Mathematics Chalmers & GU
TMA372/MMG800: Partial Differential Equations, 2018-03—-14, 14:00-18:00

Telephone: Mohammad Asadzadeh: ankn 3517

Calculators, formula notes and other subject related material are not allowed.

Each problem gives max 6p. Valid bonus poits will be added to the scores.
Breakings: 3: 15-21p, 4: 22-28p och 5: 29p-  For GU studentsG:15-25p, VG: 26p-
For solutions and information about gradings see the couse diary in:
http://www.math.chalmers.se/Math/Grundutb/CTH/tma372/1718 /index.html

1. Derive the ¢G(1)-c¢G(1), Crank-Nicolson approximation, for the initial boundary value problem
(1) u—u' = f, 0<z<l, t>0,
w(0,t) =4/(1,t) =0, wu(z,0)=0, =z€][0,1], ¢t>0,

2. w1 f is the linear interpolant of a twice continuously differentiable function f on I. Prove that
f =T fllpacry < (0= a1 | 2on)s I = (a,b).

3. Formulate the cG(1) piecewise continuous Galerkin method in € (see fig. below) for the problem
—Au(z) =a, for z €, u(z) =0, for z €Ty, and Vu(z) n(z)=p5 for € dQ\Ty,

where n(z) is the outward unit normal to 00 at z € 9. Determine the coefficient matrix and load
vector for the resulting equation system using the mesh as in the fig. with nodes at Ny, Na, N3, Ny
and N5 and a uniform mesh size h. Hint: First compute the matrix for the standard element T'.
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4. a) Let p be a positive constant. Prove an a priori error estimate (in the H'-norm: ||e|[%,, =
le'l17, +Ile[|7,) for a finite element method for problem

—u" + pru’ + (1 + g)u =f n(0,1), u0)=u(l)=0.
b) For which value of p the a priori error estimate is optimal?

5. Formulate the Lax-Milgram Theorem. Verify the assumptions of the Lax-Milgram Theorem and
determine the constants of the assumptions in the case: I = (0,1), f € Lao(I), V = H(I) and

a(v.w) = [ (o + 0 do+0@w), L) = [ fode Il = 1ol + 0],

6. Consider the homogeneous heat equation:
u— Au=0, z€QcCR? u(z,t) =0, x €0, u(z,0) = up(x).
Prove the following stability estimates
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TMA372/MMGS800: Partial Differential Equations, 2018-03—14, 14:00-18:00.
Solutions.

1. Make the ¢G(1)-cG(1) ansatz

Ulz,t) = Up_1(2)hn_1(t) + Up(2)0n(t),  with U,( Z Un.jo;(x

in the variational formulation

1 1
/ / u'v = / / fv, I, = (tn—1,tn).
I, JO I, J0

Recall that v = ¢;(x), j=1,...,M and

tn —t t— tnfl
Yno1(t) = ———, Un(t) = ——
" ( ) tn - tn—l n( ) tn - tn—l
For a uniform tile partition with k :=t,, — t,,_1, this yields the equation system

k k
(M + 58)Un = (M = 55)Un—1 + kbn.
Here U, is the node-vale vector with entries Uy, j, M is the mass-matrix with elements fol i(x)p;(x),
S is the stiffness-matrix with elements fol @i(w)¢(x), and by, is the load vector with elements
+ i fol fei(z). The corresponding dGO (~ implicit Euler) time-stepping yields
(M + kS)U,, = MU,,_1 + kb,,.

2. Let Ao(z) = £ and A\ (z) = £=5% be two linear base functions. Then by the integral form

§1—2o §1—To
of the Taylor formula we may write

{ (&) = F(@)+ F(@) (o — o) + [ (60 — )" () dy,

f&) = @)+ @& — o)+ [ (& —y) " () dy,
Therefore

I f(z) = f(§0)Xo(@) + f(&1) A1 (2)
o &1
= 1@)+20(0) [ (6= Wy + M) [ 6 - 0)f ) dy
and by the triangle inequality we get
&1

&o
@)~ T f@)] = ale) [ (60— )" W) dy+ 2@ [ (&~ )" W)

x x

[ @-nrwalsme| ["@-nrwal

&o &1
< Po(@) / €0 — wllF" ()| dy + |2 (@) / & — il ()] dy

< [Ao(w)]

< Aol / )W) dy + M (2)] / @)\ (v)]dy
< (b a)(Io(@)] + Mo /If” ) dy
= (0 a) (M) + Ml /If” iy = ( —a/lf” )ldy.



Then, by the Cauchy-Schwarz inequality we get

@) -1 @P = -0 [ 1517 wlar)’
<o-a?[([2w) ([ urwra)”T = 0w,

Consequently

b
/ @) =M@ de < [ b= (111 de) = 0= )11,
which, taking the square root, gives the desired Ly result.
3. Let V be the linear function space defined by
Vi={v: /Q (1)2 + |Vv\2> dx < oo, v=0, onTIy}.

Multiplying the differential equation by v € V' and integrating over 2 we get that
—(Au,v) = (o, v), YveV.
Now using Green’s formula and the boundary conditions we have that
—(Au, Vv) = (Vu, Vv) — / (n-Vu)vds = (Vu, Vv) — / vds, Yo e V.

Thus the variational formulation is:

/Vu~Vvdx:a/vdw+6 vds, Yv e V.
Q Q OO\,
Let V}, be the usual finite element space consisting of continuous piecewise linear functions satis-
fying the boundary condition v = 0 on I'y:
Vi, :={v : v is continuous piecewise linear in Q, v =0, on I'i}.
The ¢G(1) method is: Find U € V}, such that

/VU-Vvdx:a/vda:—&-ﬁ vds, Yo € Vy
Q Q DO\

Making the “Ansatz” U(x) = E?:1 &;p;(z), where @, are the standard basis functions, we obtain
the system of equations

5

or, in matrix form,
S§ = ba Sij = (V%’»V%‘)a
where S is the stiffness matrix, and b = by + by is the load vector with components
bl,i = Ol/ (%) dI, and b2,i = B %) dS.
(9] E)Q\Fl

We first compute stiffness matrix for the reference triangle 7. The local basis functions are

o1(x1, 2) 1—%—%27 V¢1($17$2)——% { } },
p2(x1,22) %7 Vo(z1,22) = % { é } ,
p3(x1,w2) = %27 Vos(x1,22) = % { (1) } ~



Hence, with |T| = [, dz = h?/2,

2
1 = (Vo1,961) = [ [Vanl*do = 17] =1,
T

1
1= (V61 900) = [ (Vonf?de =~ ) = —1/2 S5 = 1/
T
1
522 = (Voho, Vebo) = / Vol de = 5T = 1/2. 523 = (Vg V) = 0,
T

1
S33 = (V¢3,V¢3) :/ |V¢3|2dx = ﬁ|T| = 1/2,
T

Thus using the symmetry we have the local stiffness matrix as

1 2 -1 -1
s = 5 -1 1 0
-1 0 1

We can now assemble the global matrix S from the local s, using the character of our mesh, viz:

S11=4s511=4, S12=0 Si13 = S14 = 2512 = —1 S15=0
Spp =4s11 =4 Sp3 =10 Sog = Sa5 = 2512 = —1
S33 =250 =1, S34=523=0, S35=0
Sag = 4500 = 2, Sis = 523 =10
Ss5 = 2890 = 1

The remaining matrix elements are obtained by symmetry S;; = S;;. Hence,

4 0 -1 -1 0

0 4 0 -1 -1

S=1] -1 0 1 0 0
-1 -1 0 2 0

0 -1 0 0 1

As for the load vector we note that

1 h2 h?
1.1 a/ﬂ‘m 43 “ e
1 A2 h?
b1,2=a4-§-? l=ad,
1 A? h?
(2) b173=a2§?1=0¢2 5
1 A? h?
b174=a4-§-? 1:Oé4€,
1 h? h?
b175:a2.§.?.1:a2€7
1
(3) by 1 =bs s =0, by =boys=bos =7 @i:ﬁ2'§(\/§h'1):\/§ﬂh.
Ele)
Hence the load vector b is:
2 0
B2 2 0
b=a% | 1 +V28h | 1
2 1
1 1



4. We multiply the differential equation by a test function v € H}(I), I = (0,1) and integrate
over I. Using partial integration and the boundary conditions we get the following variational
problem: Find u € H}(I) such that

(4) /(uv +pxuv+(1+ uv /fv Yo € Hy(I).

I
A Finite Element Method with ¢G(1) reads as follows: Find U € V} such that

(5) /(U’v'+pxU’v+(1+g)UU> :/fv, Yv e Vi) c Hy(I),
I I

where
V¥ = {v : v is piecewise linear and continuous in a partition of I, v(0) = v(1) = 0}.

Now let e = u — U, then (4)-(5) gives that

(6) / (e’v' + pre'v+ (1 + g)ev) =0, YweV
I
A posteriori error estimate: We note that using e(0) = e(1) = 0, we get
p d P p p
(7) Jrote=8 [agie)=Fa -5 [ =5 [

so that

le2 = /I(e’e’ +ee) = /1 (e'e' +paele + (1+ g)ee>
_ /1 ((w=0Y¢ 4 pru—UYe+ (1 4+ D)~ V)e) = fo = in(1)}
8) /fe - / (U’e’ +paUle + (1 + )Ue) = {v = me in(2)}
/f (e — mhe) / (0"~ me +pal’(e —me) + (1+ DU (e — mac)
— {P.I. on each subinterval} — /1 R(U)(e = mne),

where R(U) := f+U" —paU’'—(14+5)U = f—pzU’—(1+5)U, (for approximation with piecewise
linears, U = 0, on each subinterval). Thus (8) implies that
el < IRRU)[1h™" (e = mhe)|
< Gl[RRO)|[[I€']| < Cil[PRU)|I el e,
where Cj is an interpolation constant, and hence we have with || - || = || - || z,() that

el < CillPR(U) |-

A priori error estimate: We use (7) and write
lell3: = /(e/e/ +ee) = /(e’e’ +pre'e + (1 + g)ee)
I I
= / (e’(u —U) +pre'(u—-U)+(1+ g)e(u — U)) ={v=U —mu in(3)}

I
= / (e’(u — mpu) + pre (u — mhu) + (1 + ‘g)e(u — Whu))
I
p
< M = mnu) el + plle = mpullle'll + (L + F)llu = maullllel

< {l(u = mp)'[| + (1 + p)llu = waull el

< Cifllha"|| + @+ p) B> | Ylel
4



this gives that
lellzr < Cifllhu”|| + (1 + p)[R*u”]},
which is the a priori error estimate.

b) As seen p = 0 (corresponding to zero convection) yields optimal a priori error estimate.

5. For the formulation of the Lax-Milgram theorem see the book, Chapter 21.
As for the given case: I = (0,1), f € La(I), V = H*(I) and

a(v,w) = /(uw +v'w')dx +v(0)w(0), L(v)= /fv dx,
I I
it is trivial to show that a(-,-) is bilinear and b(-) is linear. We have that

(9)  a(v,v) = /v2 + (v)*dx + v(0)* > /(v)2 dz + % /I(v’)2 dzr + %’U(O)Q + %/I(v’)2 dz.

1 I

Further N
U(x):U(O)—I—/O V'(y)dy, Vxel
implies
T 1
v (z v(0)? v 2 - v(0)? V' (y)?
(@) <2(07 + ([ V@) <(C -5} <2007 +2 [ vwPay
so that

1 e 1
—v(0)% + f/ v (y) dy > ~v*(z), Vrel.
2 2 J, 4

Integrating over  we get

1 1! 1
(10) ~v(0)? + 7/ v (y)? dy > f/vz(:v) da.
Now combining (9) and (10) we get

a(v,v) > g/lv2(m) dr + % /(v’)z(x) dx

I

%(/Ivz(x) dx—l—/j(v/)Q(ﬂC) dCU) = %”UH%N

so that we can take k1 = 1/2. Further
la(v, w)| < ‘/vadx’ + ‘ /Iv’w’dm‘ + [v(0)w(0)] < {C — S}
< |llzallwll Ly + ||U/||L2(1)||w/||L2(I) + v(0)|[w(0)]
< (Illza + 10 lzam ) (Hellzain + 102y ) + [0(O)] ()]

vV

1/2 1/2
<V2(Ilolldan + 0N ) V(I + 11y ) © + [0(@)lo(0)]
< V2l[olly V2l[wlly + [o(0) [ (0)].

Now we have that
(11) o(0) = / J(y)dy + (@), Vrel,
0

and by the Mean-value theorem for the integrals: 3¢ € T so that v(§) = fol v(y) dy. Choose x = ¢
n (11) then

vl =]- [ Cdr+ / o)

1 1
s/ |v’\dy+/ ol dy < {C — S} < 10lay + ollacr) < 2olly,
0 0

5



implies that
[w(0)]lw(0)] < 4lfv]lvwllv,
and consequently

|a(u, w)| < 2|Jv][v[[w]lv + 4][v[[v[[w]lv = 6]v]|v[[w]|v,

so that we can take ko = 6. Finally

LI =] [ oda| < llzapllelleaco < 1flnlvly.

taking w3 = || f|[1,(r) all the conditions in the Lax-Milgram theorem are fulfilled.

6. See the Lecture Notes.

MA



