
Mathematics Chalmers & GU

MVE455: Partial Differential Equations for Kf3, 2016–06–10, 8:30-12:30

Telephone: Adam Malik: ankn 5325
Calculators, formula notes and other subject related material are not allowed.
Each problem gives max 4p. Valid bonus poits will be added to the scores.
Breakings from total of 24 points: Exam(20)+Bonus(4). 3: 10-14p, 4: 15-19p och 5: 20p-
For solutions see the couse diary: http://www.math.chalmers.se/Math/Grundutb/CTH/tma372/1516/

1. Show that for a continuously differentiable function v defined on (a, b), with |I| = b− a = 1 we
have that

||v||2 ≤ v(a)2 + v(b)2 + ||v′||2.

Hint: Let c = (a + b)/2. Use partial integration for
∫ c

a
v(x)2 dx and

∫ b

c
v(x)2 dx and note that

(x− c) has the derivative 1.

2. Consider a uniform partition 0 = x0 < x1 < . . . < xN = 1 of the interval [0, 1] and let {ϕi}
N
i=0

be a set of piecewise linear continuous basis functions: ϕi(xj) = 1 for i = j and ϕi(xj) = 0 if
i 6= j. Given a FEM in form of linear system of equations (S + C)ξ = b + d, with S and C
N -by-N matrices, and ξ, b and d vectors of lenght N , where for i, j = 0, . . . , N−1, Sij = (ϕ′

i, ϕ
′

j),
Cij = (ϕi, ϕ

′

j), and bi = (ϕi, f) with f a given function. d0 = α is the only non-zero element of d.

Derive the variational formulation and the strong formulation for the PDE from the above data.

3. Prove an a posteriori error estimate for piecewise linear finite element method for the boundary
value problem, (the required interpolation estimates can be used without proofs):

−uxx + ux = f, x ∈ (0, 1); u(0) = u(1) = 0.

4. Determine the stiffness matrix and load vector if the cG(1) finite element method approximation
is applied to the following Poisson’s equation with mixed boundary conditions:






−∆u = 1, on Ω = (0, 1)× (0, 1), verifying the
∂u
∂n = 0, for x1 = 1, (x ∈ Γ2) local stiffness:
u = 0, for x ∈ ∂Ω \ {x1 = 1} = ∂Ω \ Γ2,

s =





5/4 −1 −1/4
−1 1 0

−1/4 0 1/4





on a triangulation with triangles of side length 1/4 in the x1-direction and 1/2 in the x2-direction.

0 1/4 1/2 3/4 1

1/2

1

• • • •
N1 N2 N3 N4

Γ2 : ∂u/∂n = 0

Γ1 : u = 0

Γ1 : u = 0

Γ1 : u = 0

5. Consider the Dirichlet boundary value problem:

(BVP)− (a(x)u′(x))′ = f(x), for 0 < x < 1, u(0) = 0, u(1) = 0.

where a(x) > 0 (the modulus of elasticity). Formulate the corresponding variational formulation
(VF), the minimization problem (MP) and prove that (V F ) ⇐⇒ (MP ).
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Solutions.

1. We have, using the hint, c = (a+ b)/2 that

||v||2 =

∫ b

a

v2 dx =

∫ c

a

v2 dx+

∫ b

c

v2 dx

=[(x− c)v(x)2]ca + [(x− c)v(x)2]bc −

∫ b

a

(x− c)2v(x)v′(x) dx ≤ {x− c ≤
b− a

2
}

≤
b− a

2

(

v(a)2 + v(b)2
)

+ ||v||||v′|| ≤
1

2

(

v(0)2 + v(1)2 + ||v′||2
)

+
1

2
||v||2,

and the proof is complete.

2. It is clear that the homogeneous Dirichlet condition is used at x = 1 since the basis function
ϕN is not present in the matrices and there are no modifivations corresponding the last element of
the load vector. Consider now the solution space V 0 = {w : ‖w‖ + ‖w′‖ < ∞}, w(1) = 0} where
‖ · ‖ is the usual L2-norm over I. Then, the variational formulation reads as follows: find u ∈ V 0

s.t.

(1) (vx, ux) + (v, ux) = (v, f) + αv(0), ∀ v ∈ V 0.

For the basis functions ginen, ϕ0(0) = 1, which explains the first element of the vector d.

Backward integration by parts, together with the Dirichlet data on v yields

(2) (v, f) + αv(0) = (v,−uxx + ux) + v(0)ux(0).

Thus, the strong formulation (PDE) is: find such that

(3) −uxx + ux = f 0 < x < 1 ux(0) = α, u(1) = 0.

3. We multiply the differential equation by a test function v ∈ H1
0 = {v : ||v||+ ||v′|| < ∞, v(0) =

v(1) = 0} and integrate over I. Using partial integration and the boundary conditions we get the
following variational problem: Find u ∈ H1

0 (I) such that

(4)

∫

I

(u′v′ + u′v) =

∫

I

fv, ∀v ∈ H1
0 (I).

Or equivalently, find u ∈ H1
0 (I) such that

(5) (ux, vx) + (ux, v) = (f, v), ∀v ∈ H1
0 (I),

with (·, ·) denoting the L2(I) scalar product: (u, v) =
∫

I
u(x)v(x) dx. A Finite Element Method

with cG(1) reads as follows: Find uh ∈ V 0
h such that

(6)

∫

I

(u′

hv
′ + u′

hv) =

∫

I

fv, ∀v ∈ V 0
h ⊂ H1

0 (I),

where

V 0
h = {v : v is piecewise linear and continuous in a partition of I, v(0) = v(1) = 0}.

Or equivalently, find uh ∈ V 0
h such that

(7) (uh,x, vx) + (uh,x, v) = (f, v), ∀v ∈ V 0
h .

Let now

a(u, v) = (ux, vx) + (ux, v).

We want to show that a(·, ·) is both elliptic and continuous:
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ellipticity

(8) a(u, u) = (ux, ux) + (ux, u) = ||ux||
2,

where we have used the boundary data, viz,
∫ 1

0

uxu dx =
[u2

2

]1

0
= 0.

continuity

(9) a(u, v) = (ux, vx) + (ux, v) ≤ ||ux||||vx||+ ||ux||||v|| ≤ 2||ux||||vx||,

where we used the Poincare inequality ||v|| ≤ ||vx||.

Let now e = u− uh, then (5)- (7) gives that

(10) a(u− uh, v) = (ux − uh,x, vx) + (ux − uh,x, v) = 0, ∀v ∈ V 0
h , (Galerkin Orthogonality).

A posteriori error estimate: We use again ellipticity (8), Galerkin orthogonality (10), and the
variational formulation (4) to get

‖ex‖
2 = a(e, e) = a(e, e− πe) = a(u, e− πe)− a(uh, e− πe)

= (f, e− πe)− a(uh, e− πe) = (f, e− πe)− (uh,x, ex − (πe)x)− (uh,x, e− πe)

= (f − uh,x, e− πe) ≤ C‖h(f − uh,x)‖‖ex‖,

(11)

where in the last equality we use the fact that e(xj) = (πe)(xj), for j:s being the node points, also
uh,xx ≡ 0 on each Ij := (xj−1, xj). Thus

(uh,x, ex − (πe)x) = −
∑

j

∫

Ij

uh,xx(e− πe) +
∑

j

(

uh,x(e− πe)
)∣

∣

∣

Ij
= 0.

Hence, (11) yields:

(12) ‖ex‖ ≤ C‖h(f − uh,x)‖.

4. Solution: Let Γ1 := ∂Ω \ Γ2 where Γ2 := {(1, x2) : 0 ≤ x2 ≤ 1}. Define

V = {v : v ∈ H1(Ω), v = 0 on Γ1}.

Multiply the equation by v ∈ V and integrate over Ω; using Green’s formula
∫

Ω

∇u · ∇v −

∫

Γ

∂u

∂n
v =

∫

Ω

∇u · ∇v =

∫

Ω

v,

where we have used Γ = Γ1 ∪ Γ2 and the fact that v = 0 on Γ1 and ∂u
∂n = 0 on Γ2.

Variational formulation:

Find u ∈ V such that
∫

Ω

∇u · ∇v =

∫

Ω

v, ∀v ∈ V.

FEM: cG(1):

Find U ∈ Vh such that

(13)

∫

Ω

∇U · ∇v =

∫

Ω

v, ∀v ∈ Vh ⊂ V,

where

Vh = {v : v is piecewise linear and continuous in Ω, v = 0 on Γ1, on above mesh }.

A set of bases functions for the finite dimensional space Vh can be written as {ϕi}
4
i=1, where

{

ϕi ∈ Vh, i = 1, 2, 3, 4
ϕi(Nj) = δij , i, j = 1, 2, 3, 4.

Then the equation (2) is equivalent to: Find U ∈ Vh such that

(14)

∫

Ω

∇U · ∇ϕi =

∫

Ω

ϕi, i = 1, 2, 3, 4.
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Set U =
∑4

j=1
ξjϕj . Invoking in the relation (3) above we get

4
∑

j=1

ξj

∫

Ω

∇ϕj · ∇ϕi =

∫

Ω

ϕi, i = 1, 2, 3, 4.

Now let aij =
∫

Ω
∇ϕj · ∇ϕi and bi =

∫

Ω
ϕi, then we have that

Aξ = b, A is the stiffness matrix b is the load vector.

Below we compute aij and bi

bi =

∫

Ω

ϕi =

{

6 · 1

3
· 1/4·1/2

2
· 1 = 1/8, i = 1, 2, 3

3 · 1

3
· 1/4·1/2

2
· 1 = 1/16, i = 4

and

aii =

∫

Ω

∇ϕi · ∇ϕi =

{

2 · ( 5
4
+ 1 + 1

4
) = 5, i = 1, 2, 3

5

4
+ 1 + 1

4
= 5/2, i = 4

Further

ai,i+1 =

∫

Ω

∇ϕi+1 · ∇ϕi = 2 · (−1) = −2 = ai+1,i, i = 1, 2, 3,

and
aij = 0, |i− j| > 1.

Thus we have

A =









5 −2 0 0
−2 5 −2 0
0 −2 5 −2
0 0 −2 5/2









b =
1

16









2
2
2
1









.

5. See the lecture notes.

MA

3


