
Mathematics Chalmers & GU

MVE455: Partial Differential Equations for Kf3, 2016–08–26, 8:30-12:30

Telephone: Adam Malik: ankn 5325
Calculators, formula notes and other subject related material are not allowed.
Each problem gives max 4p. Valid bonus poits will be added to the scores.
Breakings from total of 24 points: Exam(20)+Bonus(4). 3: 10-14p, 4: 15-19p och 5: 20p-
For solutions see the couse diary: http://www.math.chalmers.se/Math/Grundutb/CTH/tma372/1516/

1. Let π1f be the linear interpolant of a twice continuousely differentiable function f . Prove the
optimal interpolation error estimate (Note coefficient 1

8 ):

||f − π1f ||L∞(a,b) ≤
1

8
(b− a)2||f ′′||L∞(a,b).

2. Consider a uniform partition 0 = x0 < x1 < . . . < xN = 1 of the interval [0, 1] and let {ϕi}
N
i=0

be a set of piecewise linear continuous basis functions: ϕi(xj) = 1 for i = j and ϕi(xj) = 0 if
i 6= j. Given a FEM in form of linear system of equations (S + C)ξ = b + d, with S and C
N -by-N matrices, and ξ, b and d vectors of lenght N , where for i, j = 0, . . . , N−1, Sij = (ϕ′

i, ϕ
′

j),
Cij = (ϕi, ϕ

′

j), and bi = (ϕi, f) with f a given function. d0 = α is the only non-zero element of d.

Derive the variational formulation and the strong formulation for the PDE from the above data.

3. Prove an a priori and an a posteriori error estimate, in the H1-norm: ‖u‖H1 := ‖u′‖L2(0,1), for
the cG(1) finite element method for the following convection-diffusion-absorption problem

−u′′(x) + 2xu′(x) + u(x) = f(x), for x ∈ (0, 1) and u(0) = u(1) = 0.

4. In the square domain Ω := (0, 2)2, with the boundary Γ := ∂Ω, consider the problem of solving

(1)

{

−∂2u
∂x2

1

− 2∂2u
∂x2

2

= 1, in Ω = {x = (x1, x2) : 0 < x1 < 2, 0 < x2 < 2},

u = 0 on Γ1 := Γ \ Γ2,
∂u
∂x1

= 0 on Γ2 = {x = (x1, x2) : x1 = 2, 0 < x2 < 2}.

Determine the stiffness matrix and load vector if the cG(1) finite element method with piecewise
linear approximation is applied to the equation (1) above and on the following triangulation:

2

2

⊙ ⊙

x2

x1

Ω

Γ1

Γ1

Γ1
Γ2

N1 N2

5. Formulate and prove the Lax-Milgram theorem in the case of symmetric bilinear form.
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Solutions.

1. We have that

π1f(x) = λa(x)f(a) + λb(x)f(b) = f(a)
b− x

b− a
+ f(b)

x− a

b− a

where

λa(x) =
b− x

b− a
, λb(x) =

x− a

b− a
,

are the basis functions for linear interpolation in the interval [a, b] with the property:

λa(x) + λb(x) = 1 and aλa(x) + bλb(x) = x.

By Taylor expansions of f(b) and f(a) about x: We have that ∃, ηb ∈ (x, b) and ηa ∈ (a, x):

(2) f(b) = f(x) + (b− x)f ′(x) +
1

2
(b− x)2f ′′(ηb)

(3) f(a) = f(x) + (a− x)f ′(x) +
1

2
(a− x)2f ′′(ηa)

so that

π1f(x) = λa(x)f(a) + λb(x)f(b)

= (λa(x) + λb(x))f(x) + (λa(x)(a− x) + λb(x)(b− x))f ′(x)

+ λa(x)
1

2
(a− x)2f ′′(ηa) + λb(x)

1

2
(b− x)2f ′′(ηb)

= f(x) + λa(x)
1

2
(a− x)2f ′′(ηa) + λb(x)

1

2
(b− x)2f ′′(ηb)

(4)

Hence

|π1f(x)− f(x)| ≤
1

2(b− a)

(

(x− a)(b− x)2 + (b− x)(a− x)2
)

max
x∈[a,b]

|f ′′(x)|

=
1

2
((x− a)(b− x)) max

x∈[a,b]
|f ′′(x)|

(5)

Let now g(x) = (b − x)(x − a), then g′(x) = 0 yields x = (a + b)/2 and maxg(x) = g(a+b
2 ) =

(b− a)2/4 which gives the desired result.

2. It is clear that the homogeneous Dirichlet condition is used at x = 1 since the basis function
ϕN is not present in the matrices and there are no modifivations corresponding the last element of
the load vector. Consider now the solution space V 0 = {w : ‖w‖ + ‖w′‖ < ∞}, w(1) = 0} where
‖ · ‖ is the usual L2-norm over I. Then, the variational formulation reads as follows: find u ∈ V 0

s.t.

(6) (vx, ux) + (v, ux) = (v, f) + αv(0), ∀ v ∈ V 0.

For the basis functions ginen, ϕ0(0) = 1, which explains the first element of the vector d.

Backward integration by parts, together with the Dirichlet data on v yields

(7) (v, f) + αv(0) = (v,−uxx + ux) + v(0)ux(0).

Thus, the strong formulation (PDE) is: find such that

(8) −uxx + ux = f 0 < x < 1 ux(0) = α, u(1) = 0.

1



3. We multiply the differential equation by a test function v ∈ H1
0 (I), I = (0, 1) and integrate

over I. Using partial integration and the boundary conditions we get the following variational

problem: Find u ∈ H1
0 (I) such that

(9)

∫

I

(u′v′ + 2xu′v + uv) =

∫

I

fv, ∀v ∈ H1
0 (I).

A Finite Element Method with cG(1) reads as follows: Find U ∈ V 0
h such that

(10)

∫

I

(U ′v′ + 2xU ′v + Uv) =

∫

I

fv, ∀v ∈ V 0
h ⊂ H1

0 (I),

where

V 0
h = {v : v is piecewise linear and continuous in a partition of I, v(0) = v(1) = 0}.

Now let e = u− U , then (9)-(10) gives that

(11)

∫

I

(e′v′ + 2xe′v + ev) = 0, ∀v ∈ V 0
h .

A posteriori error estimate: We note that using e(0) = e(1) = 0, we get

(12)

∫

I

2xe′e =

∫

I

x
d

dx
(e2) = (xe2)|10 −

∫

I

e2 = −

∫

I

e2,

so that using variational formulation (9) to replace the terms involving continuous solution u and
the finite element method (10) to insert the interpolant πhe of the error we can compute

‖e‖2H1 =

∫

I

e′e′ =

∫

I

(e′e′ + 2xe′e+ ee)

=

∫

I

((u− U)′e′ + 2x(u− U)′e+ (u− U)e) = {v = e in (9)}

=

∫

I

fe−

∫

I

(U ′e′ + 2xU ′e+ Ue) = {v = πhe in (10)}

=

∫

I

f(e− πhe)−

∫

I

(

U ′(e− πhe)
′ + 2xU ′(e− πhe) + U(e− πhe)

)

= {P.I. on each subinterval} =

∫

I

R(U)(e− πhe),

(13)

where R(U) := f − 2xU ′ − U , (for approximation with piecewise linears, U ′′ ≡ 0, on each subin-
terval). Thus (13) implies that

‖e‖2H1 ≤ ‖hR(U)‖‖h−1(e− πhe)‖

≤ Ci‖hR(U)‖‖e′‖ ≤ Ci‖hR(U)‖‖e‖H1 ,

where Ci is an interpolation constant, and hence we have with ‖ · ‖ = ‖ · ‖L2(I) that

‖e‖H1 ≤ Ci‖hR(U)‖.

A priori error estimate: We use (12) and write

‖e‖2H1 =

∫

I

e′e′ =

∫

I

(e′e′ + 2xe′e+ ee)

=

∫

I

(

e′(u− U)′ + 2xe′(u− U) + e(u− U)
)

= {v = U − πhu in(11)}

=

∫

I

(

e′(u− πhu)
′ + 2xe′(u− πhu) + e(u− πhu)

)

≤ ‖(u− πhu)
′‖‖e′‖ + 2‖u− πhu‖‖e

′‖ + ‖u− πhu‖‖e‖

≤ {‖(u− πhu)
′‖ + 3‖u− πhu‖}‖e‖H1

≤ Ci{‖hu
′′‖ + ‖h2u′′‖}‖e‖H1 ,
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where in the last step we used Poincare inequality. This gives that

‖e‖H1 ≤ Ci{‖hu
′′‖ + ‖h2u′′‖},

which is the a priori error estimate.

4. Recall that the mesh size is h = 1. Further, the first triangle (the triangle with nodes at (0, 0),
(1, 0) and (0, 1)) is not in the support of the test function of N1, whereas the last triangle (the
triangle with nodes at (4, 4), (2, 4) and (4, 2)) is in the support of the test function for N2!. Thus,
the nodal bases functions ϕ1 and ϕ2 share the two triangles K1 and K2, see figure below. We

2

2

⊙ ⊙

K1

K2

x2

x1

Ω

Γ1

Γ1

Γ1
Γ2

N1 N2
(h = 1)

define the test function space

(14) V = {v : v ∈ H1(Ω), v = 0 on Γ1}.

We multiply the differential equation in (1) by v ∈ V and integrate over Ω. Using Green’s formula,
the boundary data (v = 0 on Γ1 and ∂u

∂x1

= 0 on Γ2), and the standard notation ~n = (n1, n2) for
the outward unit normal on Γ1 ∪ Γ2, we end up with

∫

Ω

( ∂u

∂x1

∂v

∂x1
+ 2

∂u

∂x2

∂v

∂x2

)

dx1 dx2 −

∫

Γ

( ∂u

∂x1
vn1 + 2

∂u

∂x2
vn2

)

ds

=

∫

Ω

( ∂u

∂x1

∂v

∂x1
+ 2

∂u

∂x2

∂v

∂x2

)

dx1 dx2 =

∫

Ω

v dx1 dx2.

(15)

Hence, we have the variational formulation: Find u ∈ V such that

(16)

∫

Ω

( ∂u

∂x1

∂v

∂x1
+ 2

∂u

∂x2

∂v

∂x2

)

dx1 dx2 =

∫

Ω

v dx1 dx2, ∀v ∈ V,

and the corresponding finite element method: Find U ∈ Vh such that

(17)

∫

Ω

( ∂U

∂x1

∂v

∂x1
+ 2

∂U

∂x2

∂v

∂x2

)

dx1 dx2 =

∫

Ω

v dx1 dx2, ∀v ∈ Vh (⊂ V ),

where

(18) Vh := {v : v is piecewise linear and continuous on the partition of Ω, v = 0 on Γ1}.

A basis for Vh consists of {ϕi}
2
i=1, where

{

ϕi ∈ Vh, i = 1, 2
ϕi(Nj) = δij , i, j = 1, 2.

Then, (18) is equivalent to: find U ∈ Vh such that

(19)

∫

Ω

( ∂U

∂x1

∂ϕi

∂x1
+ 2

∂U

∂x2

∂ϕi

∂x2

)

dx1 dx2 =

∫

Ω

ϕi dx1 dx2, i = 1, 2.

Now, we make the ansatz: U =
∑2

j=1 ξjϕj . Inserting in (19) gives

(20)
2

∑

j=1

ξj

{
∫

Ω

(∂ϕj

∂x1

∂ϕi

∂x1
+ 2

ϕj

∂x2

∂ϕi

∂x2

)

dx1 dx2

}

=

∫

Ω

ϕi dx1 dx2, i = 1, 2,
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which can be written in the equivalent form as

(21) Aξ = b, aij =

∫

Ω

(∂ϕj

∂x1

∂ϕi

∂x1
+ 2

ϕj

∂x2

∂ϕi

∂x2

)

dx1 dx2, bi =

∫

Ω

ϕi dx1 dx2.

We can easily compute that

(22)
a11 =

∫

Ω

(

∂ϕ1

∂x1

∂ϕ1

∂x1

+ 2∂ϕ1

∂x2

∂ϕ1

∂x2

)

dx1 dx2 = 6, b1 =
∫

Ω
ϕ1 dx1 dx2 = 1

a22 =
∫

Ω

(

∂ϕ2

∂x2

∂ϕ2

∂x2

+ 2∂ϕ2

∂x2

∂ϕ2

∂x2

)

dx1 dx2 = a11

2 = 3, b1 =
∫

Ω
ϕ2 dx1 dx2 = b1

2 = 1
2 ,

and

a12 = a21 =

∫

Ω

(∂ϕ2

∂x1

∂ϕ1

∂x2
+ 2

∂ϕ2

∂x2

∂ϕ1

∂x2

)

dx1 dx2 = { see Fig. } =

∫

K1

. . .+

∫

K2

. . .

=
( 1

h
(−

1

h
) + 2 ·

1

h
· 0) ·

h2

2

)

+
( 1

h
(−

1

h
) + 2 · 0 · (−

1

h
) ·

h2

2

)

= −
1

2
−

1

2
= −1.

(23)

So, in summary we have that the stiffness matrix A, and the load vector b are given by

A =

[

6 −1
−1 2

]

b =

[

1
1/2

]

.

5. See the lecture notes.
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