive the corresponding stiffness matrix, mass matrix and load vector using the
uniform mesh with size h = 1/4 for the problem

—u"(z)+u=1, 0<z<I; w(0) =a, u/'(1)=0.

4. Let p be a positive constant. Prove an a priori and an a posteriori error estimate (in the
H'-norm: |e||3;, = ||e’[|* + |le]|?) for a finite element method for problem

—u” + pru’ + (1 + g)u =f, in(0,1), u(0) = u(1) = 0.
5. Consider the initial boundary value problem for the heat equation

U — Au =0, z € QCR? 0<t<T,
u(z,t) =0, x € 09, 0<t<T,
w(z,0) = up(z), x €.

Prove the following stability estimates

t
i) lull2(t) + 2 / IVull2(s) ds = [Juol?,

t
. 1
it) / slAul(s)ds < Zluoll®,  and i) [[Vull(t) < —=]luoll.
0

1
V2t
6. Consider the convection-diffusion problem

—div(eVu+ Bu) = f, in QCR* u=0, on 090,
where  is a bounded convex polygonal domain, e > 0 is constant, § = (81(x), f2(z)) and f = f(x).
Determine the conditions in the Lax-Milgram theorem that would guarantee existence of a unique

solution for this problem. Prove a stability estimate for u i terms of ||f|[1,(q), € and diam(),
and under the conditions that you derived.
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TMA372/MMGS800: Partial Differential Equations, 2010-03—08; kl 8.30-13.30..
Losningar/Solutions.

1. See Lecture Notes or the text book, Chapter 5.

2. a) With @ = 40 and k£ = 0.1 we get the explicit Euler:
U, —Up—1+40 x (Ol)Un—l = 0; U, = _3Un—1; n=1, 27 37 SRR
Up = 1. =

Implicit Euler:
_ 1 _ 1 —
U, = mUn—l = gUn—h n=1,23,...,
Up=1.
Cranck-Nicolson:

_ 1-1x40x(0.1) _ 1 -
{ Un = m[]ﬂ—l = —gUn—la n=123,...,

Up=1.

E.E.

1/50

K 2

-3 1 -1/3]

b) With a = i we get
Explicit Euler

|Un| =1 —(0.1) xi||Up-1| = V1 +0.01|Up—1| = |Uy| > |Up—1].
Implicit Euler

1 1
U, = ‘7’ Up—i| = ———=|Un-1]| £ |Up-1]|.
Ul 1+wunxz| 1 1+&m| 1] < [Un—i]

Crank-Nicolson

1—21(0.1) x4
(A (LS Lok [ AT )
1+§(01) X 1
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3. Multiply the pde by a test function v with v(0) = 0, integrate over = € (0,1) and use partial
integration to get

1 1 1
— [uv]§ + / u'v' dr + / wvdr = / vdz =
0 0 0

1 1 1
(1) —u'(l)v(l)—l—u'(O)v(O)—i—/@ u'v'dm—i—/o uvdx:/() vdr <~

1 1 1
—ﬁv(l)—i—/ u'v'dm—i—/ uvdx:/ vdx.
0 0 0

The continuous variational formulation is now formulated as follows: Find

(VF) ueV .={w: /01 (w(x)2 + w'(x)z) dz < oo, w(0)=a},

such that ) ) )
/ u’v’dx—i—/ uvdx:/ vdr + Bu(l), Yve VO
0 0 0
where
1
Vo= {v: / (v(a:)z + v'(a:)z) dz < oo, v(0)=0}.
0

For the discrete version we let 73, be a uniform partition: 0 = zg < 1 < ... < xy41 of [0,1] into
the subintervals I,, = [zp_1, 2], n =1,... N + 1. Here, we have N interior nodes: z1,... 2y, two
boundary points: g = 0 and zy41 = 1 (see Fig. below for N =3, h = 1/4, and hence N +1 =4
intervals).

®o ®1 P2 ®3 P4

K
zo =0 r1=1/4 x9=1/2 x3=23/4 4 =1

We shall keep the general framework and let N = 3, h = 1/4 at the very end. The finite element
method (discrete variational formulation) is now formulated as follows: Find

(FEM) up, € Vi, := {wp, : wy, is piecewise linear and continuous on 7, wy(0) = a},
such that
1 1 1
(2) / up, vy, d —|—/ upvp dr = / v dz + Bop(1), Yo e VP,
0 0 0
where

V0 := {uvy, : vy, is piecewise linear and continuous on 7y, v,(0) = 0}.

Using the basis functions ¢;, 7 =0,... N+1, where ¢1,...pn are the usual hat-functions whereas
wo and @41 are semi-hat-functions viz;

0, z ¢ 151,24
(3) pi(z)=¢ ==L a1 <z<wz; j=1,...N.

Tjy1—x

{Ej S(ES(EjJrl

and

n=% 0<z < ey <2 < TNyl
eola) = { o7

0, rp<ax<1l’ ('DNH(x):{O, 0<zxz<uzpn.
In this way we may write

Vh:awo@[@lv"'vwf\“rl]a V}?:[Qplv"'vaJrl]'
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Thus every uy, € V}, can be written as up = aypg + v, where vy, € V}?, ie.,
MA+1
up = apo + €11 + - ENF1PN+1 = Qo + Z s = apo + Un,
j=1
where uy, € VO. Hence the problem (2) can equivalently be formulated as follows

N+1 N+1

1 1
/0 (agp0+2§%)%dm+/ (agpo—l—ijapj)%dx:/o pidr + Bp;(l), i=1,...N+1,
i=1

or, more specifically, as: For ¢ = 1,... N 41, find &; from the following linear system of equations:
> ([ e )t X

1 1 1
(/ PiPj d$)§j+ = —04/ @6502 dff—a/ Popi dm—i—/ i dz+LBpi(1),
J=1 0 0 0 0

or equivalently A{ = b where A = S+ M with S = (s;;) being the stiffness matrix and M = (m;;)
the mass matrix. Now, since we have a uniform mesh with NV = 3; the standard values for entries
of these matrices are as follows

sii =2/h, aiiy1 = aip1,=—1/h, i=1,...N, and an+1,N+1 = 1/h,

N+1 N+1

and

my; = 2h/3, Qi i4+1 = Q41,6 = h/6, 1= ]., NN N, and AN+1,N+1 = h/3
Now we return to our specific basis functions as in the Figure above (N +1 =4, h = 1/4), note
that 4 is a half-hat function. Then

2 -1 0 0
1 2 -1 0 1
A=4\ o 1 9 4 |Txy

0 0 -1 1

and the unknown £ := [£1&s, &3,&4]" is determined by solving AS = b, with A as above and the
load vector b given by

OO = o
O = o =
— s = O
N = oo

—a [y phel de — o [ popr da + [ g1 da do— /24 +1/4
b= fol o dx _ | /4

fo w3 dx 1/4

Jo pada + Ba(1) A+1/8

4. We multiply the differential equation by a test function v € H(I), I = (0,1) and integrate
over I. Using partial integration and the boundary conditions we get the following variational
problem: Find u € H}(I) such that

4) /I(uv —|—pxuv—|—(1—|— uv /fv Yo € HY(I).

A Finite Element Method with ¢G(1) reads as follows: Find U € V;? such that
(5) /1 (U’v' +paU'v + (1 + g)U’U) = /va, Vo e VO HY(I),
where

VY = {v : v is piecewise linear and continuous in a partition of I, v(0) = v(1) = 0}.

Now let e = u — U, then (1)-(2) gives that
(6) / (e'v' + pze'v + (1 + g)ev) =0, YweV.
I

A posteriori error estimate: We note that using e(0) = e(1

)
(7) [poce=8 [admie) =B - §/e2=—§/1e2,
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so that
lelZ: = /I(e’e’ +ee) = /1 (¢ + paee + (1 + Byee)
. /1 ((w=0Y¢ 4 prlu— Ve + (14 D)~ V)e) = fo = e in(1)}
8) / fe— / (U’e’ tpalUle+ (142 )Ue) = {v = me in(2)}
/f (e — mne) / (0" e~ me) + pal" (e — mue) + (1 4+ L) (e — me))
:{RLonm@smmmwmy:lRun@—wW%

where R(U) := f+U" —paU'—(1+5)U = f—paU’'—(1+E5)U, (for approximation with piecewise
linears, U = 0, on each subinterval). Thus (5) implies that

lellzn < IRR@)IIR™ (e — mne)
< Gi|[hRO) €'l < CillhROU) lllell a2
where C; is an interpolation constant, and hence we have with || - || = || - ||z, () that
el < Cil AR(U)-

A priori error estimate: We use (4) and write
lell3: = /(e'e' +ee) = /(e'e' +pre'e + (1 + g)ee)
I I
= / (e'(u —U) +pre'(u—U)+ (1 + g)e(u - U)) ={v=U —mu in(3)}
I

= / (e'(u — mpu) + pre’ (u — mhu) + (1 + g)e(u - whu))
I
< |l(w = mau) [le'] + pllu — mnulllle]] + (1 + 5 )||U — mnull[le]|

< A{lltw = mu)' | + (1 + p)l[u — mpu el
< Ci{ [ || + (1 + p) 2% || Hlell 1,
this gives that
lellms < Cifllhu"|| + (1 +p) || P*u" (|3,
which is the a priori error estimate.

5. See Lecture Notes or text book chapter 16.
6. Consider

9) —div(eVu+ fu) = f, in Q, u=0 on I =00Q.
a) Multiply the equation (6) by v € HE(Q) and integrate over (2 to obtain the Green’s formula

—/ div(eVu + fu)v dx :/(EVu—i—ﬂu) -Vodr = / fudz.
Q Q Q

Variational formulation for (6) is as follows: Find u € H} () such that
(10) a(u,v) = L(v), Yo € H (D),
where

a(u,v) = /Q(EV'LL + fu) - Vo dz,

= 4]“1) dr.

and



According to the Lax-Milgram theorem, for a unique solution for (7) we need to verify that the
following relations are valid:

1
)
la(v, w)| <Allullav@llwllm@), Yo, we Hy(Q),
ii)
a(v,v) 2 allvllfng). Vv e Hy(Q),
iii)

IL)| < Aljol[mi), Vo€ Hy(Q),
for some v, o, A > 0.

Now since
|L(v)| = I/vadxl <N za@ IVl La@) < N llza@ 1Vl E (95

thus iii) follows with A = || f||1,(q)-
Further we have that

la(v, w)] < / V0 + Bo| | Vo] do < / €IVl + 1811 Vo] de
Q

< ([ el + 1ol as) ([ 19 as)”
< VZmax(e, ||8]l) ( /Q <|W|2+v2>dx) [

=l @ llwllm @),
which, with v = v2max(e, ||3]|), gives i).
Finally, if divg < 0, then

a(v,v) = /Q <5|V1}|2 (8- Vo) ) = (€|V'U|2 +52 ) )dm
= e|Vu)? + l(61—( )2+ B i( )?)) dz = Green’s formula
Q 2V 0 Oz

:/ (5|V1}|2 - l(clz'vﬂ)vz) dx > / | Vu|? da.
Q 2 Q

Now by the Poincare’s inequality
[ 1vede = € [ (90l +02) dz = Clol o

for some constant C = C(diam(2)), we have
a(v,v) > a||v||%11(9), with a = Ce,
thus ii) is valid under the condition that divf < 0.
From ii), (7) (with v = u) and iii) we get that
ol [ullf o) < alu,w) = L(w) < Allul|m o),

which gives the stability estimate

RI=

ul[r () <

with A = ||f||z,() and a = Ce defined above.
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