
Mathematics Chalmers & GU

MVE455: Partial Differential Equations for Kf3, 2016–03–14, 8:30-12:30

Telephone: Raad Salman: 031-7725325
Calculators, formula notes and other subject related material are not allowed.
Each problem gives max 4p. Valid bonus poits will be added to the scores.
Breakings from total of 24 points: Exam(20)+Bonus(4). 3: 10-14p, 4: 15-19p och 5: 20p-
For solutions see the couse diary: http://www.math.chalmers.se/Math/Grundutb/CTH/tma372/1516/

1. Consider a uniform partition 0 = x0 < x1 < . . . < xN = 1 of the interval [0, 1] and let {ϕi}
N
i=0

be a set of piecewise linear continuous basis functions: ϕi(xj) = 1 for i = j and ϕi(xj) = 0 if
i 6= j. Given a FEM in form of linear system of equations (S + C)ξ = b + d, with S and C
N -by-N matrices, and ξ, b and d vectors of lenght N , where for i, j = 0, . . . , N−1, Sij = (ϕ′

i, ϕ
′

j),
Cij = (ϕi, ϕ

′

j), and bi = (ϕi, f) with f a given function. d0 = α is the only non-zero element of d.

a) Derive the variational formulation and the strong formulation for the PDE from the above data.

b) Let now both u(0) = 0 and α = 0 and derive the continuous stability estimate ‖ux‖ ≤ ‖f‖.

2. Prove an a priori error estimate for a finite element method for the boundary value problem,
(the required interpolation estimates can be used without proofs):

−uxx + ux = f, x ∈ (0, 1); u(0) = u(1) = 0.

3. The dG(0) solution U for the scalar population dynamics, u̇(t) + au(t) = f, u(0) = u0, in the
subinterval In = (tn−1, tn] with kn = tn − tn−1, n = 1, 2, . . . N , and f ≡ 0 is given by

aknUn + (Un − Un−1) = 0, Un = U |In = U−

n = U+
n−1.

Let a > 0 and show the discrete stability estimate

U2
N +

N−1
∑

n=0

|[Un]|
2 ≤ U2

0 , [Un] := U+
n − U−

n = Un+1 − Un.

4. Let Ω be the triangulated domain below. Compute the cG(1) solution of −∆u = 0 in Ω with
the Neumann data: ∂nu = 3 on B1 and Dirichlet condition: u = 0 on B2.
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5. Formulate and prove the Lax-Milgram theorem.
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Solutions.

1. a) It is clear that the homogeneous Dirichlet condition is used at x = 1 since the basis function
ϕN is not present in the matrices and there are no modifivations corresponding the last element of
the load vector. Consider now the solution space V 0 = {w : ‖w‖ + ‖w′‖ < ∞}, w(1) = 0} where
‖ · ‖ is the usual L2-norm over I. Then, the variational formulation reads as follows: find u ∈ V 0

s.t.

(1) (vx, ux) + (v, ux) = (v, f) + αv(0), ∀ v ∈ V 0.

For the basis functions ginen, ϕ0(0) = 1, which explains the first element of the vector d.

Backward integration by parts, together with the Dirichlet data on v yields

(2) (v, f) + αv(0) = (v,−uxx + ux) + v(0)ux(0).

Thus, the strong formulation (PDE) is: find such that

(3) −uxx + ux = f 0 < x < 1 ux(0) = α, u(1) = 0.

(b) Let in (1) α = 0 and v = u, then

(ux, ux) + (u, ux) = (u, f).

Using integration by parts and u(0) = 0,

(u, ux) = u2(x)|x=1
x=0 − (ux, u) =⇒ (u, ux) = u2(1)− u2(0) = u2(1)− u2(0) = 0.

Hence, using Cauchy-Schwarz and Poincare inequalities:

‖ux‖
2 = (u, f) ≤ ‖u‖‖f‖ ≤ ‖ux‖‖f‖,

we get the desired result.

2. We multiply the differential equation by a test function v ∈ H1
0 = {v : ||v||+ ||v′|| < ∞, v(0) =

v(1) = 0} and integrate over I. Using partial integration and the boundary conditions we get the
following variational problem: Find u ∈ H1

0 (I) such that

(4)

∫

I

(u′v′ + u′v) =

∫

I

fv, ∀v ∈ H1
0 (I).

Or equivalently, find u ∈ H1
0 (I) such that

(5) (ux, vx) + (ux, v) = (f, v), ∀v ∈ H1
0 (I),

with (·, ·) denoting the L2(I) scalar product: (u, v) =
∫

I
u(x)v(x) dx. A Finite Element Method

with cG(1) reads as follows: Find uh ∈ V 0
h such that

(6)

∫

I

(u′

hv
′ + u′

hv) =

∫

I

fv, ∀v ∈ V 0
h ⊂ H1

0 (I),

where

V 0
h = {v : v is piecewise linear and continuous in a partition of I, v(0) = v(1) = 0}.

Or equivalently, find uh ∈ V 0
h such that

(7) (uh,x, vx) + (uh,x, v) = (f, v), ∀v ∈ V 0
h .

Let now

a(u, v) = (ux, vx) + (ux, v).

We want to show that a(·, ·) is both elliptic and continuous:
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ellipticity

(8) a(u, u) = (ux, ux) + (ux, u) = ||ux||
2,

where we have used the boundary data, viz,
∫ 1

0

uxu dx =
[u2

2

]1

0
= 0.

continuity

(9) a(u, v) = (ux, vx) + (ux, v) ≤ ||ux||||vx||+ ||ux||||v|| ≤ 2||ux||||vx||,

where we used the Poincare inequality ||v|| ≤ ||vx||.

Let now e = u− uh, then (5)- (7) gives that

(10) a(u− uh, v) = (ux − uh,x, vx) + (ux − uh,x, v) = 0, ∀v ∈ V 0
h , (Galerkin Orthogonality).

A priori error estimate: We use ellipticity (8), Galerkin orthogonality (10), and the continuity (9)
to get

‖ux − uh,x‖
2 = a(u− uh, u− uh) = a(u− uh, u− v) ≤ 2‖ux − uh,x‖‖ux − vx‖, ∀v ∈ V 0

h .

This gives that

(11) ‖ux − uh,x‖ ≤ 2‖ux − vx‖, ∀v ∈ V 0
h ,

If we choose v = πhu ∈ V 0
h , the interpolant of u, and use the interpolation estimate we get from

(11) that

(12) ‖ux − uh,x‖ ≤ 2‖ux − (πu)x‖ ≤ 2Ci‖huxx‖.

3. For dG(0) we have discontinuous, piecewise constant test functions, hence in the variational
formulation below

(u̇, v) + (au, v) = (f, v),

we may take v ≡ 1 and hence we have for a single subinterval In = (tn−1, tn] the dG(0) approxi-
mation

∫

In

(U̇ + aU(t)dt+ (Un − Un−1) dt =

∫

In

f dt.

For f = 0 this yields (see als)o Fig below)

(13) aKnUn + (Un − Un−1) = 0.

u0

t0 = 0 t1 t2 t3 tn−1 tn tN−1 tN = 1

[U ]0

[U ]1

[U ]2

[U ]3

[U ]N−1

UN
t

Multiplying by Un we get

aknU
2
n + U2

n − UnUn−1 = 0,

where a > 0, whence

U2
n − UnUn−1 ≤ 0.
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Now we use, for n = 1, 2, . . . , N ,

U2
n − UnUn−1 =

1

2
U2
n +

1

2
U2
n − UnUn−1,

and sum over n = 1, 2, . . . , N to write

N
∑

n=1

(U2
n − UnUn−1) = U2

N − UNUN−1 + U2
N−1 − UN−1UN−2 +− . . . U2

1 − U1U0

= U2
N − UNUN−1 + U2

N−1 − UN−1UN−2 +− . . . U2
1 − U1U0 +

1

2
U2
0 2−

1

2
U2
0

=
1

2
U2
N +

1

2
(UN − UN−1)

2 +
1

2
U2
N−1 + . . .+

1

2
U2
1 +

1

2
(U1 − U0)

2 −
1

2
U2
0 ≤ 0.

Further by the definition [Un] = Un+1 − Un, hence the above inequality yields the desired result

U2
N +

N−1
∑

n=0

|[Un]|
2 ≤ U2

0 .

4. Variational Formulation: Using Green’s formula we have that

0 =

∫

Ω

−∆uv dx = {Green’s} =

∫

Ω

∇u · ∇v −

∫

Γ

(∂nu)v

= {Γ := ∂Ω := B1 ∪B2} = {v = 0 on B2, and ∂nu = 3 on B1}

=

∫

Ω

∇u · ∇v dx−

∫

B1

3v ds

(14)

Thus we have the finite element formulation: Find piecewise linear function U ∈ Vh such that

(15)

∫

Ω

∇U · ∇v =

∫

B1

3v ds, ∀v ∈ Vh.

Let now

(16) U(x) = U1ϕ1(x) + U2ϕ2(x),

where ϕi are the piecewise linears basis functions for the above discretization of Ω with ϕi(Nj) =
δij , i, j = 1, 2. We insert (16) in (15) and let v = ϕi, i = 1, 2 to obtain a 2× 2 system viz,

(17)















∫

Ω

∇ϕ1 · ∇ϕ1 dxU1 +

∫

Ω

∇ϕ2 · ∇ϕ1 dxU2 = 3

∫

B1

ϕ1 ds,

∫

Ω

∇ϕ1 · ∇ϕ2 dxU1 +

∫

Ω

∇ϕ2 · ∇ϕ2 dxU2 = 3

∫

B1

ϕ2 ds.
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Note that using the orientation in the figur below we have

2N

1N

5k

4k 3k

2k

1k

∇ϕ1

∣

∣

∣

k1

= (−1, 0) ∇ϕ2

∣

∣

∣

k1

= (0, 1)

∇ϕ1

∣

∣

∣

k2

= (0, 0) ∇ϕ2

∣

∣

∣

k2

= (−1, 1)

∇ϕ1

∣

∣

∣

k3

= (0, 0) ∇ϕ2

∣

∣

∣

k3

= (−1,−1)

∇ϕ1

∣

∣

∣

k4

= (0, 0) ∇ϕ2

∣

∣

∣

k4

= (1,−1)

∇ϕ1

∣

∣

∣

k5

= (0,−1) ∇ϕ2

∣

∣

∣

k5

= (1, 0)

Thus
∫

Ω

∇ϕ1 · ∇ϕ2 dx =

∫

Ω

∇ϕ2 · ∇ϕ1 dx = 0,

and
∫

Ω

∇ϕ1 · ∇ϕ1 dx =

5
∑

i=1

|ki|
(

∇ϕ1|ki
· ∇ϕ1|ki

)

1

2
× (−1, 0) · (−1, 0) +

1

2
× (0,−1) · (0,−1) =

1

2
+

1

2
= 1.

Similarly
∫

Ω

∇ϕ2 · ∇ϕ2 dx =

5
∑

i=1

|ki|
(

∇ϕ2|ki
· ∇ϕ2|ki

)

=
1

2
×

(

(0, 1) · (0, 1)

+(−1, 1) · (−1, 1)+(−1,−1) · (−1,−1) + (1,−1) · (1,−1) + (1, 0) · (1, 0)
)

=
1

2
×
(

1 + 2 + 2 + 2 + 1
)

= 4.

As for the right hand side we have

3

∫

B1

ϕ1 = 3× aread of the side alonge B1 = 3
(

1/2 + 1/2
)

= 3,

while

3

∫

B1

ϕ2 = 0.

Summing up we have a trivial situation as follows:
[

1 0
0 4

] [

U1

U2

]

=

[

3
0

]

Thus U(x) = 3ϕ1(x) and actually, with this configuration, we have a trivial one-dimensional
problem.

5. See the lecture notes.
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